Abstract

We determine the diameter of the 1-skeleton and the combinatorial automorphism group of any Gelfand-Tsetlin polytope GT_{λ} associated to an integer partition λ.

Introduction

Gelfand-Tsetlin (GT) polytopes are compact convex polytopes defined by a set of linear inequalities depending on a partition λ as shown in Figure 1. The polytope GT_{λ} corresponds to the set of points $\mathcal{F} = (x_{i,j})_{1 \leq i \leq j \leq \lambda} \in \mathbb{R}^{n(n+1)/2}$ where $(x_{i,j})_{1 \leq i \leq j \leq \lambda}$ is a filling of this triangular array such that all rows and columns are weakly increasing.

Example: $GT_{\lambda, \lambda} = (1, 2, 3)$

One can see from this figure that the diameter of the 1-skeleton is 2 and there are 4 automorphisms.

Background

GT_{λ} polytopes arise from the study of representations of $GL_n(\mathbb{C})$ and have connections to areas of representation theory and algebraic geometry. For any integer partition $\lambda = (\lambda_1, \ldots, \lambda_l)$, let n be the length of λ and let GT_{λ} denote the associated GT polytope. The integral points in GT_{λ} are in bijection with semi-standard Young tableaux of shape λ with tableaux entries bounded by n. Furthermore, the integral points of GT_{λ} parameterize a Gelfand-Tsetlin basis of the GL_n-module with highest weight λ, so the number of integral points equals the dimension of this module. GT polytopes can also be viewed as the marked order polytope of a poset as discussed in [1].

Theorem 1 (Diameter of 1-skeleton)

It suffices to consider $\lambda = (1^n, \ldots, m^m)$ for $a_i \in \mathbb{Z}_{\geq 0}$. For any GT_{λ}, the diameter of the 1-skeleton is $\text{diam}(GT_{\lambda}) = 2m - 2 - \delta_{1,a_1} - \delta_{1,a_m}$.

Theorem 2 (Automorphism Group)

It suffices to consider $\lambda = (1^n, \ldots, m^m)$ for $a_i \in \mathbb{Z}_{\geq 0}$. $m = 2$. Suppose $\lambda = (1^n, 2^m)$ and $a_1, a_2 \geq 2$. Then

$\text{Aut}(GT_{\lambda}) \cong D_4 \times Z_2$.

Otherwise,

$\text{Aut}(GT_{\lambda}) \cong D_4 \times Z_2 \times Z_2^{\delta_{1,a_1}}$, where D_4 is the dihedral group of order 8 and Z_2 is the cyclic group of order 2.

Proof Idea for Theorem 2

First we exhibit a set of automorphisms and show that they generate the groups in Theorem 2.

Noting that facets in a GT-polytope are in bijection with single edges in GT_{λ}, we represent facets by their associated edge. Two facets are called dependent if their intersection is $d - 3$ dimensional. We partition the edges of GT_{λ} into maximal chains of dependent facets.

For any $\phi \in \text{Aut}(GT_{\lambda})$ and chains C_1, C_2.

• If $\phi(C_1) = C_2$, then C_1 is mapped to C_2 or its flip.

• ϕ preserves the lengths of chains.

• ϕ preserves adjacency of chains.

Starting with the facets in chains of length 1 and length 2, we bound the size of the orbits of these facets and iteratively apply the Orbit-Stabilizer Theorem. We show that the order of the automorphism group equals the order of the groups in Theorem 2.

References

Acknowledgements

This research was carried out during the 2016 REU program at the University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1149634 and NSF grant DMS-1351900. The authors are especially grateful to Victor Reiner for his mentorship and to Elise deMasi and Craig Coster for their advice.