The lasting influence of Joun Bourgain's Hork in the Sterdy of Dispersine Eperations

Gigliola Staffilomi MIT

Initial Remarks

* Jean Bourgain is a lasting presence in many fielols of moth!
* Proof of this claim is the many to pics presented during He conference in his honor tho years ago!
* This talk will only address how deep den's influence is in the study of nonlinuer dispersive equations: Kolv, Schröolinger equations,...
* this talk is the story of hon Jean become inctere steal on Dispersive PDE. (\$houks to C. Rung + L. Vega for)

The beginning

- Spring 1990: C. Kenig is invited by L. Cofferelli ot Den IAS to give a tel. Carlos presented a not get completed Url on Uell-posednes of generalized KalV equdious.
"Definition": Gin on initio value problem (IVP)

$$
(\operatorname{IvP})\left\{\begin{array}{l}
D_{t} \mu+P(\Delta) \mu=F(\mu) \\
\left.\mu\right|_{t=0}=\mu_{0}
\end{array}\right.
$$

We soy that (IVP) is well-posed in on interval of time [0,T] if 7 ! Solution u and the solution is stable.
the vork presented by Cados vies in colleboration with G. Ponce and C. Vega, later published as

Well-Posedness and Scattering Results for the Generalized Korteweg-de Vries Equation via the Contraction Principle

CARLOS E. KENIG
University of Chicago
GUSTAVO PONCE
University of California at Santa Barbara
AND
LUIS VEGA
Universidad Autonoma de Madrid

Dedicated to Professors Tosio Kato and Elias M. Stein.

Communications on Pure and Applied Mathematics, Vol. XLVI, 527-620 (1993)
(c) 1993 John Wiley \& Sons, Inc.

Main Point of K-P-V Hack: Prove kell-posedmess et the level of conservation lees, such as mon or energy, by using very so phisticated hamonic endysis tools to estimate the linear pats.
Example: Consider the Kolv initial value problem

$$
(K d V)\left\{\begin{array}{l}
D_{t} u+O_{x x x}^{3} u+u D_{x} u=0 \quad u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \\
\left.\mu\right|_{t=0}=u_{0} \quad t_{1} x \in \mathbb{R}
\end{array}\right.
$$

Conservation Lares: $I_{e}(\mu)=\int_{\mathbb{R}} \mu^{2}(x, t) d x=I_{2}\left(\mu_{0}\right)$

$$
I_{3}(u)=\int_{\mathbb{R}}^{\mathbb{R}}\left(\left(\eta_{x} \mu\right)^{2}-c \mu^{3}\right) d x=I_{3}\left(\mu_{0}\right)
$$

The fixed point agent
Define $W(t) \mu_{0}(x)=\int_{\mathbb{R}} e^{i\left(x \cdot \xi+t \xi^{3}\right)} \hat{\mu}_{0}(\xi) d \xi$
\leadsto liker solution

$$
(K d v) \Rightarrow u=\underbrace{W(t) \mu_{0}+\int_{0}^{t} k\left(t-t^{\prime}\right) u \partial_{x} \mu\left(t^{\prime}\right) d t^{\prime}}_{\Phi^{\prime \prime}(u)}
$$

Goal: If $\mu_{0} \in H^{s}(\mathbb{R})$ find a spoon of functions $X_{T}^{s} \subseteq L_{T}^{\infty} H^{s}(\mathbb{R})$ st. $\Phi(u)$ hos e fixed point in if.

Theorem [KPV] let $s>\frac{3}{4}, \mu_{0} \in H^{s}(\mathbb{R})$. Then $\exists T=T\left(\left\|u_{0}\right\|_{H^{s}}\right)$ and a spore $X_{T}^{S} \subseteq L_{T}^{\infty} H^{S}$ s.t. Kolv hos e uniper solution $u \in X_{T}^{s}$.
Key Point of vier: $W(t) \mu_{0}=R^{*} \mu_{0}, R=$ Restriction of $F T$ on e

* During Coulos'tolk of the IAS E. Speer Nor in the audience. With J. Lebouitz and H. Rose thy hod published a poper on the Gibbs measure associated to the 1D periodic puristic NOS:

Journal of Statistical Physics, Vol. 50, Nos. 3/4, 1988

Statistical Mechanics of the Nonlinear Schrödinger Equation

Joel L. Lebowitz, ${ }^{1}$ Harvey A. Rose, ${ }^{2}$ and Eugene R. Speer ${ }^{3}$

Facts: - The Gibbs meome is defined for periodic NCS

- The Gibbs menu is suppeted on very rough spaces

Speer's Question: Is it possible to olefine a periodic NLS Hon on then support of the Gibbs meonue? Does this flow Keep the meoxue in vaciont?
Carlos' Onsuer: "this is a very had purstion, none of ar estimates would cork ... but I know who coulal moke some progress on the problem: Jean Bourgoin!

Explanation of the question of Speer
Consider the NCS equation on the torus π^{d} (periodicity) Assume for non $\pi^{\text {do }}$ is the spare torus:

$$
\begin{aligned}
& \text { assume for moue } \pi^{\text {der }} \text { is the spare torus: } \\
& \left(N (s) \left\{\begin{array}{l}
i Q_{t} \mu+\Delta \mu= \pm|\mu|^{p-1} \mu \quad p>1 \mu: \mathbb{R} x \pi \xrightarrow{d}(\mathbb{C} \\
\mu=0=\mu_{0}
\end{array}\right.\right. \\
& H(\mu)=\frac{1}{2} \int_{\pi^{d}}|\nabla \mu|^{2} d x \pm \frac{1}{p+1} \int_{\pi^{d}}|\mu|^{p+1} d x=H\left(\mu_{0}\right) \\
& M(\mu)=\int_{\pi d}|\mu|^{2} d x=M\left(\mu_{0}\right)
\end{aligned}
$$

From NCS to on ∞ Homiltonion system
If we set $\hat{\mu}(t, k)=a_{k}(t)+i b_{k}(t)$

$$
\left(N (S) \Leftrightarrow \left\{\begin{array} { l }
{ \dot { a } _ { k } = \frac { \partial H } { \partial b _ { n } } } \\
{ \dot { b } _ { k } = - \frac { \partial H } { \partial a _ { k } } }
\end{array} \quad k \in \mathbb { Z } ^ { d } \quad \left\{\begin{array}{l}
\text { Infimite } \\
\text { dimmsion } \\
\text { Homiltomion } \\
\text { system. }
\end{array}\right.\right.\right.
$$

Finite dim Gibbs meonue: If the Homiltomien System uere fimite dim, sey $|k| \leq N$, then the Gibbs meone

$$
d \mu=\frac{1}{z} e^{-H\left(a_{n}, b_{n}\right)} \prod_{|n| \leq N} d a_{n} d b_{x} \text { is Mele-alfined } \begin{gathered}
\text { ond } \\
\text { inveriont. }
\end{gathered}
$$

The Gibbs measure of Lebocitz-Rose - Speer
Consioler the ol focuring, puintic NLS in Π. L-R-S were able to mohe sensi of

$$
\text { " } d \mu=\frac{1}{z} e^{H\left(a_{k}, b_{k}\right)} \prod_{k \in \mathbb{Z}} d a_{k} d b_{k}
$$

by first introducing the Ganssion meone

$$
d \rho=\frac{1}{\tilde{z}} e^{-\sum_{k}\langle k\rangle^{2}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)} \prod_{k} d a_{k} d b_{k}
$$

with suppat on $H^{\sigma}(\pi), \sigma<\frac{1}{2}$, and then prove that $d \mu$ is absolutlly contimous vir.t. olg.

Qustion of Speer to Colos
i i) Is the onfocusing, quintic, periodic 1D NCS fooce $\Phi(t)$ defined in $H^{\sigma}(\pi), \sigma<\frac{1}{2}$ for de times?
ii) Is $d \mu$ inveriant cer. $\Phi(t)$, i.e.

$$
\forall A \subseteq H^{\sigma} \text { is } \mu(A)=\mu(\Phi(t)(A)) \quad \forall t \in \mathbb{R} ?
$$

Woy uas this pusstion hord?
Define $S(t) \mu_{0}(x)$ to be the solution of $\left\{\begin{array}{l}i i_{+} \mu+\Delta \mu=0 \\ \mu / t=0=\mu_{0}\end{array}\right.$

$$
\begin{aligned}
& \text { In } \mathbb{R}^{d} \\
& S(t) \mu_{0}(x)=\int_{\mathbb{R}^{d}} e^{i\left(x \cdot \xi+\left.t|\xi|\right|^{2}\right)} \hat{\mu}_{0}(\xi) d \xi \backsim \begin{array}{c}
\text { osallatory } \\
\text { integral }
\end{array} \\
& y_{n} \pi^{d \text { (squou) }} \sum e^{i\left(x \cdot k+t|k|^{2}\right)} \sim \text { oscillotory } \\
& S(t) \mu_{0}(x)=\sum_{k \in \mathbb{Z}^{d}} e^{i\left(x \cdot k+t|k|^{2}\right)} \hat{\mu}_{0}(k) \\
& \text { series } \\
& \text { (then no goool stimetn) }
\end{aligned}
$$

* Summer of 1990: Speer ments Jeou probaty in Paris oud telhs a baut the conversationkith Calos.
do Fall of 1990: t stort my Ph.D. of the lhiversity of Chicapo
- Jean visits Chicago and talks for hours uith Collos ebout Kadv and NCS.
* May of 1991: Coulos and Jeon meet at the Goth birth doy Conference of E. Stein in Princiton. Jean wouted to molu sure he kneu ell the references on the limeor eximotes for kedv and Schrödinger. Collos' inteition uos that he nos making
greot progress.

June of 1991: Jean phones Coulos to a sk fen more perestions. Feu weeks later Cohos reaines the momsanipt below where several periodic estimates were obtained.

I wow some Hinge down related to our last phone commination.

FOURIER TRANSFORM RESTRICTION PHENOMENA FOR CERTAIN LATTICE SUBSETS AND applications to non-linear evolution equations
J. BOURGAIN(*)

1. INTRODUCTION.

The main purpose of this paper is to develop a harmonic analysis method for solving certain non-linear periodic (in space variable) evolution equations, such as the non-linear Schrödinger equation (NLSE)

$$
\begin{equation*}
\Delta_{x} u+i \partial_{t} u+u|u|^{p-2}=0 \quad(p \geq 3) \tag{1.1}
\end{equation*}
$$

$u=u(x, t)$ is 1 - periodic in each coordinate of the x-variable
with initial data

$$
\begin{equation*}
u(x, 0)=\phi(x) \tag{1.3}
\end{equation*}
$$

Summer 1991: Carlos claims that be spent that whole summer studying Jean's mouscipt, which later was published in tho ports:

Geometric and Functional Analysis Vol. 3, No. 2 (1993)

FOURIER TRANSFORM RESTRICTION PHENOMENA FOR CERTAIN LATTICE SUBSETS AND APPLICATIONS TO NONLINEAR EVOLUTION EQUATIONS

Part I: Schrödinger Equations
J. Bourgain

Geometric and Functional Analysis Vol. 3, No. 3 (1993)

- 1993 Birkhäuser Verlag. Basel

FOURIER TRANSFORM RESTRICTION PHENOMENA FOR CERTAIN LATTICE SUBSETS

AND APPLICATIONS TO
NONLINEAR EVOLUTION EQUATIONS
Part II: The KDV-Equation

The novel approach of Jean Bourgoin
Fadt: Eray poper of tean hus loyers ofter loyers of ome zing mothumatics. In this cose the ancraching loyer is the introduction of ondytic number theory.
Example: To be able to per fam a fixed point one needs a spoce and the spou is oufined vie estimotes of $S(+) \mu 0$. For the 1D periodic puintic NCS Jen uxcal

$$
\left\|S(t) \mu_{0}\right\|_{L_{t}^{\sigma} l_{x}^{\sigma}} \leq C\left\|\mu_{0}\right\|_{H^{s}(\pi)}{ }^{\theta} s>0
$$

For thu 2D curtic periodic NCS he used
periodic

$$
\left\|S(t) \mu_{0}\right\|_{L_{\pi}^{4} L_{\pi^{2}}^{4} \leqslant C\left\|\mu_{0}\right\|}^{t}
$$ clso in time.

$$
H^{s}\left(\pi^{2}\right) \text { spure }
$$

\longrightarrow sperre toras
Theorem [Bourgoin] The quintic NCS en $I 1$ oud the cubric NCS on the square π^{2} an locally nell-posed for dote in $H^{5}, s>0$. Remork: This tham portially ou suers the peustion of Speer, namely then is a local flon in the suppert of the Gibbs meonue for th 1D, periodic, qeuintic, oufouring NCS.

The ondelyic number than in 1D and 2D
Let us consider the Π^{2} (spurn) cove: Assume sup $\hat{\mu}_{0} \subseteq B(0, N)$

$$
\left\|S(t) u_{0}\right\|_{C^{4}\left(\pi x \pi^{2}\right)}^{2}=\left\|S(t) u_{0} S(t) u_{0}\right\|_{l_{t, x}^{2}}=\left\|\widehat{S(t) u_{0}} * \widehat{S(t) u_{0}}\right\|_{l_{\lambda, k}}
$$ oud after using a Holders impurity one has to estimate:

$$
\left\{k \in \mathbb{Z}^{2} / k_{1}^{2}+k_{2}^{2}=N^{2}\right\} \text { for } N \in \mathbb{M} \text {. }
$$

by Cons lemme

$$
\ll N^{\varepsilon}
$$

this forces $u_{0} \in H^{s}, s>0$!

* Jean in foot completely onsuered Speer's question in the positive with following popes:

Periodic Nonlinear Schrödinger Equation and Invariant Measures
J. Bourgain
J.H.E.S., 35, route de Chartres, F-911440 Bures-sur-Yvette, France

Received: 27 October 1993/in revised form: 21 June 1994
answer to Speer's question.

He usedthe "deterministic" l.w.p in $H^{5}, s>0$ and used the invariance of the ne sere by the floc to move from local to global well-posedmess dmost surely!

A much more challenging problem: the cubic NLS in Π ?
Consider the equation $i D_{t} \mu+\Delta \mu=|\mu|^{2} \mu \quad x \in \pi^{2}$ with Homiltomion $H(\mu)=\frac{1}{2} \int_{\pi^{2}}|D|^{2} d x+\frac{1}{4} \int_{\pi^{2}}|u|^{4} d x$. One may yonder if

$$
d \mu=\frac{1}{z} e^{-H\left(a_{k}, b_{k}\right)} \prod_{k \in \mathbb{Z}^{2}} d a_{k} d b_{k} \text { " }
$$

is Mel defined. Slim and Jefe proved that the is is the case if one replaces $H(u)$ with the Kick orolereal $H_{t}(u)$, and the equation above kill: $\quad i{ }_{4} \mu+\Delta u=\left(m^{2} u\right)_{w}$

Main Issue: Supp $\mu \subseteq H^{s}\left(\pi^{2}\right), s<0$. Using the Strichantz estimate $\left\|S(t) \mu_{0}\right\|_{L^{4}\left(\pi x \pi^{2}\right) \leq C\left\|\mu_{0}\right\|_{H^{s}} s>0}$ one only has a flor in $H^{s}, S>0$.

Commun. Math. Phys. 176, $421-445$ (1996)

Extremely influential paper!

Invariant Measures for the 2D-Defocusing Nonlinear Schrödinger Equation
Jean Bourgain
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Result: Almost sure olefinition of the global flam in the support of the measure ard invoniance.
"proof": Let $\mu_{0}^{\omega}=\sum_{k \in Z^{2}} \frac{g_{k}(\omega)}{\langle k\rangle} e^{i k \cdot x}$ (initial date in supp μ)
i) Project the IVP onto $|k| \leq N$
ii) Instead of sohingfor u solve for $w=u-S(t) \mu_{0}^{w}$
iii) Prove that w is almost surely locally well defined in $H^{s}, s>0$, uniformly e.r.t. N.
iv) ene the invariance of the Gibbs meomer to move from local to global!

Remarks:
i) The andysis here is much more canghicated than the 1D quintic core. Mon probebilistic tools excl.
ii) Jean's Koch inspired feu years later:

Burp-"Tz vetkov (cubic Nice on 3D comport M)
T. Oh (Coupled Kdv Systems)
iii) Ever moue inter erection between the Dispersive PDE Community and th SPDE community:
Looking for "generic "results!

From spuore tori to any tori
the estimate $\left\|S(t) \mu_{0}\right\|_{L^{4}\left(\pi x \pi^{2}\right)} \leq c\left\|\mu_{0}\right\|_{H^{s}\left(\pi^{2}\right)} s>0$ Nos obtained by counting: \longrightarrow sperore totes

$$
\mathbb{\#}\left\{k \in \mathbb{Z}^{2} / k_{1}^{2}+k_{2}^{2}=N^{2}\right\} \quad N \in \mathbb{N} \text {. }
$$

If π^{2} is not a square: $\alpha_{1}^{-1} \frac{\square}{\alpha_{2}^{-1}}$ and $\alpha_{1} / \alpha_{2} \in \mathbb{R}, \mathbb{Q}$

- $S(t) \mu_{0}$ is molouger periodic in time
- $\left\{K \in \mathbb{C}^{2} / \alpha_{1} k_{1}^{2}+\alpha_{2} k_{2}^{2}=N^{2}\right\}$
is not well estimated.

The l^{2}-decouphing theorem

Annale of Mathematics 182 (2015), 351-389
http://dx.dol.org/10.4007/annils.2015.182.1.9

The proof of the l^{2} Decoupling Conjecture
By Jean Bourgain and Ciprian Demeter
In this poper Leon and Ciprion proncol the fomous l-decongling congecturu... and as a consepuence All Strichortz Estimotes, up to on ع., in ony torus I^{d}, for ony d.
the proof does not use Analytic Number Theory.
On the controny, ogements introduceal in the proof set the stage for the proof of a main conjecture in ANT:

Annals of Mathematics 184 (2016), 633-682 bttp://dx.doi.org/10.4007/annals.2016.184.2.7

Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three

By Jean Bourgain, Ciprian Demeter, and Larry Guth

Jean's Infleunce in Keeh Turbulence
Thouks to the availabilty of Strichatz edimotes in all π^{2} and the consurdion of mon aud energy teou proved thot the flon associoted to

$$
\left\{\begin{array}{l}
i\rangle_{t} u+\Delta u=|u|^{2} u \\
\left.u\right|_{t=0}=\mu_{0} \in H^{s}\left(\Pi^{2}\right), s \geqslant 1
\end{array}\right.
$$

is globolly vell-defincol.

What hoppens to $\mu(t)$ as $t \rightarrow \pm \infty$?

(Energy Transfer, Foruard Cascode-...)
One nay of cheching if this phe no menoer loappens is to look at:

$$
s>1
$$

$$
\lim _{t \rightarrow \pm \infty} \sum_{k}|\hat{u}(t, k)|^{2}(x\rangle^{2 s}=\lim _{t \rightarrow \pm \infty}\|u(t)\|_{H^{s}}^{2}
$$

Some Results
Theorem (Bourgoin) If μ is a smooth solution of the eubic, defocising N(s in π^{2}, then $\theta s>1$

$$
\|u(t)\|_{H^{s}} \leq C|t|^{2(s-1)+\varepsilon}, \varepsilon>0
$$

Theorem (Callianden-Keel-S-Takooke-Te0) If π^{2} is rational, $s>1,0<\sigma \ll 1$ and $k \gg 1$, thene erists a solution u to the cubric, olefocaning NLS and $T \gg 1$ s.t.
$\|\mu(0)\|_{H^{s}} \leqslant \sigma$ ond $\|\mu(T)\|_{H^{s}} \geqslant K$.

Thank you Joan for planting so many seeds in mathematics so that future generations of math nations con keep attending to the trees that thy gerenatid, and keep cross pollinating them!
Giphise

