I. Smith talk II: cont'd:

- Remaining 3 steps:
 - Miyata: If $F \otimes F'$ are simple $(\text{Ext}^0 \otimes \text{rk-1})$ & semi-homog $(\text{Ext}^2 \otimes \text{rk-2})$ space on ab. var. $A \otimes X(F_0,F') = 0$.
 - I write ab. var. $A' \otimes A \otimes A' \rightarrow D^b(A)$
 $\mathfrak{g}_{A'}$, $\mathfrak{g}_{A}(F)\rightarrow F_0, F'$.

- Orlov & Ab van't weg ⇒ If $A = E \times E$, so is A'.

- Polishchuk: $U(E \times E) = \text{Sp}_4(\mathbb{Z})$.

Put all this together ⇒ back on T^4, after a global symplectomorphism, $L \leq T^4$ is the core on the 1-intersection pt. between log in sect & fibre of $T^4 \rightarrow T^4$.

Discussion Session of Abouzaid.

I. Example of a twisted complex into a generic representative:
- Tw. complex as a way of dualing (or differently organized)?

"$L_2 \rightarrow L_2$, $\mu_2(f) = 0$.

Two Lagrangians:

Geometry:

If F is a linear combo. with all but one coeff. vanishing, then

Then $\text{Cone}(f)$ is equivalent to the Lagrangian cannot sum at this given

interacts with point \cdot

$\text{Cone}(f)$ is actually immersed Lagrangian

(cos): If $f = a_1 p_1 + a_2 p_2$ (sum over Λ'), $a_1 \neq f_1$, $a_2 \neq f_2$

$\text{Cone}(f) \not\subset \text{Cone}(e)$! Can only sum at p_1 and p_2.