
Spring 2015

18.310A Homework 5

Due Mon April 6th at 10AM in lecture

Instructions: Collaboration on homework is permitted, but you must write the solutions yourself;
no copying is allowed. Please list the names of your collaborators; if you worked alone, state this.
Also indicate any sources you consulted beyond the lecture notes.

1. Consider the following flow problem instance, with source s and sink t:
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Find a maximum flow with the augmenting path algorithm (show the steps), and also derive
from the optimum flow an s-t cut of the same value.

2. Suppose we are given a set B of tasks that need to performed by a set A of people. We are
also given a set E ⊆ A×B such that person a is suitable for task b if and only if (a, b) ∈ E.
Each person can be assigned to at most one task, and every task should be done by at most
one person. The goal is to find the maximum number of tasks that can be completed. Model
this problem as a maximum flow problem, and argue why the optimum flow gives an optimum
assignment of persons to tasks.

3. In this exercise, you’ll derive yet another way of sorting an array by successively sorting
subarrays. We need the following notion. h-sorting an array A of length n means sorting
all subarrays consisting of the elements A[i], A[i + h], A[i + 2h], · · · for all i = 1, 2, · · · , h.
h-sorting an array thus results in an array that is h-sorted which means that A[i] ≤ A[i + h]
for all i = 1, · · · , n− h. (1-sorting is thus equivalent to sorting.)

(a) Let A be an array of size n which is already h-sorted for some h ≤ n. Consider any
k 6= h, and let B be the array resulting from k-sorting A. Write a proof that B is both
h-sorted and k-sorted.

(b) Suppose that an array A is both 2-sorted and 3-sorted. Suppose we now apply Inser-
tionSort where InsertionSort processes elements 2 to n in turn and, when processing
element i, inserts it into the sorted subarray consisting of the first i− 1 elements by first
comparing element i to element i − 1 then to element i − 2 and so on until it finds the
right place to insert it.

HW5-1



Argue that InsertionSort performs at most 2 comparisons when trying to insert ele-
ment i at the right position (and the second comparison is really not needed).

(c) Let JumpSort be the algorithm that does h-sorting with increments hij = 2i3j where
i ranges from blog2(n)c down to 0, and j ranges from blog3(n)c down to 0. We don’t
really care in which order we process all the possible pairs (i, j) except that we insist on
using both the increments 2i+13j and 2i3j+1 some time before using the increment 2i3j .
Does JumpSort output a sorted array? Why?

(d) How many comparisons does JumpSort with this sequence of increments do in the
worst-case on an array of length n? (As usual, we care only about the leading term as
n grows.)
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