Derived Category of Coherent Sheaves

1. The Derived Category

I. Abelian categories

Primary examples:
- R-Mod R-modules
- O_X-Mod sheaves on a ringed space (X, O_X)
- O_{cohX} or Coh_X of (quasi) coherent sheaves on X.

Defn: An additive category A is a category enriched over Ab.
(i.e. The Hom-sets of A are abelian groups and composition is bilinear)
and which possesses biproducts, i.e. for each $X, Y \in \text{Ob} A$ there is
another object $X \oplus Y$ which is a product and coproduct for X, Y.

Let A be an additive category, let $\varphi : X \to Y$ be a morphism in A.
$K \xrightarrow{i} X$ is called a kernel of φ if $\varphi \circ i = 0$ and i is
universal w.r.t. the property:

\[K \xrightarrow{i} X \xrightarrow{\varphi} Y \xrightarrow{0} \]

A morphism $\pi : Y \to C$ is a cokernel of φ is $\pi \circ \varphi = 0$ and π
is universal w.r.t. the property:

\[X \xrightarrow{\varphi} Y \xrightarrow{\pi} C \]

Let us assume A has kernels and cokernels.

Consider

\[\xymatrix{ K & C \ar[l] \ar[r]^i & X \ar[d] \ar[r]^\varphi & Y \ar[d] \ar[r]^\pi & C \ar[d] \ar[r] & \} \]

$\text{im } \varphi = I \xrightarrow{\exists ! q} I' \xrightarrow{\text{im } \varphi}$ but this map need not be an iso.

by universal property.
Defn: An abelian category A is an additive category with kernels and cokernels and coin $\circ \subseteq \text{im} f \circ \subseteq \text{im} f$ in A.

Rmk: Each small abelian cat can be embedded fully, faithfully and exactly in a category of R-modules.

Let A be an abelian category. Let

$$X \overset{\phi}{\rightarrow} Y \overset{\psi}{\rightarrow} Z$$

be a sequence in A with $\psi \circ \phi = 0$. Then

$$\text{im} \phi \rightarrow \ker \psi$$

so we can define $H = \ker \psi / \text{im} \phi$

the homology of the sequence at Y.

If $H = 0$ we call the sequence exact.

E.g. Let $F : A \rightarrow B$ be an additive functor between abelian categories.

Let $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be an exact sequence in A.

Then $0 \rightarrow FX \rightarrow FY \rightarrow FZ \rightarrow 0$ need not be exact.

If it is then F is called exact.

E.g.

$$0 \rightarrow \mathbb{Z} \overset{3}{\rightarrow} \mathbb{Z} \rightarrow \mathbb{Z}/2 \rightarrow 0$$

Not exact.

Defn: If $I \in A$ is called injective if $\text{Hom}(\text{___}, I) : A \rightarrow \text{Ab}$ is exact.

If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ exact,

$$0 \rightarrow \text{Hom}(C, I) \rightarrow \text{Hom}(B, I) \rightarrow \text{Hom}(A, I)$$

is always exact (left exact functor).

So I injective $\Leftrightarrow A \overset{\epsilon}{\rightarrow} B$

$$\downarrow$$

I

\text{exact.}
The Derived Category of an Abelian Category

To compute $\text{Ext}^i(X,A)$ one first replaces A by an injective resolution:

\[A \rightarrow I^0 \rightarrow I^1 \rightarrow \ldots \]

with I^i being injective.

Apply $\text{Hom}(X,-)$ to this resolution:

\[0 \rightarrow \text{Hom}(X,I^0) \rightarrow \text{Hom}(X,I^1) \rightarrow \ldots \]

Then $\text{Ext}^i(X,A) \cong H^i\left(\text{Hom}(X,I^i)\right)$.

Diagram chase gives you the LES

\[0 \rightarrow \text{Ext}^0(X,I) \rightarrow \text{Ext}^0(B,I) \rightarrow \text{Ext}^0(A,I) \rightarrow \text{Ext}^1(C,I) \rightarrow \ldots \]

Idea: identify A with all its resolutions.

We should apply a functor only to the right resolution.

Def: A complex in A is a

Def: Chain complex, morphisms = chain maps. This is called $\text{Kom}(A)$.

Rem: Assume A possesses all small products.

\[\text{Hom}^k(X,Y) = \left\{ f^k : X^k \rightarrow Y^k \mid (\epsilon^k) \right\} \]

\[d^k : \text{Hom}^k \rightarrow \text{Hom}^{k+1} \]

\[(f^k) \mapsto d^{k+1} f^k = (-1)^k f^k \circ d^k \]

This is a complex.

Note that $\text{Hom}(X,Y) = \ker\left(\text{Hom}^0 (\epsilon^0) \right)$.

Note that $\text{im}(d^n) = \text{chain homotopies}$.

We call the homotopy category $\mathcal{K}(A)$:

\[\text{Ob} \mathcal{K}(A) = \text{Ob} \text{Kom}(A) \]

\[\text{Mor} \mathcal{K}(A) = H^0 \text{Hom}^1 \left(X^1, Y^1 \right) \]

\[= \text{Mor} \mathcal{K}(A) / \text{homotopy} \]
The cohomology functors $H^*: K(A) \rightarrow \text{Ab}$ are still well-defined.

Consider again A with its injective resolution I^*. This can be viewed as a morphism of complexes

$$\cdots \rightarrow 0 \rightarrow A \rightarrow 0 \rightarrow Q \rightarrow \cdots$$

$$\cdots \rightarrow 0 \rightarrow I_n \rightarrow I_{n-1} \rightarrow I_{n-2} \rightarrow \cdots$$

This is a homotopy equivalence (Δ-functor, have same homology).

\Rightarrow a quasi-isomorphism.

Idea: formally invert all quasi-isomorphisms (like localizing a ring).

Def: The derived category of A is the category $K^*(A)$ localized at the quasi-isomorphism, i.e., a functor $K^*(A) \rightarrow D^+(A)$ that maps qis to isomorphisms and is universal with this property.

Rank: $\text{Ob } D^+(A) = \text{Ob } K^*(A)$

$$\text{Hom}_{K^*(A)}(X^*, Y^*) = \left\{ \begin{array}{ll}
X^* & \text{if } X^* \sim Y^*
Y^* & \text{if } Y^* \sim X^*
\end{array} \right.$$
III. Structure of Derived Category.

Facts: There are autoequivalences $D(A) \to D(A)$ shift functors.

In particular, can look at $\text{Hom}_A(X, Y[-i])$ for $X, Y \in \text{Ob} A$.

\[\cdots \to X \to Y \to \cdots = \text{Ext}^i(X, Y) \]

\[\cdots \to 0 \to X \to Y \to 0 \to \cdots \]

Remark: Let $I \subset A$ be the full subcategory of injective objects in A.

q_i in $K^+(I)$ is already a homotopy equivalence.

\[K^+(I) \cong D^+(I) \] is an equivalence of categories.

If A has enough injectives, $K^+(I) \to D^+(I) \to D^+(A)$

is an equivalence of categories.

Defn. A triangle in $D(A)$ is a diagram of the form $K \to L \to M \to K[1]$.

The triangle is distinguished if it is isomorphic to a triangle of the form $K' \to K' \oplus K'[1] \oplus L' \to K'[1] \oplus L'[1] \to K'[1]$.

for a morphism $f : K \to L'$.

Prop. $0 \to A \to B \to C \to 0$ is exact in $K_0(A)$, if and only if it is an exact sequence $0 \to A \xrightarrow{f} \text{Cyl}(q) \xrightarrow{g} \text{Cyl}(f)$.

Rem. Given a distinguished triangle $K \to L \to M \to K[1]$, it induces a LES

\[H^i(K) \to H^i(L) \to H^i(M) \to H^{i+1}(K) \to \cdots \]
Def: A triangulated category A is an additive category with a shift and a class of distinguished triangles T s.t. axioms.

[Non-English content]

Derived functors

Let $F: A \to B$ be a left-exact functor between abelian categories. Can we extend it to $F: \mathcal{D}(A) \to \mathcal{D}(B)$? $0 \to A \to B \to C \to 0$ exact

$\Rightarrow \exists 0 \rightarrowtail z \in \mathcal{D}(A) \Leftarrow F(0 \to A \to B \to C \to 0) \cong 0$ but $0 \to F(A) \to F(B) \to F(C) \to 0 \neq 0$

\Rightarrow be more careful.

Assume 3-class of objects F adapted to F (stable under finite direct sums, every object in A is a subobject of an object in B, and F maps acyclic complexes in A to acyclic ones in B (i.e., sends exact sequences \rightarrowtail exact sequences))

Then, we can define $RF: \mathcal{D}^+(A) \to \mathcal{D}^+(B)$ as follows:

Given $A \in \mathcal{D}^+(A)$, replace A by a q.i. complex in B, say A'.

Apply F termwise: $RF(A') = F(A')$.

Prop: $RF: \mathcal{D}^+(A) \to \mathcal{D}^+(B)$ sends exact triangles to exact triangles.

1) RF is the best approximation for F.

2) RF is the best approximation for F.

[Diagram]

1) Means that $0 \to A \to B \to C \to 0$ is mapped to a distinguished triangle $RF(A) \to RF(B) \rightarrowtail M \to RF(C)$.
Taking cohomology:

\[R^i F(A) \rightarrow R^i F(B) \rightarrow R^i F(C) \rightarrow R^{i+1} F(A) \rightarrow \cdots \]

E.g. \(R^i \text{Hom}(X,-) = \text{Ext}^i(X,-) \).

Remark: Derived \(\Rightarrow \) left exact functors.

Spectral sequences:

E.g. \(X \rightarrow Y \rightarrow Z \)

\[\Rightarrow F: \text{Coh}(X) \rightarrow \text{Coh}(Y) \text{ pushforward} \]

\[C: \text{Coh}(Y) \rightarrow \text{Coh}(Z) \]

\[R(G \circ F) = RG \circ RF \]

\(\text{homology of a double complex} \Rightarrow \text{spectral sequence} \).

6. **Applications of the Derived Category**

I. Grothendieck–Verdier Duality

Recall: Serre duality

\(X \) projective Cohen–Macaulay scheme of equidimensional \(n \) over an alg. closed field \(k \). Then \(\mathcal{F} \) a dualising sheaf \(\mathcal{O}_X^* \) on \(X \) s.t. there are natural isomorphisms

\[\text{Ext}^{n-i}(\mathcal{F}, \mathcal{O}_X) \cong H^i(X, \mathcal{F}) \text{ for any coherent sheaf } \mathcal{F} \]

\[H^{n-i}(X, \mathcal{O}_X \otimes \mathcal{F}^*) \text{ for } \mathcal{F} \text{ a-bundle, locally free.} \]

Theorem: \(f: X \rightarrow Y \) proper morphism of noetherian separated schemes. Then:

bullshit.

II. \(X \) smooth proj. variety \(\Rightarrow D^b(X) = D^b(\text{Coh} X) \).

Fourier–Mukai transforms:

\[\Phi \in D^b(X) \quad \mathcal{E} \in D^b(X \times Y) \]

\[\begin{array}{c}
\Phi \\
\downarrow \\
X \\
\downarrow \\
Y
\end{array} \]

\[\begin{array}{c}
\mathcal{E} \\
\downarrow \\
X \times Y
\end{array} \]
$$\phi_{\mathcal{E}} : D^b(X) \to D^b(Y)$$ is called a FM transform.

Then (Orlov): Let $F : D^b(X) \to D^b(Y)$ be an equivalence of derived categories. Then there is a unique $\phi_{\mathcal{E}} \in D^b(X \times Y)$ such that $F = \phi_{\mathcal{E}}$.

Cor: $D^bX \cong D^bY \Rightarrow \dim X = \dim Y$.

Then (Bondal, Orlov): Let X have ample canonical bundle. Then $D^bX \cong D^bY \Rightarrow X \cong Y$.

III. The Derived Category of coherent sheaves on \mathbb{P}^n.

Let $N = H^0(\mathbb{P}^n, \mathcal{O}(1)), \quad \mathbb{P}^n = \mathbb{P}(V)$.

Euler sequence:

$$0 \to \Omega \to V \otimes \mathcal{O}(1) \to \mathcal{O}_{\mathbb{P}^n} \to 0$$

$$0 \to \Omega(-1) \to V \otimes \mathcal{O} \to \mathcal{O}(1) \to 0$$

Define a homomorphism

$$p^* \mathcal{O}(-1) \otimes q^* \Omega(1) \xrightarrow{s} \mathcal{O} \otimes \mathbb{P}^n \otimes \mathbb{P}^n$$

$s(H, H') : (y, u') \mapsto g(u')$$

$$e \in \mathcal{H}^* \quad \text{vanishes exactly when } u' \in H$$

Im(s) is the ideal sheaf of $\Delta c \mathbb{P}^n \times \mathbb{P}^n$.

$$0 \to \Lambda^m(p^* \mathcal{O}(-1) \otimes q^* \Omega(1)) \to \cdots \to \Lambda^1(p^* \mathcal{O}(-1) \otimes q^* \Omega(1)) \otimes \mathcal{O}_{\Delta c \mathbb{P}^n} \to 0$$

$$\cong p^* \Omega(-1) \otimes \Omega^m(-m)$$

is an exact sequence on $\mathbb{P}^n \times \mathbb{P}^n$.
Derived Category of Coherent Sheaves

A The Derived Category

I Abelian categories

Primary examples: - R-Mod R-modules
- \mathcal{O}_X-Mod sheaves on a ringed space (X, \mathcal{O}_X)
- Coh_X or Coh_X of (quasi) coherent sheaves on X.

Defn: An additive category \mathcal{A} is a category enriched over Ab
(i.e. The Hom-sets of \mathcal{A} are abelian groups and composition is bilinear)
and which possesses biproducts, i.e. for each $X, Y \in \text{Ob} \mathcal{A}$ there is
another object $X \oplus Y$ which is a product and coproduct for X, Y.

Let \mathcal{A} be an additive category, let $\varphi: X \rightarrow Y$ be a morphism in \mathcal{A}.
$\begin{array}{ccc}
K & \xrightarrow{\pi} & X
\end{array}$ is called a kernel of φ if $\varphi \circ \pi = 0$ and π
is universal w.r.t. the property:

$\begin{array}{ccc}
K & \xrightarrow{\pi} & X & \xrightarrow{\varphi} & Y \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & 0
\end{array}$

A morphism $\begin{array}{ccc}
Y & \xrightarrow{\pi} & C
\end{array}$ is a cokernel of φ is $\varphi \circ \pi = 0$ and π
is universal w.r.t. the property

$\begin{array}{ccc}
X & \xrightarrow{\varphi} & Y & \xrightarrow{\pi} & C \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & 0
\end{array}$

Let us assume \mathcal{A} has kernels and cokernels.

Consider

$\begin{array}{ccc}
\delta \circ & : & K \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
I = \ker (K \rightarrow X) & \xrightarrow{\sim} & X/\ker \varphi \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
\Gamma' = \ker (Y \rightarrow C) & \xrightarrow{\sim} & \text{im} \varphi \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
\text{coim} \varphi = I & \longrightarrow & I/\text{im} \varphi
\end{array}$

but this map need not be an iso.

by universal property.
Defn: An abelian category \mathcal{A} is an additive category with kernels and cokernels and $\text{cok}(f) \subseteq \text{im}(f)$ for $f: X \to Y$ in \mathcal{A}.

Rmk: Each small abelian cat. can be embedded fully, faithfully and exactly in a category of R-modules.

\[
\begin{align*}
X \xrightarrow{\phi} Y \xrightarrow{\psi} Z
\end{align*}
\]
be a sequence in \mathcal{A} with $\text{cok}(\psi) = 0$. Then

\[
\text{im}(\phi) \to \ker(\psi)
\]
so we can define $H = \ker(\psi)/\text{im}(\phi)$

the homology of the sequence at Y.

If $H = 0$ we call the sequence exact.

E.g. Let $F: \mathcal{A} \to \mathcal{B}$ be an additive functor between abelian categories.

\[
\begin{align*}
0 \to X \to Y \to Z \to 0
\end{align*}
\]
be an exact sequence in \mathcal{A}.

Then $0 \to FX \to FY \to FZ \to 0$ need not be exact.

If it is then F is called exact.

E.g. $0 \to \mathbb{Z}/2 \to \mathbb{Z}/4 \to \mathbb{Z}/2 \to 0$

is exact.

Defn: $I \in \mathcal{A}$ is called injective if $\text{Hom}(\mathcal{A}, I): \mathcal{A} \to \mathcal{A}$ is exact.

If $0 \to A \to B \to C \to 0$ exact,

\[
0 \to \text{Hom}(C, I) \to \text{Hom}(B, I) \to \text{Hom}(A, I)
\]

is always exact (left exact functor).

So I injective \iff $A \to B$

\[
\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow \phi \\
I \end{array}
\]

is exact.
II. The Derived Category of an Abelian Category

To compute $\text{Ext}^i(X, A)$ one first replaces A by an injective resolution:

$$A \to I^0 \to I^1 \to \cdots$$

with I^i being injective.

Apply $\text{Hom}(X, -)$ to this resolution:

$$0 \to \text{Hom}(X, I^0) \to \text{Hom}(X, I^1) \to \cdots$$

Then $\text{Ext}^i(X, A) = H^i(\text{Hom}(X, I^i))$.

Diagram chase to get the LES

$$0 \to \text{Ext}^i(X, A) \to \text{Ext}^i(Y, A) \to \text{Ext}^i(B, A) \to \text{Ext}^i(\mathbb{C}, A) \to \cdots$$

Ideas: Identify A with all its resolutions.

One should apply a functor only to the right resolution.

Defn: A complex in \mathbb{A} is a

Defn: Chain complex, morphisms = chain map. This is called $\text{Kom}(\mathbb{A})$.

Remk: (Assume \mathbb{A} possesses all small products)

$$\text{Hom}^k(X', Y') = \{ f^i: X^i \to Y^{i+k} | i \in \mathbb{Z} \}$$

$$d^k: \text{Hom}^k \to \text{Hom}^{k+1}$$

$$(f^i) \mapsto (d^{i+k} \cdot f^i - (-1)^i f^{i+1} \cdot d_i^k)$$

This is a complex.

Note that $\text{Hom}(X', Y') = \ker(\text{Hom} \circ d^k)$.

Note that $\text{im}(d^{i+1}) = \text{chain homotopies}$.

We call the homotopic category $\mathcal{K}(\mathbb{A})$:

$$\text{Ob} \: \mathcal{K}(\mathbb{A}) = \text{Ob} \: \text{Kom}(\mathbb{A})$$

$$\text{Mor} \: \mathcal{K}(\mathbb{A}) = \frac{\text{Mor} \: \text{Kom}(\mathbb{A})}{\text{homotopy}}$$
The cohomology functors $H^i : K(A) \to A^i$ are still well-defined.

Consider again A with its injective resolution I^*. This can be viewed as a morphism of complexes

$$\cdots \to 0 \to A \to 0 \to 0 \to \cdots$$

$$\cdots \to 0 \to I_0 \to I_1 \to I_2 \to \cdots$$

This is a homotopy equivalence $(k \Rightarrow$ have same homology).

Def: The derived category of A is the category $K(A)$ localized at the quasi-isomorphism, i.e. a functor $K(A) \to D(A)$ that maps qis to isomorphisms and is universal with this property.

Rand: $D(A) = \text{Qis} K(A)$

$\text{Hom}_{D(A)}(X', Y') = \left\{ \begin{array}{c} \text{qis} \end{array} \right\}$

Things that are true: $X', Y' \Rightarrow$ we can make a single roof X.

(Only for $K(A)$, not $\text{Hom}(A)$).

You can find a common denominator so it is possible to add $h \circ k^{-1} + g \circ f^{-1}$.

i.e. $3, 2$ s.t. $3^{-1} h \circ k \circ 3^{-1} = 5 \circ p^{-1}$...

\[\begin{array}{c} h \circ k + g \circ f^{-1} = (q + t) \circ p^{-1}. \end{array} \]
III. Structures of Derived Category

E.g. There are autoequivalences $D^+(A) \cong D^+(A)$ shift functors.

In particular we can look at $\text{Hom}_D(X, Y[i])$ for $X, Y \in \text{Ob } A$.

\[\cdots \longrightarrow i^0 \longrightarrow i^1 \longrightarrow \cdots \]
\[\cdots \longrightarrow 0 \longrightarrow i \longrightarrow 0 \longrightarrow i \longrightarrow \cdots \]
\[\text{Ext}^i(X, Y) \]

Remark: Let $I \subseteq A$ be the full subcategory of injective objects in A.

$q_! : \text{in } K^+(I) \text{ is already a homotopy equivalence}$

Since $q_!$ is exact all terms $q_!(X)$ are injective.

\[K^+(I) \cong D^+(I) \] is an equivalence of categories.

If A has enough injectives, $K^+(I) \rightarrow D^+(I) \rightarrow D^+(A)$

is an equivalence of categories.

Def: A triangle in $D(A)$ is a diagram of the form $K \rightarrow L \rightarrow M \rightarrow K[1]$.

The triangle is distinguished if it is isomorphic to a triangle of the form

\[\begin{align*}
&K' \rightarrow K' \oplus K'[1] \oplus L' \rightarrow K[1] \oplus L[1] \rightarrow K[1]'.
\end{align*} \]

for a morphism $f : K' \rightarrow L'$.

Prop: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact in $\text{Kom}_D(A)$, it is isomorphic to an exact sequence $A \rightarrow A \rightarrow \text{Cyl}(f) \rightarrow \text{Cone}(f)$.

Remark: Given a distinguished triangle $K \rightarrow L \rightarrow M \rightarrow K[1]$ it induces a LES

\[H^i(K) \rightarrow H^i(L) \rightarrow H^i(M) \rightarrow H^{i+1}(K) \rightarrow \cdots \]
Def: A triangulated category \mathcal{A} is an additive category with a shift and a class of distinguished triangles T s.t. exact

Derived functors

Let $F: A \to B$ be a left-exact functor between abelian categories. Can we extend it to $F: \text{D}^+(A) \to \text{D}^+(B)$? $\quad 0 \to A \to B \to C \to 0$ exact
\Rightarrow 0 in $\text{D}(A) \Rightarrow F(0 \to A \to B \to C \to 0) = 0$ but $0 \to F(A) \to F(B) \to F(C) \to 0$ $\neq 0$

\Rightarrow be more careful.

Assume 3. class of objects I adapted to F (Stable under finite direct sums, every object in A is a subobject of an object in I, and s.t. F maps acyclic complexes in I to acyclic ones in B (i.e. sends exact sequences \to exact sequences))

Then we can define $RF: \text{D}^+(A) \to \text{D}^+(B)$ as follows:

Given $A \in \text{D}^+(A)$, replace A by a quasi complex in I, say A'.

Apply F termwise: $RF(A) = F(A')$.

Rmk 1) $RF: \text{D}^+(A) \to \text{D}^+(B)$ sends exact triangles to exact triangles.

2) RF is the best approximation for F

\[
\begin{array}{ccc}
A & \to & \text{D}^+(A) \\
F & & \downarrow \text{RF} \\
B & \to & \text{D}^+(B).
\end{array}
\]

natural trans.

1 means that $0 \to A \to B \to C \to 0$ is mapped to a distinguished triangle $RF'(A) \to RF'(B)$

$\to RF'(C)$.
Taking cohomology:

\[R^iF(A) \to R^iF(B) \to R^iF(C) \to R^{i+1}F(A) \to \cdots \]

E.g. \(R^i \text{Hom}(X, -) = \text{Ext}^i(X, -) \).

R mk: Dualiz \(\Rightarrow \) left exact functors.

Spectral sequences:

E.g. \(X \to Y \to Z \)

\[\Rightarrow F_\ast : \text{Coh}(X) \to \text{Coh}(Y) \text{ pushforward} \]

\[C_\ast : \text{Coh}(Y) \to \text{Coh}(Z) \]

\[R(G \circ F) = RG \circ RF \]

Homology of a double complex \(\Rightarrow \) spectral sequence.

(II) Applications of the Derived Category

I. Grothendieck–Verdier Duality

Recall: Serre duality

\(X \) projective Cohen–Macaulay scheme of equidim \(n \) over an alg. closed field \(k \). Then \(\mathcal{F} \) a dualising sheaf \(\omega_X^n \) on \(X \) s.t. there are natural isomorphisms

\[\text{Ext}^{n-i}(\mathcal{F}, \omega_X^n) \cong H_i(X, \mathcal{F}) \text{ for any coherent sheaf } \mathcal{F}. \]

\[H^{n-i}(X, \omega_X^n \otimes \mathcal{F}) \text{ for } \mathcal{F} \text{ coherent, locally free}. \]

Then: \(f : X \to Y \) proper morphism of Noetherian separated schemes. Then

bullshit.

II. X smooth proj. variety \(\Rightarrow D^b(X) = D^b(\text{coh } X) \).

Fourier–Mukai transforms:

\[X \times Y \]

\[\xi \in D^b(X) \]

\[\xi \in D^b(X \times Y) \]

\[\xi \]

\[Y \]
$\rho_{\Phi} E : q^* F \hookrightarrow \rho_* (\Phi) F$

Defn: $\Phi : D^b(X) \to D^b(Y)$ is called a FM transform.

Theorem (Orlov): Let $F : D^b(X) \to D^b(Y)$ be an equivalence of derived categories. Then there is a unique $\Phi \in D^b(X \times Y)$ such that $F = \Phi_{\rho^*}$.

Cor: $D^b X \cong D^b Y \iff \dim X = \dim Y$.

Theorem (Bondal, Orlov): Let X have ample canonical bundle. Then $D^b X \cong D^b Y \implies X \cong Y$.

III. The Derived Category of Coherent Sheaves on \mathbb{P}^n.

Let $V = H^0(\mathbb{P}^n, \mathcal{O}(1))$, $\mathbb{P}^n = \mathbb{P}(V)$.

Euler sequence:

$0 \to \mathcal{O} \to V \otimes \mathcal{O}(1) \to \mathcal{O}_{\mathbb{P}^n} \to 0$

$0 \to \mathcal{O}(n) \to V \otimes \mathcal{O} \to \mathcal{O}(1) \to 0$

Define a homomorphism

$p^* \mathcal{O}(-1) \otimes q^* \Omega(1) \to \mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^n}$

$s(H, H') : (p^*, q^*) \to (p(u), q(v))$

$\epsilon(V)^* \to H'$

 VANISHES EXACTLY WHEN $V \in H$?

$\text{im}(s)$ is the ideal sheaf of $\Delta \subset \mathbb{P}^n \times \mathbb{P}^n$.

$0 \to \Lambda^m (p^* \mathcal{O}(-1) \otimes q^* \Omega(1)) \to \Lambda^m (p^* \mathcal{O}(-1) \otimes q^* \Omega(1)) \otimes \mathcal{O} \to 0$

$0 \to p^* \mathcal{O}(-m) \otimes \mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^n}$

is an exact sequence on $\mathbb{P}^n \times \mathbb{P}^n$.

Let F be an object in $D^b(\mathbb{P}^n \times \mathbb{P}^n)$ of the form

$$O_a \otimes q^* F \quad F \in D^b(\mathbb{P}^n)$$

$H^0(F)$ lies in a subcategory generated by sheaves of the form

$$p^* O(-i) \otimes q^* F.$$

Apply $p_+(\cdot) \mapsto H^0(F)$ is generated by objects of the form $\mathcal{O}(i)\otimes \mathcal{R} \Gamma(X, F)$

$$\text{vector space}$$

$$\Rightarrow \quad O(0), \ldots, O(-n) \text{ generate } D^b(\mathbb{P}^n) \text{ as a triangulated category.}$$

Thm. (Beilinson): Let A' be a graded algebra. Let $A' \langle i \rangle \ldots \langle i \rangle$ be the free A'-module with one generator of degree i. Let $M_{[0, n]}(A')_{\mathbb{Z}}$ be the category of graded A'-modules isomorphic to direct sums of the form $A' \langle i_1 \rangle \oplus \ldots \oplus A' \langle i_n \rangle \quad 0 \leq i \leq n$

Let $K^b_{[0, n]}(A') := K^b(M_{[0, n]}(A'))$

Write $K_A := K^b_{[0, n]}(\Lambda V^*)$, $K_S := K^b_{[0, n]}(S \cdot V)$ (triangulated categories)

Let $F_1 : K_A \longrightarrow D^b(\mathbb{P}^n)$, $\Lambda V^* \langle i \rangle \mapsto \mathcal{O}(i)$

Let $F_2 : K_S \longrightarrow D^b(\mathbb{P}^n)$, $S V \langle i \rangle \mapsto \mathcal{O}(i)$

are equivalences of derived categories.