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Lecture notes on matroid union

From any matroid M = (E,Z(M)), one can construct a dual matroid M* = (E,Z(M")).

Theorem 1 Let Z(M*) = {X C E(M) : E(M) \ X contains a base of M}. Then M* =
(E,Z(M*)) is a matroid with rank function

There are several ways to show this. One is to first show that indeed the size of the
largest subset of X in Z(M*) has cardinality | X |+ rp(E \ X) — ry(E) and then show that
ra+ satisfies the three conditions that a rank function of a matroid needs to satisfy (the
third one, submodularity, follows from the submodularity of the rank function for M).

One can use Theorem 1 and matroid intersection to get a good characterization of when
a graph G = (V, E) has two edge-disjoint spanning trees. Indeed, letting M be the graphic
matroid of the graph G, we get that G has two edge-dsjoint spanning trees if and only if

max |S| = |V|—1.

SET(M)NI(M*)
For the graphic matroid, we know that 7/ (F') = n — k(F') where n = |V| and x(F') denotes
the number of connected components of (V, F'). But by the matroid intersection theorem,
we can write:

max S| = min ry(Ey) +ry-(E\ Ey)
SET(M)NI(M*) E\CE
= (n—k(E)) + (|E\ Ey| + 5(E) — £(E1))
= n-+ 1 + |E\E1| — 2/43(E1),

where we replaced k(E) by 1 since otherwise G would even have one spanning tree. Re-
arranging terms, we get that G has two edge-dsjoint spanning trees if and only if for all
E, C E, we have that £\ Ey > 2(k(E;) — 1). If this inequality is violated for some Ej,
we can add to F; any edge that does not decrease k(F1). In other words, if the connected
components of E; are Vy, Vo, - - -, V, then we can assume that £y = E'\§(Vi, Vs, - - - V,) where
Vi, Vp) ={(u,v) € E:ueV,,veV;and i # j}. Thus we have shown:

Theorem 2 G has two edge-disjoint spanning trees if and only if for all partitions Vi,
Vo, -V, of V, we have
|6(‘/1’ B V;,)| > 2(p - 1)'

Going back to the spanning tree game, it is now clear that if the graph does not have
two edge-disjoint spanning trees then player 1 has a winning strategy. He/she just needs to
delete edges from 6(Vy,---,V,) for the partition given by theorem 2.

Theorem 2 can be generalized.
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Theorem 3 G has k edge-disjoint spanning trees if and only if for all partitions Vi, Va, - -V,
of V', we have
|5(‘/1’ B ‘/p)| > k‘(p - 1)'

From two matroids My = (E,Z(M;)) and My = (E,Z(Ms;)), we can also define its union
by My U My = (E,Z) where Z = {S1USy: 5 € Z(My),Sy € Z(M>)}.
We can show that:

Theorem 4 M, U M is a matroid with rank function
ranumy (X) = minpcp {{E\ F| 4+ ru, (F) + ra(F)}

Proof: To show that it is a matroid, assume that X,Y € Z with |X| < |Y]|. Let
X =XjUXyand Y = Yy UY; where X3,Y; € Z(M;) and X5,Ys € Z(My). We can
furthermore assume that the X;’s are disjoint and so are the Y;’s. Finally we assume that
among all choices for X7, X, Y] and Y3, we choose the one maximizing | X; NY3|+ | Xy NYs|.
Since |Y'| > | X|, we can assume that |Y;| > |X;|. Thus, there exists e € (Y7 \ X;) such that
X, U{e} is independent for M;. The maximality implies that e ¢ X5 (otherwise consider
X1 U{e} and X, \ {e}). But this implies that X U {e} € Z as desired.

We now show the expression for the rank function. The fact that it is < is obvious as an
independent set X € 7 has size | X \ F|+ |[X N F| < |E\ F| + 7y, (F) + ra,(F) and this is
true for any F'.

For the converse, notice that X € Z is such that X = X; U X, with X; € Z(M;) and
Xy € I(M,). We can furthermore assume that X; and X, are disjoint and that 7, (X5) =
T, (E) (otherwise add elements to X5 and possibly remove them from X;). Thus we can
assume that |X| = |X;| + rap (F) and that X, € Z(M;) NZ(M;). The proof is completed
by using the matroid intersection theorem and Theorem 1:

F) = X E
ruon(E) = | max - (1X0] 4 (E)

= min (rag (Br) + g (B \ By) + 7an, (E))
= min (s, (B) + [E\ Bl + ran, (1) = ragy (E) + 1 (E))

= min (B\ Byl +ra (B) +ran (L)),

as desired. A



