Lecture notes on matroid union

From any matroid $M=(E, \mathcal{I}(M))$, one can construct a dual matroid $M^{*}=\left(E, \mathcal{I}\left(M^{*}\right)\right)$.
Theorem 1 Let $\mathcal{I}\left(M^{*}\right)=\{X \subseteq E(M): E(M) \backslash X$ contains a base of $M\}$. Then $M^{*}=$ $\left(E, \mathcal{I}\left(M^{*}\right)\right)$ is a matroid with rank function

$$
r_{M^{*}}(X)=|X|+r_{M}(E \backslash X)-r_{M}(E)
$$

There are several ways to show this. One is to first show that indeed the size of the largest subset of X in $\mathcal{I}\left(M^{*}\right)$ has cardinality $|X|+r_{M}(E \backslash X)-r_{M}(E)$ and then show that $r_{M^{*}}$ satisfies the three conditions that a rank function of a matroid needs to satisfy (the third one, submodularity, follows from the submodularity of the rank function for M).

One can use Theorem 1 and matroid intersection to get a good characterization of when a graph $G=(V, E)$ has two edge-disjoint spanning trees. Indeed, letting M be the graphic matroid of the graph G, we get that G has two edge-dsjoint spanning trees if and only if

$$
\max _{S \in \mathcal{I}(M) \cap \mathcal{I}\left(M^{*}\right)}|S|=|V|-1 .
$$

For the graphic matroid, we know that $r_{M}(F)=n-\kappa(F)$ where $n=|V|$ and $\kappa(F)$ denotes the number of connected components of (V, F). But by the matroid intersection theorem, we can write:

$$
\begin{aligned}
\max _{S \in \mathcal{I}(M) \cap \mathcal{I}\left(M^{*}\right)}|S| & =\min _{E_{1} \subseteq E} r_{M}\left(E_{1}\right)+r_{M^{*}}\left(E \backslash E_{1}\right) \\
& =\left(n-\kappa\left(E_{1}\right)\right)+\left(\left|E \backslash E_{1}\right|+\kappa(E)-\kappa\left(E_{1}\right)\right) \\
& =n+1+\left|E \backslash E_{1}\right|-2 \kappa\left(E_{1}\right),
\end{aligned}
$$

where we replaced $\kappa(E)$ by 1 since otherwise G would even have one spanning tree. Rearranging terms, we get that G has two edge-dsjoint spanning trees if and only if for all $E_{1} \subseteq E$, we have that $E \backslash E_{1} \geq 2\left(\kappa\left(E_{1}\right)-1\right)$. If this inequality is violated for some E_{1}, we can add to E_{1} any edge that does not decrease $\kappa\left(E_{1}\right)$. In other words, if the connected components of E_{1} are $V_{1}, V_{2}, \cdots, V_{p}$ then we can assume that $E_{1}=E \backslash \delta\left(V_{1}, V_{2}, \cdots V_{p}\right)$ where $\delta\left(V_{1}, \cdots, V_{p}\right)=\left\{(u, v) \in E: u \in V_{i}, v \in V_{j}\right.$ and $\left.i \neq j\right\}$. Thus we have shown:

Theorem $2 G$ has two edge-disjoint spanning trees if and only if for all partitions V_{1}, $V_{2}, \cdots V_{p}$ of V, we have

$$
\left|\delta\left(V_{1}, \cdots, V_{p}\right)\right| \geq 2(p-1)
$$

Going back to the spanning tree game, it is now clear that if the graph does not have two edge-disjoint spanning trees then player 1 has a winning strategy. He/she just needs to delete edges from $\delta\left(V_{1}, \cdots, V_{p}\right)$ for the partition given by theorem 2 .

Theorem 2 can be generalized.

Theorem $3 G$ has k edge-disjoint spanning trees if and only if for all partitions $V_{1}, V_{2}, \cdots V_{p}$ of V, we have

$$
\left|\delta\left(V_{1}, \cdots, V_{p}\right)\right| \geq k(p-1)
$$

From two matroids $M_{1}=\left(E, \mathcal{I}\left(M_{1}\right)\right)$ and $M_{2}=\left(E, \mathcal{I}\left(M_{2}\right)\right)$, we can also define its union by $M_{1} \cup M_{2}=(E, \mathcal{I})$ where $\mathcal{I}=\left\{S_{1} \cup S_{2}: S_{1} \in \mathcal{I}\left(M_{1}\right), S_{2} \in \mathcal{I}\left(M_{2}\right)\right\}$.

We can show that:
Theorem $4 M_{1} \cup M_{2}$ is a matroid with rank function

$$
r_{M_{1} \cup M_{2}}(X)=\min _{F \subseteq E}\left\{|E \backslash F|+r_{M_{1}}(F)+r_{M_{2}}(F)\right\} .
$$

Proof: To show that it is a matroid, assume that $X, Y \in \mathcal{I}$ with $|X|<|Y|$. Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ where $X_{1}, Y_{1} \in \mathcal{I}\left(M_{1}\right)$ and $X_{2}, Y_{2} \in \mathcal{I}\left(M_{2}\right)$. We can furthermore assume that the X_{i} 's are disjoint and so are the Y_{i} 's. Finally we assume that among all choices for X_{1}, X_{2}, Y_{1} and Y_{2}, we choose the one maximizing $\left|X_{1} \cap Y_{1}\right|+\left|X_{2} \cap Y_{2}\right|$. Since $|Y|>|X|$, we can assume that $\left|Y_{1}\right|>\left|X_{1}\right|$. Thus, there exists $e \in\left(Y_{1} \backslash X_{1}\right)$ such that $X_{1} \cup\{e\}$ is independent for M_{1}. The maximality implies that $e \notin X_{2}$ (otherwise consider $X_{1} \cup\{e\}$ and $\left.X_{2} \backslash\{e\}\right)$. But this implies that $X \cup\{e\} \in \mathcal{I}$ as desired.

We now show the expression for the rank function. The fact that it is \leq is obvious as an independent set $X \in \mathcal{I}$ has size $|X \backslash F|+|X \cap F| \leq|E \backslash F|+r_{M_{1}}(F)+r_{M_{2}}(F)$ and this is true for any F.

For the converse, notice that $X \in \mathcal{I}$ is such that $X=X_{1} \cup X_{2}$ with $X_{1} \in \mathcal{I}\left(M_{1}\right)$ and $X_{2} \in \mathcal{I}\left(M_{2}\right)$. We can furthermore assume that X_{1} and X_{2} are disjoint and that $r_{M_{2}}\left(X_{2}\right)=$ $r_{M_{2}}(E)$ (otherwise add elements to X_{2} and possibly remove them from X_{1}). Thus we can assume that $|X|=\left|X_{1}\right|+r_{M_{2}}(E)$ and that $X_{1} \in \mathcal{I}\left(M_{1}\right) \cap \mathcal{I}\left(M_{2}^{*}\right)$. The proof is completed by using the matroid intersection theorem and Theorem 1 :

$$
\begin{aligned}
r_{M_{1} \cup M_{2}}(E) & =\max _{X_{1} \in \mathcal{I}\left(M_{1}\right) \cap \mathcal{I}\left(M_{2}^{*}\right)}\left(\left|X_{1}\right|+r_{M_{2}}(E)\right) \\
& =\min _{E_{1} \subseteq E}\left(r_{M_{1}}\left(E_{1}\right)+r_{M_{2}^{*}}\left(E \backslash E_{1}\right)+r_{M_{2}}(E)\right) \\
& =\min _{E_{1} \subseteq E}\left(r_{M_{1}}\left(E_{1}\right)+\left|E \backslash E_{1}\right|+r_{M_{2}}\left(E_{1}\right)-r_{M_{2}}(E)+r_{M_{2}}(E)\right) \\
& =\min _{E_{1} \subseteq E}\left(\left|E \backslash E_{1}\right|+r_{M_{1}}\left(E_{1}\right)+r_{M_{2}}\left(E_{1}\right)\right),
\end{aligned}
$$

as desired.

