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Lecture notes on matroid union

From any matroid M = (E, I(M)), one can construct a dual matroid M ∗ = (E, I(M∗)).

Theorem 1 Let I(M ∗) = {X ⊆ E(M) : E(M) \ X contains a base of M}. Then M ∗ =
(E, I(M∗)) is a matroid with rank function

rM∗(X) = |X| + rM(E \ X) − rM(E).

There are several ways to show this. One is to first show that indeed the size of the
largest subset of X in I(M ∗) has cardinality |X|+ rM(E \X)− rM(E) and then show that
rM∗ satisfies the three conditions that a rank function of a matroid needs to satisfy (the
third one, submodularity, follows from the submodularity of the rank function for M).

One can use Theorem 1 and matroid intersection to get a good characterization of when
a graph G = (V, E) has two edge-disjoint spanning trees. Indeed, letting M be the graphic
matroid of the graph G, we get that G has two edge-dsjoint spanning trees if and only if

max
S∈I(M)∩I(M∗)

|S| = |V | − 1.

For the graphic matroid, we know that rM(F ) = n− κ(F ) where n = |V | and κ(F ) denotes
the number of connected components of (V, F ). But by the matroid intersection theorem,
we can write:

max
S∈I(M)∩I(M∗)

|S| = min
E1⊆E

rM(E1) + rM∗(E \ E1)

= (n − κ(E1)) + (|E \ E1| + κ(E) − κ(E1))

= n + 1 + |E \ E1| − 2κ(E1),

where we replaced κ(E) by 1 since otherwise G would even have one spanning tree. Re-
arranging terms, we get that G has two edge-dsjoint spanning trees if and only if for all
E1 ⊆ E, we have that E \ E1 ≥ 2(κ(E1) − 1). If this inequality is violated for some E1,
we can add to E1 any edge that does not decrease κ(E1). In other words, if the connected
components of E1 are V1, V2, · · · , Vp then we can assume that E1 = E \δ(V1, V2, · · ·Vp) where
δ(V1, · · · , Vp) = {(u, v) ∈ E : u ∈ Vi, v ∈ Vj and i 6= j}. Thus we have shown:

Theorem 2 G has two edge-disjoint spanning trees if and only if for all partitions V1,

V2, · · ·Vp of V , we have

|δ(V1, · · · , Vp)| ≥ 2(p − 1).

Going back to the spanning tree game, it is now clear that if the graph does not have
two edge-disjoint spanning trees then player 1 has a winning strategy. He/she just needs to
delete edges from δ(V1, · · · , Vp) for the partition given by theorem 2.

Theorem 2 can be generalized.
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Theorem 3 G has k edge-disjoint spanning trees if and only if for all partitions V1, V2, · · ·Vp

of V , we have

|δ(V1, · · · , Vp)| ≥ k(p − 1).

From two matroids M1 = (E, I(M1)) and M2 = (E, I(M2)), we can also define its union
by M1 ∪ M2 = (E, I) where I = {S1 ∪ S2 : S1 ∈ I(M1), S2 ∈ I(M2)}.

We can show that:

Theorem 4 M1 ∪ M2 is a matroid with rank function

rM1∪M2
(X) = minF⊆E {|E \ F | + rM1

(F ) + rM2
(F )} .

Proof: To show that it is a matroid, assume that X, Y ∈ I with |X| < |Y |. Let
X = X1 ∪ X2 and Y = Y1 ∪ Y2 where X1, Y1 ∈ I(M1) and X2, Y2 ∈ I(M2). We can
furthermore assume that the Xi’s are disjoint and so are the Yi’s. Finally we assume that
among all choices for X1, X2, Y1 and Y2, we choose the one maximizing |X1 ∩Y1|+ |X2 ∩Y2|.
Since |Y | > |X|, we can assume that |Y1| > |X1|. Thus, there exists e ∈ (Y1 \ X1) such that
X1 ∪ {e} is independent for M1. The maximality implies that e /∈ X2 (otherwise consider
X1 ∪ {e} and X2 \ {e}). But this implies that X ∪ {e} ∈ I as desired.

We now show the expression for the rank function. The fact that it is ≤ is obvious as an
independent set X ∈ I has size |X \ F | + |X ∩ F | ≤ |E \ F | + rM1

(F ) + rM2
(F ) and this is

true for any F .
For the converse, notice that X ∈ I is such that X = X1 ∪ X2 with X1 ∈ I(M1) and

X2 ∈ I(M2). We can furthermore assume that X1 and X2 are disjoint and that rM2
(X2) =

rM2
(E) (otherwise add elements to X2 and possibly remove them from X1). Thus we can

assume that |X| = |X1| + rM2
(E) and that X1 ∈ I(M1) ∩ I(M∗

2 ). The proof is completed
by using the matroid intersection theorem and Theorem 1:

rM1∪M2
(E) = max

X1∈I(M1)∩I(M∗

2
)
(|X1| + rM2

(E))

= min
E1⊆E

(

rM1
(E1) + rM∗

2
(E \ E1) + rM2

(E)
)

= min
E1⊆E

(rM1
(E1) + |E \ E1| + rM2

(E1) − rM2
(E) + rM2

(E))

= min
E1⊆E

(|E \ E1| + rM1
(E1) + rM2

(E1)) ,

as desired. 4


