18.409: Topics in TCS: Embeddings of Finite Metric Spaces

Exercises 1.

This is due by October 11th. You should first try to solve the problems on your own, and then you are welcome to discuss them with others or to read papers that may help.

1. Consider any tree metric (i.e.the shortest path metric of a tree) on n points. Show that it isometrically embeds into $l_{\infty}^{O(\log n)}$.
2. (a) Show that an n-point metric in l_{1}^{d} isometrically embeds into $l_{\infty}^{d^{d}}$ (thus, in this embedding the dimension is independent of the number of points in the metric space).
(b) Deduce from this that the diameter of this set of points can be found in $O\left(d 2^{d} n\right)$. (This is of course interesting only if the dimension d is small; for example, for constant dimension, this gives a linear-time algorithm.)
3. Consider the diamond graphs $\left\{D_{m}\right\}_{m=1}^{\infty}$ (see the scribe notes of Lecture 3 for an exact definition).
(a) Show that the corresponding metric can be embedded into l_{1} with constant distortion (distortion 2 is achievable, but any constant is fine).
(b) Show a lower bound $c>1$ on the distortion needed to embed the diamond graph into l_{1}. (I do not know what is the best c that can be proved :-)
4. For a Frechet embedding μ and any $p \geq 1$, prove the following l_{p} analogue to the lemma we proved in lecture for l_{2} embeddings:

If for all $x, y \in X$,

$$
d(x, y) \leq \gamma E_{\mu}[|d(x, A)-d(y, A)|]
$$

then the mapping $f: X \rightarrow \mathbb{R}^{2^{n}}$ embeds (X, d) into l_{p} with distortion γ.
5. In this exercise, you will show that $\alpha(G)=\beta(G)$ when $k=2$. Recall the setting. We have a multicommodity flow problem in an undirected graph $G=(V, E)$ with $k=2$ commodities with demands D_{1} and D_{2} between $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$, and capacities $c: E \rightarrow \mathbb{R}_{+} . \alpha(G)$ represents the largest fraction of the demands that can be simultaneously satisfied, i.e. one can find a flow of value $\alpha(G) D_{1}$ between s_{1} and t_{1} and a flow of value $\alpha(G) D_{2}$ between s_{2} and t_{2}. $\beta(G)$ on the other hand is the sparsest cut, thus $\beta(G)=\min \left(C_{1} / D_{1}, C_{2} / D_{2}, C_{12} /\left(D_{1}+D_{2}\right)\right)$ where C_{i} (resp. C_{12}) is the smallest capacity of a cut separating s_{i} from t_{i} (resp. a cut separating both s_{1} from t_{1} and s_{2} from t_{2}).
As a hint, consider two separate (single-commodity) flow problems (for which we know that \max flow $=\min$ cut $)$. The first flow problem is defined on $\left(V \cup\{(s, t)\}, E \cup\left\{\left(s, s_{1}\right),\left(s, s_{2}\right),\left(t, t_{1}\right),\left(t, t_{2}\right)\right\}\right)$ with the capacities of the new edges being $\beta(G) D_{1}$ for $\left(s, s_{1}\right)$ and $\left(t, t_{1}\right)$ and $\beta(G) D_{2}$ for $\left(s, s_{2}\right),\left(t, t_{2}\right)$. The second flow problem is defined on $\left(V \cup\{(s, t)\}, E \cup\left\{\left(s, s_{1}\right),\left(s, t_{2}\right),\left(t, t_{1}\right),\left(t, s_{2}\right)\right\}\right)$ with appropriate capacities. Show how to combine the flows of these two problems to deduce that $\alpha(G)=\beta(G)$.

