
18.310 lecture notes April 22, 2015

Factoring

Lecturer: Michel Goemans

We’ve seen that it’s possible to efficiently check whether an integer n is prime or not. What
about factoring a number? If this could be done efficiently (for example, in say D4 operations,
where D ∼ log n is the number of digits of n), then the RSA encryption scheme could be broken,
just by factoring N = pq in the public key.

Probably the first algorithm that comes to mind is the brute-force approach: for each positive
integer d greater than 1 and not larger than

√
n, check if d divides n. The reason we go up to

√
n

is simply that if n is composite, it must have a divisor no larger than
√
n. This can be done very

efficiently for any particular choice of d, using the Euclidean algorithm: compute gcd(d, n), and if
it’s not 1, the result is a nontrivial1 factor of n. Unfortunately, this method is extremely slow, just
because of the number of potential divisors to check:

√
n.

We will see two faster algorithms. The first, Pollard’s rho algorithm will require roughly n1/4

gcd operations (rather than n1/2 as above). The second, the quadratic sieve, will run roughly in
time e

√
logn log logn. This looks a bit complicated, but notice that

(log n)C = eC log logn and nε = eε logn.

So e
√
logn log logn lies inbetween these two, in terms of its speed of growth as n gets large.

Pollard’s rho algorithm

Suppose n is the number to be factored, and n = pq, where p is a prime factor not larger than
√
n

(q need not be prime here, if n has more than 2 prime factors). Note that we do not know p; once
we figure out p, we’re done!

Consider the following thought experiment. Pick some numbers x1, x2, . . . , x` uniformly at
random in Zn (the choice of ` will be decided later). Assume that all the numbers are distinct (if
n is large compared to `, this is very unlikely anyway). Now suppose that

there exists some 1 ≤ i < j ≤ ` such that xi ≡ xj (mod p). (1)

Then p | xi − xj , and since p | n also, we have that

p | gcd(xi − xj , n).

Moreover, since −n < xi − xj < n and xi 6= xj , gcd(xi − xj , n) < n. Thus gcd(xi − xj , n) provides
a nontrivial factor of n, and our job is done.

Again, keep in mind that we do not know p. But, the above tells us that if we computed
gcd(xi′ − xj′ , n) for every pair 1 ≤ i′ < j′ ≤ `, we would find the nontrivial factor. But how big
does ` need to be such that the chance that (1) holds is reasonable?

1“Nontrivial” here just means that the factor is neither 1, nor n itself.

Factor-1

The answer is roughly
√
p. This is essentially a reformulation of the “Birthday paradox”: the

somewhat surprising fact that in a group of only 30 people, the probability that two people in the
group have the same birthday is already quite large—more than 60%. Let’s calculate the probability
that (1) does not hold, i.e., that the residue classes (“birthdays”) of x1, x2, . . . , x` are all different.
This is

P(all different) =

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− `− 1

n

)
≤ e−1/n · e−2/n · · · e−(`−1)/n using 1− y ≤ e−y

= e−
`(`−1)

2n

∼ e−`2/(2n).

So if ` =
√
n, the probability is roughly e−1/2 ≤ 2/3, and so there is a substantial probability that

(1) occurs.
Since p ≤

√
n, we only need to choose ` = n1/4 (remember we don’t know p!). But—then the

number of pairs i, j is
(
`
2

)
which is about 1

2

√
n. Checking all these pairs takes again about

√
n gcd

computations—this is no better than brute search! What whas the point?
The clever trick here is to not pick the xi’s randomly, but instead in a way that “looks” random.

Let f : Zn → Zn be defined by
f(x) = x2 + 1 mod n.

Fix any x0 ∈ Zn. Now consider the sequence

x1 = f(x0), x2 = f(x1), . . . xi = f(xi−1),

Empirical “fact”: The sequence x0, x1, . . . “looks random”.
This is not a precise statement, and indeed there is no formal proof that the algorithm that

we will describe now actually works efficiently. But it is well established empirically that it does,
in that for most choices of x0, there will be a pair i < j < C

√
p (for some small constant C)

with xi ≡ xj (mod p). The plan now is to look for such a pair i, j in this sequence (rather than a
randomly generated one). But we still can’t check every pair i′, j′, so how does this help?

The observation is that we’re actually looking for cycles in the sequence

x0 mod p, x1 mod p, x2 mod p,

For suppose xi ≡ xj (mod p), with i < j and i chosen as small as possible so that this holds.
Then f(xi) ≡ f(xj) (mod p), i.e., xi+1 ≡ xj+1 (mod p) (you should check this!). Figure 1 shows
the situation schematically: the points in the picture represent the values Zp. Eventually the
sequence x0 mod p, x1 mod p, . . . runs into itself, and from then one goes around a cycle. (The
name “Pollard’s rho algorithm” comes from this picture...). It’s worth recalling again at this point
that we don’t know p, so we cannot directly see the cycle. Nevertheless, we can find it very efficiently
with the following algorithm.

Tortoise and hare algorithm:

1. Let y0 = x0.

Factor-2

x0 mod p

x1 mod p

xi mod p

xi+1 mod p

Figure 1: A cycle formed in the sequence x0 mod p, x1 mod p,

2. For i = 1, 2, . . .

(a) xi = f(xi−1).

(b) yi = f(f(yi−1))

(c) If gcd(xi − yi, n) 6= 1, return this discovered factor.

Informally, we start a tortoise (the sequence (xi)) and a hare (the sequence (yi)) at x0, and the
tortoise moves one step each turn, but the hare moves two. Once both the tortoise and the hare are
on the cycle, it’s just a matter of time until the hare runs into the tortoise. Our “empirical fact”
implies that this algorithm will generally finish within C

√
p ≤ Cn1/4 steps for some small constant

C; if we run for much longer than this without finding a cycle, we can give up and start again with
a different choice of x0.

The quadratic sieve

This algorithm is closely related to the currently fastest known method for factoring. As already
mentioned, it takes time roughly e

√
logn log logn.

The approach is based on the following idea. If we could find two numbers a, b such that a 6≡ b
(mod n), a 6≡ −b (mod n), but a2 ≡ b2 (mod n), then we can easily get a factor. For we have that
n | (a− b)(a+ b), but n 6| a− b and n 6| a+ b. Thus gcd(a+ b, n) will be a nontrivial factor (as will
gcd(a− b, n), but we only need one).

Let g : Zn → Z be the function defined by g(z) = z2 mod n. Now if we could find some integer
z, with

√
n ≤ z ≤

√
n + K (K is something big, but much smaller than

√
n) and where g(z) is a

perfect square, then we are done. (Note: by perfect square, we really mean a perfect square as an
integer, not as an element of Zn. So we mean g(z) = y2 for some integer y, not g(z) ≡ y2 (mod n).)
For let g(z) = y2. Then y2 ≡ z2 (mod n). But z 6≡ y (mod n), since y <

√
n ≤ z < n. Moreover, if

K is not too large, it can also be shown that z 6≡ −y (mod n). So then we can obtain a nontrivial
factor from gcd(y − z, n) as already discussed.

Example. Suppose n = 1817. Then d
√
ne = 43. We get lucky: g(51) = 784 = 282. So 512 ≡ 282

(mod 1817), hence 23 · 79 ≡ 0 (mod 1817), and we have a factor.

Unfortunately, starting from d
√
ne and working our way up one at a time looking for a z s.t.

g(z) is a perfect square does not work well; the special values of z are rare, and so the number of

Factor-3

tries needed is again huge. But there is another hope. Suppose we find distinct z1, z2, . . . , z` ∈ Zn,
with all zi ≥

√
n, and where ∏̀

i=1

g(zi) is a perfect square. (2)

(Again, note that we multiply the numbers g(zi) as normal integers, not modulo n; so this product
can be larger than n). Then this is also (probably) good for us: let z =

∏`
i=1 zi and y2 =

∏`
i=1 g(zi).

Then y2 ≡ z2 (mod n), and so as long as y 6≡ ±z (mod n), we again find our nontrivial factor from
gcd(y + z, n). It is (vaguely speaking) unlikely that y ≡ ±z (mod n), though we won’t deal with
this formally; if we get unlucky, we have to try for another collection of zi’s.

Is it any easier to find a collection of zi’s satisfying (2)? Notice that given an integer m with
prime factorization m = pα1

1 pα2
2 · · · p

αt
t , then m is a perfect square if and only iff αj is even for each

1 ≤ j ≤ t. The idea will be to work with zi’s so that g(zi) contain only small primes in their prime
factorization, which will allow us to exploit this characterization of being a perfect square.

Definition 1. For B ∈ N, an integer is called B-smooth if all its prime factors are at most B.

For example, 15 and 75 are 5-smooth, but 14 is not 5-smooth.
If B is not too large, we can i) check if an integer m is B-smooth, and ii) if it is, find its prime

factorization, reasonably efficiently. Simply compute gcd(pi,m) for each prime pi ≤ B in turn, and
if this is larger than 1, divide m by pi (keeping track of the number of factors of pi found). If m
eventually reduces down to 1, we have a prime factorization of m in terms of primes not larger than
B; otherwise, m is not B-smooth.

The plan is: pick some B (which will grow with n unfortunately, but much more slowly than n;

roughly, B = e
1
2
√
logn log logn), and find B + 1 numbers z1, z2, zB+1 ∈ Zn, zi ≥

√
n, so that g(zi) is

B-smooth for each i. It turns out that these numbers are not so rare (depending on the choice of
B), so we could do this just by trying each value z starting from d

√
ne, checking if g(z) is B-smooth,

as described above.
Once we have these numbers z1, . . . , zB+1, we will in fact be able to find a subset of these

numbers which satisfy (2)! This is a consequence of some linear algebra, and the reason we wanted
precisely B+1 numbers. Let p1, . . . , pt be the list of primes of size at most B. Let g(zi) =

∏t
j=1 p

αi,j

j

be the prime factorization of g(zi) (of course, some αi,j ’s can be zero). Then for a given subset
I ⊆ {1, 2, . . . , B + 1}, ∏

i∈I
g(zi) =

t∏
j=1

p
(
∑

i∈I αi,j)
j .

Thus, applying our condition for a number to be a perfect square,∏
i∈I

g(zi) is a perfect square ⇔
∑
i∈I

αi,j is even ∀j ∈ {1, 2, . . . , t}. (3)

Now the linear algebra connection. (Warning: some knowledge of linear algebra will be assumed
here). Consider the (B+ 1)× t matrix A, with entries Aij = αi,j mod 2. We think of the entries of
A as being in Z2. Let Ai denote the i’th row of A (so this is a vector). Then what we are looking
for is a nonempty collection of rows I ⊆ {1, 2, . . . , B + 1} so that

∑
i∈I Ai = 0. The existence of

such a subset I follows from a key concept in linear algebra, linear dependence. Since A has only

Factor-4

B columns, the rank of A is at most B; since there are more than B rows, this means there must
be a linear dependence amongst the rows, i.e., wi ∈ Z2 so that

B+1∑
i=1

wiAi = 0

(and not all the wi are zero.) But that’s precisely what we want; just take I = {i | wi = 1}. There
is also an efficient algorithm to find this linear dependence.

Factor-5

