\[T_{\text{Avbgs}} 2 \quad \text{and} \quad a > 0 \]
\[M \equiv a \to 0 \]
\[\text{Choose metric: } k l = 1, \text{ such that } a = 2a \]
\[F \circ U(2) \quad S = F \times U(2) \quad e^2 \]
\[F_r \circ SO(3) \quad S = E \otimes E K^{-1} \]
\[\zeta(E) = PD(\mathbb{R}) \]
\[\text{Class that \quad steady} \]
\[\text{in Eor.} \]
\[\Gamma(x, y) \in C^\infty(S^5) \]
\[* F_A = r(y + t y - i a) - \frac{i}{2} \pi C \kappa \]
\[D_A y = 0 \]
\[|\lambda| \leq 1 + c_o / r \]
\[|\beta| \leq c_0 / \sqrt{r} \]
\[|\alpha| \leq c_0 / \sqrt{r} \]
\[|\beta| \leq c_o \]
\[\lambda \alpha \leq c_0 / \sqrt{r} \]
\[\lambda \beta \leq c_0 \]
\[\| A \| \leq c_0 / \sqrt{r} \]
\[|\lambda \beta| \leq c_0 \]
\[E(A) = \int_{\lambda \beta} g \wedge F_A \]
\[|a \wedge F_A| = r(1 - |\lambda \beta|^2) + O(1) \quad \text{as } \quad a \to 0 \]
\[\lambda \beta \leq 1 - |\lambda \beta|^2 \quad + \quad O(1) \]

Following obstruction, choose a pt. where \(|\lambda \beta| < 1 - \delta \).

Then \(\exists \) where \(\lambda \beta \to 0 \) as \(\delta \to 0 \).

\[\delta^2 \quad \text{so contribution} \quad \int a \wedge F_A \]
\[T_{\delta(0)} \geq \frac{1}{2} \delta^4 \]
This is in common case. In particular, if number \(N \) of these cylinders
is \(N \geq \theta(\varepsilon/\delta)^{1/2}, \) too many!
so if we can show these cylinders persist especially on a Reeb orbit, it must be closed/finite length.

Use degree theory: \(A = A_{\perp} \frac{1}{2\epsilon} \chi(1\pm 1) \left(\frac{x}{\lambda} \frac{D_{\lambda}}{\lambda} - \frac{D_{\lambda}}{A_{\perp}} \right) \)

\[\hat{A} \text{ is finite} \]

where \(\Delta \min \geq 1 - \delta/\epsilon \)

\[\beta \]

For \(\min \geq \frac{\delta}{\epsilon} \): \(F_{\alpha} = (1 - \varepsilon) F_{\perp} + \varepsilon \hat{A}_{\perp} \alpha \) or \(\varepsilon \) \(\alpha = \hat{A}_{\perp} \) constant, \(\alpha \) for needs to limit to a Reeb orbit.

Now how to go back from Reeb orbit to \(\alpha, \beta \)?

\[\partial_x \chi = i \partial^1 \alpha + (\partial_1 \chi - i \partial_2 \beta) \]

\[\partial_y \chi = -i \partial_2 \beta + i (\partial_1 \alpha + i \partial_2 \alpha) \]

\(\text{such that} \)

\(\text{put here} \)
As, FA looks like $-kP$, no suggest an orthogonal plane to P leads orbit.

Salient features reduce to $C \sim P$ leads

\[
\begin{align*}
\text{resulting by } & \frac{1}{r}, \\
& \text{use equations} \\
& \text{get something close to:}
\end{align*}
\]

Let $C = \text{moduli space of solutions}$

\[C^0(C; S')\]

\[\sigma_C = \begin{cases}
\infty & m = 0 \\
\frac{1}{m} & m > 0
\end{cases}\]

\[\int (1-|\alpha|^2) = 2\pi m \quad \text{on } C_m\]

\[|\alpha| = 1 \quad \text{or} \quad |\alpha| < 1\]

- C_m has a natural complex structure $\cong \mathbb{C}^m$
- Coordinates $\sigma_C = \frac{1}{2\pi} \int_C z^2 (1-|z|^2)$
- $|z| < 1$ for $z \in C_m$

- Also, C_m has a natural z^2 over C_m (Kaehler structure, not coming from above) of α.
where here: $\mathcal{E} = \{ \mathcal{E}_m \} \subset \mathcal{L}^2(\mathbb{R}^2)$

$\mathcal{P}_0 = \int |x|^2 + |\psi|^2$ (for behavior structure)

$\frac{\partial \psi + \frac{1}{i} \mathcal{A}_0}{\partial \mathcal{A}_0} \mathcal{P}_0 = 0$?

So now, work backwards:

$\mathcal{E}_m = \{ (\gamma, \nu): \gamma \text{ Reeb orbit}, \nu \}

\mathcal{E} = \mathcal{E}' \mapsto \mathcal{E}_m$

chain parameters: (const speed) by $\mathbb{R}/2\pi\mathbb{Z}$;

choose fancy param for normal role,

x by chosen tubular around $T_x M$.

Line bundle: $E \simeq V_0 \times \mathcal{E}_0$, $V_0 = M \setminus \{ x \}$, $T_x M$

$A \times \mathbb{R}$ product connection, $(1, 0)$.

$E_{T_x M} = T_x M \times \mathcal{E}_0$

$\alpha^{t, r} (x, y) = \alpha^t (\sqrt{s-r} x, \sqrt{s-r} y)$

$F^{\text{prod}} = (A^t_{\mathcal{E}_m}, (\alpha^{t, r} \circ 0))$. Biz of exponential decay, can use cutoff func to smooth.

How close did we get to solving \mathcal{S}_0?

Look at $\frac{1}{\mathcal{E}_0} \left| \star F_{A^t} \psi + h (\frac{1}{2} x - \chi \psi_i) \right| + \left| \partial_{A^t} \psi \right| = O(1)$ (this is $\delta (\sqrt{s})$, if call this $(A_{\text{approx}}, \psi_{\text{approx}})$, try to

find a perturbation (A, ψ) that gives a real soln — ran it...
$\Theta(t)$ is simply too big! (off-diagonal term...) This is because we just chose any smooth map $f(t)$.

Need to control derivative of map $g(t)$:

\[g(t) = 1 + \eta t + \nu t^2 + o(t^2), \]

where $\eta : S \to \mathbb{R}$, $\nu : S \to \mathbb{C}$

defines deformation theory of Reeb α.

Self-adjoint

What to take deg. form in moduli space

\[h = \frac{1}{2\pi} \int (2\nu(t) |x|^2 + \nu \bar{x}^2 + \bar{\nu} x^2)(1-|x|^2) \]

treat it as a Hamiltonian.

\[\frac{dV}{dt} + \omega^{-1}(dh) = 0. \quad (\forall t) \]

Need x to be a closed orbit of this Hamiltonian, gets us to $\Theta(\sqrt{\nu})$.

So gluing data we need to go backwards is the following:

\[\Theta = \mathcal{F}(x, m) \quad \exists \text{ Reeb orbit} \]

\[\Sigma \text{un} x = \text{PD}(c_1(E)) \]

for each (x, m) a choice of non-degenerate gluing data fixes a big closed orbit of $\omega^{-1}(dh, \cdot)$

Fix $L > 0$

\[X_t = \text{dist}(x_t, \text{dist}(x_t, \cdot)) \quad \text{if we choose } L(\Theta) < L \quad \text{and space of solutions} \]

Then: \exists injective $\Phi : X^t \to M$ if $r > 1$.

\[v = \text{const} = R/2 \quad m = 0 \]

For each \(m \), if a unique solution, symmetric vertex,
\[x^{-1}(0) = 0, \quad \text{(Elliptic)} \]

Hyperbolic unique solution \(m = 0 \), \(x^{-1}(0) = 0 \)

\[y = \frac{y}{t} \quad m = i e^{ik} \]

\[\text{uniquely defined contact structure} \]

Proof: \(L > 0, \quad R^L = \text{Reeb orbit} \quad L \leq L \).

Then \(\exists (q, _J^L) \in \text{conj } s.t.: \)
\[\cdot q_0, \quad J_0 = (0, J) \]
\[\cdot (a_1, J_1) \text{ has: } \]

(1) \(\forall \ell, \text{Reeb orbit } L \leq L \) are identical.

(2) \(1-1 \text{ correspondence between \(\ell \)-hol curves that } \]

\(\text{connect } L \leq L \) \(\text{Reeb orbits} \).

(3) \((a_1, J_1) \text{ near } \psi \) \(\text{Reeb orbit has canonical form} \).

S decreases the length of \(\text{Emb} L \).

\[\text{Each } = e^L \rightarrow e^L \rightarrow e^L \rightarrow \text{Length} \]

\[u \rightarrow \text{direct limit} \rightarrow \text{length fillins} \]

\(\text{this is not even } C^1 \) changing \(R^L \) \(\text{direct limit} \rightarrow \text{length fillins} \)

\[R^L \rightarrow R \times \mathbb{C} \]

1-Jet.\[\text{I.D.} \]
Upshot is, $x(t)$ is L, $k=1$,

$$
\mathfrak{F} = \text{Tech, measures of }
$$

\text{all geodesics.}

$$
\text{(Length, } L, m = 1 \text{ of } \mathfrak{F} \text{ hyperbolical.)}
$$

\text{Identify I = 1 phol. curves w/}

\text{index 1 instantons in SW.}

\text{What if we didn't perturb } (a, J) ?:

\text{Some technical issues...}

\text{same geometry of SW.}

\text{compute Floer homology on } \mathfrak{F} \text{.}

\text{of Hamiltonian.}

\text{elliptic } Z \text{ in all } m > 1

\text{hyperbolic } Z \text{ if } m = 1, 0 \text{ if } m > 1.

\text{So non-fold by length, } E_2 \text{ term.}

\text{The Floer homology}

\text{small differential}.

$$
\text{tech, } \text{of } \text{tech.}
$$

$$
E_2 \text{ term: } Z \text{ if } (a, J) \text{ tech, } 0 \text{ if } (a, J) \text{ tech.}
$$