$M = C^2 - \{ \text{smooth fibres} \} = C^2 - \pi^{-1}(0,0)$

smooth fibre is $C^2 - \{ 0 \}$ + points

M a smooth affine variety \Rightarrow can be holomorphically embedded in C^n

$i: M \to C^n$

$E_M = i^* E_{C^n}$

$[1:0:0], [0:1:0], [0:0:1], [1:1:1]$ are the points where π is not defined, and they are contained in $\pi^{-1}(0)$.

singular fibres are 2 C^*s intersecting transversely - exactly these:

\[\begin{array}{cccc}
\text{locally around a singular point } & & & \\
\Pi = z_1 z_2 = 1/2 \left((z_1 + z_2)^2 + (i z_1 - i z_2)^2 \right) & & & \\
\end{array}\]

$\Pi: E \to S$. Away from E_{sing} we have a connection: a 2-plane field H which is the ω-orthogonal plane to the vertical tangent spaces $T_p E = T_p F \oplus H_p$.

An embedded path $f: [0,1] \to S$ gives us a symplectomorphism $\Gamma_f : E_{f(1)} \to E_{f(0)}$
Vanishing Cycles

Choose paths from each punctual point in \(\pi(E^\text{sing}) \) to some point not in \(\pi(E^\text{sing}) \). We get a vanishing thimble \(T = \pi^{-1}(f_0) \cap \pi^{-1}(f) \) which parallel transport along \(f \) to the singular point in \(E_f(0) \), along with the singular point in \(E_f(0) \).

Picture:

\[T \rightarrow E \]

\[\pi \]

\[S \]

Thm: \(T \) is a Lagrangian subman if \(E \) diffeomorphic to a ball whose boundary is a Lagrangian sphere in \(E_f(0) \) - (the vanishing cycle).

Monodromy: We can recover \(E \) (up to symplectic deformation through Lefschetz filtrations) from the vanishing cycles.

Parallel transport map \(\Gamma_g : E_f(0) \rightarrow E_f(0) \)

This should be a symplectomorphism defined up to Hamiltonian isotopy.

Thm: The monodromy around \(g \) is isotopic to a Dehn twist around \(V \) (the vanishing cycle of \(f \)).
What is a Dehn twist?

A symplectomorphism that is non-trivial only in a neighborhood of V (which must be $\cong D_\delta^* V$ = cotangent vectors of length $< \delta$, using spherical metric on V).

Let $Y: D_\delta^* V \to \mathbb{R}$, $\tau(a) = \text{length of } a$.

$$H := h(\tau)$$

The flow of X_H away from $\tau = 0$ is well-defined (but note h not C^1 at $0 = \text{not defined there}$).

Define $\tau: D_\delta^* V \to D_\delta^* V$ as Flow_{X_H} away from 0 and the antipodal map at $\tau = 0$ ($\pi \mapsto -\pi$).

E.g. $T^* S^1$.

$$\omega = d\phi \wedge d\theta$$

Using this theorem, we can construct E (up to symplectic isotopy through Lifschitz filtrations) from a smooth symplectic mfd F (the fibre) and an ordered collection of smooth Lagrangian embedded $\phi: S^n \rightarrow F$.
Fukaya Categories

M symplectic with bdy $\partial M \subset \Omega = \partial \nu$, $\nu|_{\partial M}$ = contact form, convexity condition.

$C_1(M) = 0$

Donaldson category

Objects: exact compact lagrangians $L \in \mathcal{L}^{2n}$, $\Theta|_L = df$

with a grading \mathcal{D}_L and a spin structure.

Morphisms: $\text{Hom}(L_1, L_2) := \text{HF}(L_1, L_2)$

\bullet Choose a Hamiltonian H s.t. L_1, $\Phi^h_t(L_1)$ intersect transversely.

$\Rightarrow |L_1 \cap \Phi^h_t(L_1)| < \infty$.

\bullet Choose an a.e. struct compatible with ω.

Each elt $x \in L_1 \cap \Phi^h_t(L_2)$ has an index $|x|$.

$CF_k = \bigoplus_{x \in L_1 \cap \Phi^h_t(L_2) \text{ with index } k} \mathbb{Z}$

$d: CF_k \rightarrow CF_{k+1}$

$d(x) = \sum_{y \in L_1 \cap \Phi^h_t(L_2)} \# (\mathcal{M}(y, x)_{\mathbb{R}}) y$

$\mathcal{M}(y, x) = \text{maps } u: \mathbb{R} \times [0, 1] \rightarrow M$

$u(s, 0) \in L_1$

$u(s, 1) \in L_2$

u is J-holomorphic ($\mathbb{R} \times [0, 1] \subset \mathbb{C}$).

$\lim_{s \to -\infty} u(s, t) = y$

$\lim_{s \to +\infty} u(s, t) = x$

\mathbb{R}-action is translation in s-direction.

Thm: For generic J, $\mathcal{M}(y, x)$ is a compact 0-dim'l mfd.

(so ∂ is well-defined). N.B. We require $|y| = k\cdot|y| + 1$ for this.

And $\delta^2 = 0$.
Composition of morphisms:

Product: \(f_1 \circ \text{Hom}(L_1, L_2) \)

\(f_2 \circ \text{Hom}(L_2, L_3) \)

\[
h \circ g = \sum_{h \in \text{Hom}(L_3, L_1)} \# M(a, b, c) \cdot h
\]

where \(M(a, b, c) \) counts

J-holomorphic maps

\[u: D \to M \]

\[u(p_1) = a \]

\[u(p_2) = b \]

\[u(p_3) = c \]

Fukaya Category

\(A_\infty \) category: operations \(m_k \), associativity relations.

E.g.

\[m_3(a_1, a_2, a_3) \in \text{Hom}(a_1, a_2, a_3) \]

E.g. \(X = \text{top space} \)

\[\text{Ob} X = \text{pts of } X \]

\[\text{Mor}_X = \text{chains in } \mathbb{R} \cdot (P(X, Y)), \]

\[m_1 = \text{boundary operator} \]

\[m_2 = \text{concatenation} \]

\[m_3 = \text{associativity homotopy} \]
\[\mathcal{C} = \text{A}_\infty \text{ category} \]

\[\text{H}(\mathcal{C}) = \text{same objects, } \text{Hom}(a, b) = \text{H}_\infty(\text{Hom}_\omega(a, b), \text{m}_\infty) \]

\[\text{composition } = \text{m}_\infty. \]

Fukaya category

Objects: graded exact Lagrangians

\[\text{Hom}(D_1, D_2) = \mathbb{Q} \cap \phi^*(L_2) \]

\[\text{m}_1 = \text{Floer differential} \]

\[\text{m}_\infty = \text{pants product} \]

\[\text{m}_\infty(a_1, \ldots, a_k) = \sum_{I \in \text{In} D_1} \phi^*(M(\text{am}, \ldots, a_k, \epsilon)/\pi) \]

\[\epsilon : D \to M \text{ J-hol} \]

Marked points on \(\partial D \)…

Directed Fukaya Categories

Lefschetz filtration

\[\begin{array}{c}
\text{Choose a \textit{basis of vanishing paths}.} \\
\text{vanishing chimbles } T_1, T_2, T_3 \\
\text{(ordered)} \quad V = \text{vanishing cycles} \\
\end{array} \]

Objects: \(T_i \)

\[\text{Hom}(T_i, T_j) = \mathbb{Q}^{\text{H}^1, \text{d}H(T_j)} \text{ s.t. } H \text{ is a Hamiltonian s.t. } H = \pi^* \text{ near } \partial D. \]

\[\Rightarrow \text{Hom}(T_i, T_j) = 0 \quad \text{if } j < i \]

\[\text{Hom}(T_i, T_j) = \mathbb{Q}^{\text{H}^1 \times \text{d}H(T_j)} \]

\[\Rightarrow \text{Hom}(T_i, T_i) = \mathbb{Q}. \]

\[\text{m}_\infty = \text{same as before.} \]
Another definition: \(V_1, \ldots, V_k \subseteq E \).

\[
\text{Hom}(V_i, V_j) = \begin{cases}
\mathbb{C} & i > j \\
\mathbb{C} & i = j \\
0 & \text{else}
\end{cases}
\]

\(m_k = \text{induced product as above, completely inside the fibre.} \)

These definitions are equivalent because J-holomorphic curves have to remain inside the fibre by the maximum principle.