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Abstract
In this paper we use the framework of algebraic effects from programming language theory to
analyze the Beta-Bernoulli process, a standard building block in Bayesian models. Our ana-
lysis reveals the importance of abstract data types, and two types of program equations, called
commutativity and discardability. We develop an equational theory of terms that use the Beta-
Bernoulli process, and show that the theory is complete with respect to the measure-theoretic
semantics, and also in the syntactic sense of Post. Our analysis has a potential for being gener-
alized to other stochastic processes relevant to Bayesian modelling, yielding new understanding
of these processes from the perspective of programming.
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141:2 The Beta-Bernoulli process and algebraic effects

1 Introduction

From the perspective of programming, a family of Boolean random processes is implemented
by a module that supports the following interface:

module type ProcessFactory = sig type process
val new : H → process
val get : process → bool end

where H is some type of hyperparameters. Thus one can initialize a new process, and then
get a sequence of Booleans from that process. The type of processes is kept abstract so that
any internal state or representation is hidden.

One can analyze a module extensionally in terms of the properties of its interactions with
a client program. In this paper, we perform this analysis for the Beta-Bernoulli process,
an important building block in Bayesian models. We completely axiomatize its equational
properties, using the formal framework of algebraic effects [18].

The following modules are our leading examples. (Here flip (r) tosses a coin with bias r.)

module Polya = (struct
type process = (int ∗ int ) ref
let new(i, j ) = ref ( i , j )
let get p = let ( i , j ) = !p in
if flip ( i/( i+j)) then p := (i+1,j); true
else p := ( i , j+1); false end : ProcessFactory)

module BetaBern = (struct
type process = real
let new(i, j ) = sample_beta(i,j)
let get(r) = flip (r)

end : ProcessFactory)

The left-hand module, Polya, is an implementation of Pólya’s urn. An urn in this sense is
a hidden state which contains i-many balls marked true and j-many balls marked false . To
sample, we draw a ball from the urn at random; before we tell what we drew, we put back
the ball we drew as well as an identical copy of it. The contents of the urn changes over time.
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The right-hand module, BetaBern, is based on the beta distri-
bution. This is the probability measure on the unit interval [0, 1]
that measures the bias of a random source (such as a potentially
unfair coin) from which true has been observed (i− 1) times and
false has been observed (j − 1) times, as illustrated on the right.
For instance beta(2, 2) describes the situation where we only know
that neither true nor false are impossible; while in beta(3, 2) we
are still ignorant but we believe that true is more likely.

It turns out that these two modules have the same observable behaviour. This essentially
follows from de Finetti’s theorem (e.g. [24]), but rephrased in programming terms. The
equivalence makes essential use of type abstraction: if we could look into the urn, or ask
precise questions about the real number, the modules would be distinguishable.

The module Polya has a straightforward operational semantics (although we don’t form-
alize that here). By contrast, BetaBern has a straightforward denotational semantics [14].
In Section 2, we provide an axiomatization of equality, which is sound by both accounts.
We show completeness of our axiomatization with respect to the denotational semantics of
BetaBern (§3, Thm. 9). We use this to show that the axiomatization is in fact syntactically
complete (§4, Cor. 13), which means it is complete with respect to any semantics.

For the remainder of this section, we give a general introduction to our axioms.
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Commutativity and discardability. Commutativity and discardability are important pro-
gram equations [5] that are closely related, we argue, to exchangeability in statistics.

Commutativity is the requirement that when x is not free in u and y is not free in t,(
let x = t in let y = u in v

)
=

(
let y = u in let x = t in v

)
.

Discardability is the requirement that when x is not free in u,
(
let x = t in u

)
=
(
u
)
.

Together, these properties say that data flow, rather than the control flow, is what
matters. For example, in a standard programming language, the purely functional total
expressions are commutative and discardable. By contrast, expressions that write to memory
are typically not commutative or discardable (a simple example is t=u=a++, v=(x,y)). A
simple example of a commutative and discardable operation is a coin toss: we can reorder
the outcomes of tossing a single coin, and we can drop some of the results (unconditionally)
without changing the overall statistics.

We contend that commutativity and discardability of program expressions is very close
to the basic notion of exchangeability of infinite sequences, which is central to Bayesian
statistics. Informally, an infinite random process, such as an infinite random sequence, is
said to be exchangeable if one can reorder and discard draws without changing the overall
statistics. (For more details on exchangeable random processes in probabilistic programming
languages, see [1, 28], and the references therein.) A client program for the BetaBern module
is clearly exchangeable in this sense: this is roughly Fubini’s theorem. For the Polya module,
an elementary calculation is needed: it is not trivial because memory is involved.

Conjugacy. Besides exchangeability, the following conjugacy equation is crucial:(
let p=M.new(i,j) in (M.get(p), p)

)
=
(
if flip ( i/( i+j)) then (true , M.new(i+1,j)) else ( false , M.new(i,j+1))

)
.

This is essentially the operational semantics of the Polya module, and from the perspective
of BetaBern it is the well-known conjugate-prior relationship between the Beta and Bernoulli
distributions.

Finite probability. In addition to exchangeability and conjugacy, we include the standard
equations of finite, discrete, rational probability theory. To introduce these, suppose that we
have a module

Bernoulli : sig val get : int ∗ int → bool end

which is built so that Bernoulli .get(i,j) samples with single replacement from an urn with
i-many balls marked true and j-many balls marked false . (In contrast to Pólya’s urn, the
urn in this simple scheme does not change over time.) So Bernoulli .get(i,j) = flip ( i

i+j ).
This satisfies certain laws, first noticed long ago by Stone [29], and recalled in §2.1.

In summary, our main contribution is that these axioms — exchangeability, conjugacy,
and finite probability — entirely determine the equational theory of the Beta-Bernoulli
process, in the following sense:

Model completeness: Every equation that holds in the measure theoretic interpretation is
derivable from our axioms (Thm. 9);
Syntactical completeness: Every equation that is not derivable from our axioms is
inconsistent with finite discrete probability (Cor. 13).

ICALP 2018



141:4 The Beta-Bernoulli process and algebraic effects

We argue that these results open up a new method for analyzing Bayesian models, based on
algebraic effects (see §5 and [28]1).

2 An algebraic presentation of the Beta-Bernoulli process

In this section, we present syntactic rules for well-formed client programs of the Beta-Bernoulli
module, and axioms for deriving equations on those programs.

2.1 An algebraic presentation of finite probability
Recall the module Bernoulli from the introduction which provides a method of sampling with
odds (i : j). We will axiomatize its equational properties. Algebraic effects provide a way to
axiomatize the specific features of this module while putting aside the general properties
of programming languages, such as β/η laws. In this situation the basic idea is that each
module induces a binary operation i?j on programs by

t i?j u
def= if Bernoulli .get(i,j) then t else u.

Conversely, given a family of binary operations i?j , we can recover Bernoulli .get(i,j) =
true i?j false . So to give an equational presentation of the Bernoulli module we give a
equational presentation of the binary operations i?j . A full programming language will have
other constructs and βη-laws but it is routine to combine these with an algebraic theory of
effects (e.g. [2, 8, 9, 21]).

I Definition 1. The theory of rational convexity is the first-order algebraic theory with
binary operations i?j for all i, j ∈ N such that i+ j > 0, subject to the axiom schemes

w, x, y, z `(w i?j x) i+j?k+l(y k?l z) = (w i?k y) i+k?j+l(x j?l z)
x, y `x i?j y = y j?i x x, y ` x i?0 y = x x ` x i?j x = x

Commutativity (w i?j x) k?l(y i?j z) = (w k?l y) i?j(x k?l z) of operations k?l and i?j is a deriv-
able equation, and so is scaling x ki?kj y = x i?j y for k > 0. Commutativity and discardability
(x i?j x = x) in this algebraic sense (cf. [15, 22]) precisely correspond to the program equations
in Section 1 (see also [9]). The theory first appeared in [29].

2.2 A parameterized algebraic signature for Beta-Bernoulli
In the theory of convex sets, the parameters i, j for get range over the integers. These integers
are not a first class concept in our equational presentation: we did not axiomatize integer
arithmetic. However, in the Beta-Bernoulli process, or any module M for the ProcessFactory
interface, it is helpful to understand the parameters to get as abstract, and new as generating
such parameters. To interpret this, we treat these parameters to get as first class. There are
still hyperparameters to new, which we do not treat as first class here. (In a more complex
hierarchical system with hyperpriors, we might treat them as first class.)

As before, to avoid studying an entire programming language, we look at the constructions

νi,jp.t
def= let p=M.new(i,j) in t t ?p u

def= if M.get(p) then t else u

1 This paper formalizes and proves a conjecture from [28], which is an unpublished abstract.
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There is nothing lost by doing this, because we can recover M.new(i,j) = νi,jp. p and
M.get(p) = true ?p false . In the terminology of [18], these would be called the ‘generic
effects’ of the algebraic operations νi,j and ?p. Note that ?p is a parameterized binary
operation. Formally, our syntax now has two kinds of variables: x, y as before, ranging over
continuations, and now also p, q ranging over parameters. We notate this by having contexts
with two zones, and write x : n if x expects n parameters.

I Definition 2. The term formation rules for the theory of Beta-Bernoulli are:

−
(p1 . . . pm ∈ Γ)

Γ |∆, x : m,∆′ ` x(p1 . . . pm)
Γ, p |∆ ` t

(i, j > 0)
Γ |∆ ` νi,jp.t

Γ |∆ ` t Γ |∆ ` u
(p ∈ Γ)

Γ |∆ ` t ?p u
Γ |∆ ` t Γ |∆ ` u

(i+ j > 0)
Γ |∆ ` t i?j u

where Γ is a parameter context of the form Γ = (p1, . . . , p`) and ∆ is a context of the
form ∆ = (x1 : m1, . . . , xk : mk). Where x : 0, we often write x for x(). For the sake of a
well-defined notion of dimension in 3.2.4, we disallow the formation of νi,0 and ν0,i.

We work up-to α-conversion and substitution of terms for variables must avoid unin-
tended capture of free parameters. For example, substituting x ?p y for w in ν1,1p.w yields
ν1,1q.(x ?p y), while substituting x ?p y for z(p) in ν1,1p.z(p) yields ν1,1p.(x ?p y).

2.3 Axioms for Beta-Bernoulli
The axioms for the Beta-Bernoulli theory comprise the axioms for rational convexity (Def. 1)
together with the following axiom schemes.

Commutativity. All the operations commute with each other:

p, q |w, x, y, z : 0 ` (w ?q x) ?p(y ?q z) = (w ?p y) ?q(x ?p z) (C1)
− |x : 2 ` νi,jp.(νk,lq.x(p, q)) = νk,lq.(νi,jp.x(p, q)) (C2)

q |x, y : 1 ` νi,jp.(x(p) ?q y(p)) = (νi,jp.x(p)) ?q(νi,jp.y(p)) (C3)
− |x, y : 1 ` νi,jp.(x(p) k?l y(p)) = (νi,jp.x(p)) k?l(νi,jp.y(p)) (C4)

p |w, x, y, z : 0 ` (w i?j x) ?p(y i?j z) = (w ?p y) i?j(x ?p z) (C5)

Discardability. All operations are idempotent:

− |x : 0 ` (νi,jp.x) = x p |x : 0 ` x ?p x = x (D1–2)

Conjugacy.

− |x, y : 1 `νi,jp.(x(p) ?p y(p)) = (νi+1,jp.x(p)) i?j(νi,j+1p.y(p)) (Conj)

A theory of equality for terms in context is built, as usual, by closing the axioms under
substitution, congruence, reflexivity, symmetry and transitivity. It immediately follows from
conjugacy and discardability that x i?j y is definable as νi,jp.(x ?p y) for i, j > 0.

As an example, consider t(r) = (r ?p x) ?p(y ?p r) that represents tossing a coin with bias
p twice, continuing with x or y if the results are different, or with r otherwise. One can show
that x 1?1 y is a unique fixed point of t, i.e. x 1?1 y = t(x 1?1 y); see the full paper [27] for detail.
This is exactly von Neumann’s trick [31] to simulate a fair coin toss with a biased one.

(For more details on the general axiomatic framework with parameters, see [25, 26], where
it is applied to predicate logic, π-calculus, and other effects.)

ICALP 2018
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3 A complete interpretation in measure theory

In this section we give an interpretation of terms using measures and integration operators, the
standard formalism for probability theory (e.g. [19, 24]), and we show that this interpretation
is complete (Thm. 9). Even if the reader is not interested in measure theory, they may still
find value in the syntactical results of §4 which we prove using this completeness result.

By the Riesz–Markov–Kakutani representation theorem, there are two equivalent ways to
view probabilistic programs: as probability kernels and as linear functionals. Both are useful.

Programs as probability kernels.

Forgetting about abstract types for a moment, terms in the BetaBern module are first-order
probabilistic programs. So we have a standard denotational semantics due to [14] where
terms are interpreted as probability kernels and ν as integration. Let I = [0, 1] denote the
unit interval. We write βi,j for the Beta(i, j)-distribution on I, which is given by the density
function p 7→ 1

B(i,j)p
i−1(1− p)j−1, where B(i, j) = (i−1)!(j−1)!

(i+j−1)! is a normalizing constant.
For contexts of the form Γ = (p1, . . . , p`) and ∆ = (x1 : m1, . . . , xk : mk), we let

J∆K def=
∑k
i=1 I

mi consist of a copy of Imi for every variable xi : mi. This has a σ-algebra
Σ(J∆K) generated by the Borel sets. We interpret terms Γ |∆ ` t as probability kernels
JtK : I` × Σ(J∆K)→ [0, 1] inductively, for ~p ∈ I` and U ∈ Σ(J∆K) :

Jxi(pj1 , . . . , pjm)K(~p, U) = 1 if (i, pj1 . . . pjm) ∈ U , 0 otherwise

Ju i?j vK(~p, U) = 1
i+j

(
i(JuK(~p, U)) + j(JvK(~p, U))

)
Ju ?pj vK(~p, U) = pj(JuK(~p, U)) + (1− pj)(JvK(~p, U))

Jνi,jq.tK(~p, U) =
∫ 1

0
JtK((~p, q), U)βi,j(dq)

[
=
∫ 1

0
JtK((~p, q), U) 1

B(i,j)q
i−1(1− q)j−1 dq

]
I Proposition 3. The interpretation is sound: if Γ |∆ ` t = u is derivable then JtK = JuK as
probability kernels JΓK× Σ(J∆K)→ [0, 1].

Proof notes. One must check that the axioms are sound under the interpretation. Each of the
axioms are elementary facts about probability. For instance, commutativity (C2) amounts
to Fubini’s theorem, and the conjugacy axiom (Conj) is the well-known conjugate-prior
relationship of Beta- and Bernoulli distributions. J

Interpretation as functionals

We write RIm for the vector space of continuous functions Im → R, endowed with the
supremum norm. Given a probability kernel κ : I` × Σ

(∑k
j=1 I

mj
)
→ [0, 1] and ~p ∈ I`, we

define a linear map φ~p : RIm1 × · · · ×RImk → R, by considering κ as an integration operator:

φ~p(f1 . . . fk) =
∫
fj(r1 . . . rmj ) κ(~p,d(j, r1 . . . rmj ))

Here φ~p are unital (φ(~1) = 1) and positive (~f ≥ 0 =⇒ φ(~f) ≥ 0).
When κ = JtK, this φ~p(~f) is moreover continuous in ~p, and hence a unital positive linear

map φ : RIm1×· · ·×RImk → RI` [6, Thm. 5.1]. It is informative to spell out the interpretation
of terms p1, . . . , p` |x1 : m1, . . . , xk : mk ` t as maps JtK : RIm1 × . . .× RImk → RI` since it
fits the algebraic notation: we may think of the variables x : m as ranging over functions RIm .
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I Proposition 4. The functional interpretation is inductively given by

Jxi(pj1 , . . . , pjm)K(~f)(~p) = fi(pj1 , . . . , pjm)

Ju i?j vK(~f)(~p) = 1
i+j

(
i(JuK(~f)(~p)) + j(JvK(~f)(~p))

)
Ju ?pj vK(~f)(~p) = pj(JuK(~f)(~p)) + (1− pj)(JvK(~f)(~p))

Jνi,jq.tK(~f)(~p) =
∫ 1

0
JtK(~f)(~p, q)βi,j(dq)

For example, J− |x, y : 0 ` x 1?1 yK : R × R → R is the function (x, y) 7→ 1
2 (x + y), and

J− |x : 1 ` ν1,1p.x(p)K : RI → R is the integration functional, f 7→
∫ 1

0 f(p) dp.
(We use the same brackets J−K for both the measure-theoretic and the functional inter-

pretations; the intended semantics will be clear from context.)

3.1 Technical background on Bernstein polynomials
I Definition 5 (Bernstein polynomials). For i = 0, . . . , k, we define the i-th basis Bernstein
polynomial bi,k of degree k as bi,k(p) =

(
k
i

)
pk−i(1 − p)i. For a multi-index I = (i1, . . . , i`)

with 0 ≤ ij ≤ k, we let bI,k(~p) = bi1,k(p1) · · · bi`,k(p`). A Bernstein polynomial is a linear
combination of Bernstein basis polynomials.

The family {bi,k : i = 0, . . . , k} is indeed a basis of the polynomials of maximum degree k and
also a partition of unity, i.e.

∑k
i=0 bi,k = 1. Every Bernstein basis polynomial of degree k can

be expressed as a nonnegative rational linear combination of degree k + 1 basis polynomials.
The density function of the distribution βi,j on [0, 1] for i, j > 0 is proportional to

a Bernstein basis polynomial of degree i + j − 2. We can conclude that the measures
{βi,j : i, j > 0, i + j = n} are linearly independent for every n. In higher dimensions,
the polynomials {bI,k} are linearly independent for every k. Moreover, products of beta
distributions βir,jr are linearly independent as long as ir + jr = n holds for some common n.
This will be a key idea for normalizing Beta-Bernoulli terms.

3.2 Normal forms and completeness
For the completeness proof of the measure-theoretic model, we proceed as follows: To decide
Γ |∆ ` t = u for two terms t, u, we transform them into a common normal form whose
interpretations can be given explicitly. We then use a series of linear independence results to
show that if the interpretations agree, the normal forms are already syntactically equal.
Normalization happens in three stages.

If we think of a term as a syntax tree of binary choices and ν-binders, we use the conjugacy
axiom to push all occurrences of ν towards the leaves of the tree.
We use commutativity and discardability to stratify the use of free parameters ?p.
The leaves of the tree will now consist of chains of ν-binders, variables and ratio choices
i?j . Those can be collected into a canonical form.

We will describe these normalization stages in reverse order because of their increasing
complexity.

3.2.1 Stone’s normal forms for rational convex sets
Normal forms for the theory of rational convex sets have been described by Stone [29]. We
note that if − |x1 . . . xk : 0 ` t is a term in the theory of rational convex sets (Def. 1) then

ICALP 2018
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JtK : Rk → R is a unital positive linear map that takes rationals to rationals. From the
perspective of measures, this corresponds to a categorical distribution with k categories.

I Proposition 6 (Stone). The interpretation exhibits a bijective correspondence between
terms − |x1 . . . xk : 0 ` t built from i?j, modulo equations, and unital positive linear maps
Rk → R that take rationals to rationals.

For instance, the map φ(x, y, z) = 1
10 (2x+ 3y + 5z) is unital positive linear, and arises from

the term t
def= x 2?8(y 3?5 z). This is the only term that gives rise to the φ, modulo equations.

In brief, one can recover t from φ by looking at φ(1, 0, 0) = 2
10 , then φ(0, 1, 0) = 3

10 , then

φ(0, 0, 1) = 5
10 . We will write

(
? x1 . . . xk
w1 . . . wk

)
for the term corresponding to the linear

map (x1 . . . xk) 7→ 1∑k

i=1
wk

(w1x1 + · · ·+ wkxk). These are normal forms for the theory of

rational convex sets.

3.2.2 Characterization and completeness for ν-free terms
This section concerns the normalization of terms using free parameters but no ν. Consider
a single parameter p. If we think of a term t as a syntactic tree, commutativity and
discardability can be used to move all occurrences of ?p to the root of the tree, making it
a tree diagram of some depth k. Let us label the 2k leaves with ta1···ak , ai ∈ {0, 1}. As a
programming language expression, this corresponds to successive bindings

let a1=M.get(p) in ... let ak=M.get(p) in ta1···ak

Permutations σ ∈ Sk of the k first levels in the tree act on tree diagrams by permuting the
leaves via ta1···ak 7→ taσ(1)···aσ(k) . By commutativity (C1), those permuted diagrams are still
equal to t, so we can replace t by the average over all permuted diagrams, since rational choice
is discardable. The average commutes down to the leaves (C5), so we obtain a tree diagram
with leaves ma1···ak = 1

k!
∑
σ taσ(1)···aσ(k) , where the average is to be read as a rational choice

with all weights 1. This new tree diagram is now by construction invariant under permutation
of levels in the tree, in particular ma1···ak only depends on the sum a1 + · · ·+ ak. That is to
say, the counts are a sufficient statistic.

This leads to the following normalization procedure for terms p1 . . . p` |x1 . . . xn : 0 ` t:
Write Cpjk (t0, . . . , tk) for the permutation invariant tree diagram of pj-choices and depth k
with leaves ta1···ak = ta1+···+ak . Then we can rewrite t as Cp1

k (t0, . . . , tk) where each ti is
p1-free. Recursively normalize each ti in the same way, collecting the next parameter. By
discardability, we can pick the height of all these tree diagrams to be a single constant k, such
that the resulting term is a nested structure of tree-diagrams Cpjk . We will use multi-indices
I = (i1, . . . , i`) to write the whole stratified term as Ck((tI)) where each leaf tI only contains
rational choices. The interpretation of such a term can be given explicitly by Bernstein
polynomials

JCk((tI))K(~x)(~p) =
∑
I bI,k(~p) · JtIK(~x)(~p).

For example, normalizing (v ?p x)?p(y ?p v) gives (v ?p(x 1?1 y))?p((x 1?1 y) ?p v) = C2(v, x1?1y, v).
From this we obtain the following completeness result:

I Proposition 7. There is a bijective correspondence between equivalence classes of terms
p1 . . . p` |x1 . . . xn : 0 ` t and linear unital maps φ : Rn → RI` such that for every standard
basis vector ej of Rn, φ(ej) is a Bernstein polynomial with nonnegative rational coefficients.
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Proof. We can assume all basis polynomials to have the same degree k. If φ(ej) =
∑
I wIjbI,k,

then the unitality condition φ(1, . . . , 1) = 1 means
∑
I

(∑
j wIj

)
bI,k = 1, and hence by

linear independence and partition of unity,
∑
j wIj = 1 for every I. If we thus let tI be

the rational convex combination of the xj with weights wIj , then JCk((tI))K = φ. Again by
linear independence, the weights wIJ are uniquely defined by φ. J

Geometric characterizations for the assumption of this theorem exist in [20, 3]. For example,
a univariate polynomial is a Bernstein polynomial with nonnegative coefficients if and only if
it is positive on (0, 1). More care is required in the multivariate case.

3.2.3 Normalization of Beta-Bernoulli
For arbitrary terms p1 . . . p` |x1 : m1, . . . , xs : ms ` t, we employ the following normalization
procedure. Using conjugacy and the commutativity axioms (C2–C4), we can push all uses
of ν towards the leaves of the tree, until we end up with a tree of ratios and free para-
meter choices only. Next, by conjugacy and discardability, we expand every instance of
νi,j until they satisfy i + j = n for some fixed, sufficiently large n. We then stratify the
free parameters into permutation invariant tree diagrams. That is, we find a number k
such that t can be written as Ck((tI)) where the leaves tI consist of ν and rational choices only.

In each tI , commuting all the choices up to the root, we are left with a convex combination
of chains of ν’s of the form νi1,j1p`+1. . . . νid,jdp`+d.xj(pτ(1), . . . , pτ(m)) for some τ : m→ `+d.
By discardability, we can assume that there are no unused bound parameters. We consider
two chains equal if they are α-convertible into each other. Now if c1, . . . , cm is a list of
the distinct chains that occur in any of the leaves, we can give the leaves tI the uniform

shape tI =
(
? c1 . . . cm
wI1 . . . wIm

)
for appropriate weights wIj ∈ N. We will show that this

representation is a unique normal form.

3.2.4 Proof of completeness
Consider a chain c = νi1,j1p`+1. . . . νid,jdp`+d. x(pτ(1), . . . , pτ(m)). Its measure-theoretic
interpretation JcK(p1, . . . , p`) is a pushforward of a product of d beta distributions, supported
on a hyperplane segment that is parameterized by the map hτ : Id → Im, hτ (p`+1, . . . , p`+d) =
(pτ(1), . . . , pτ(m)). Note that the position of the hyperplane may vary with the free parameters.
To capture this geometric information, we call τ the subspace type of the chain and d its
dimension. Because of α-invariance of chains, we identify subspace types that differ by a
permutation of {`+ 1, . . . , `+ d}.

p2 (3, 2)

p1 (3, 1)

p2

(2, 3)

p1

(1, 3)

(3, 3)

(1, 2) (2, 2)

(2, 1)

(1, 1)

(3, 4)

For example, each chain with two free parameters
p1, p2 and a variable x : 2 gives rise to a parameter-
ized distribution on the unit square. On the right, we
illustrate the ten possible supports that such distri-
butions can have, as subspaces of the square. In the
graphic we write (i, j) for νp3.νp4.x(pi, pj), moment-
arily omitting the subscripts of ν because they do not
affect the support. For instance, the upper horizontal
line corresponds to νp3.x(p3, p2); the bottom-right dot
corresponds to x(p2, p1); the diagonal corresponds to
νp3.x(p3, p3); and the entire square corresponds to
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νp3.νp4.x(p3, p4). All told there are four subspaces of dimension d = 0, five with d = 1, and
one with d = 2. Notice that the subspaces are all distinct as long as p1 6= p2.

I Proposition 8. If c1, . . . , cs are distinct chains with i1 + j1 = · · · = id + jd = n, then the
family of functionals {JciK(−)(~p) : RIm1 × · · · × RIms → R}i=1,...,s is linearly independent
whenever all parameters pi are distinct.

Proof. Fix ~p. Chains on different variables are clearly independent, so we can restrict
ourselves to a single variable x : m. We reason measure-theoretically. The interpretation of
a chain ci of subspace type τi is a pushforward measure hi∗(µi) where µi is a product of d
beta distributions, and hi is the affine inclusion map hi(p`+1, . . . , p`+d) = (pτi(1), . . . , pτi(m)).
Let

∑
aihi∗(µi) = 0 as a signed measure. We show by induction over the dimension of the

chains that all ai vanish. Assume that ai = 0 whenever the dimension of ci is less than d,
and consider an arbitrary subspace τj of dimension d. We can define a signed Borel measure
on Id by restriction

ρ(A) def=
∑
i

aihi∗(µi)(hj(A)) =
∑
i

aiµi(h−1
i (hj(A)))

as hj sends Borel sets to Borel sets (e.g. [10, §15A]). We claim that ρ(A) =
∑

ci has type τj
aiµi(A),

as the contributions of chains ci of different type vanish.
If ci has dimension < d, ai = 0 by the inductive hypothesis.
If ci has dimension > d, we note that h−1

i (hj(A)) only has at most dimension d. It is
therefore a nullset for µi.
If ci has dimension d but a different type, and all p1, . . . , p` are assumed distinct, then
the hyperplanes given by hi and hj are not identical. Therefore their intersection is at
most (d− 1)-dimensional and h−1

i (hj(A)) is a nullset for µi.

By assumption, ρ has to be the zero measure, but the µi are linearly independent.
Therefore ai = 0 for all ci with subspace type τj . Repeat this for every subspace type of
dimension d to conclude overall linear independence. J

I Theorem 9 (Completeness). If Γ |∆ ` t, t′ and JtK = Jt′K, then Γ |∆ ` t = t′.

Proof. From the normalization procedure, we find numbers k, n, a list of distinct chains
c1, . . . , cs with i + j = n and weights (wIj), (w′Ij) such that Γ |∆ ` t = Ck((tI)) and

Γ |∆ ` t′ = Ck((t′I)) where tI =
(
? c1 . . . cs
wI1 . . . wIs

)
and t′I =

(
? c1 . . . cs
w′I1 . . . w′Is

)
. The

interpretations of these normal forms are given explicitly by

JtK(~f)(~p) =
∑
j

wIj
wI
· bI,k(~p) · JcjK(~f)(~p) where wI =

∑
j

wIj

and analogously for t′. Then JtK = Jt′K implies that for all ~f

∑
j

(∑
I

(
wIj
wI
−
w′Ij
w′I

)
bI,k(~p)

)
JcjK(~f)(~p) = 0.

By Proposition 8, this implies
∑
I

(
wIj
wI
− w′

Ij

w′
I

)
bI,k(~p) = 0 for every j and whenever the

parameters pi are distinct. By continuity of the left hand side, the expression in fact
has to vanish for all ~p. By linear independence of the Bernstein polynomials, we obtain
wIj/wI = w′Ij/w

′
I for all I, j. Thus, all weights agree up to rescaling and we can conclude

Γ |∆ ` t = t′. J
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4 Extensionality and syntactical completeness

In this section we use the model completeness of the previous section to establish some
syntactical results about the theory of Beta-Bernoulli. Although the model is helpful in
informing the proofs, the statements of the results in this section are purely syntactical.

The ultimate result of this section is equational syntactical completeness (Cor. 13), which
says that there can be no further equations in the theory without it becoming inconsistent
with discrete probability. In other words, assuming that the axioms we have included are
appropriate, they must be sufficient, regardless of any discussion about semantic models or
intended meaning. This kind of result is sometimes called ‘Post completeness’ after Post
proved a similar result for propositional logic.

The key steps towards this result are two extensionality results. These are related to
the programming language idea of ‘contextual equivalence’. Recall that in a programming
language we often define a basic notion of equivalence on closed ground terms: these are
programs with no free variables that return (say) booleans. This notion is often defined
by some operational consideration using some notions of observation. From this we define
contextual equivalence by saying that t ≈ u if, for all closed ground contexts C, C[t] = C[u].

Contextual equivalence has a canonical appearance, but an axiomatic theory of equality,
such as the one in this paper, is more compositional and easier to work with. Our notion
of equality induces in particular a basic notion of equivalence on closed ground terms. Our
extensionality results say that, assuming one is content with this basic notion of equivalence,
the equations that we axiomatize coincide with contextual equivalence.

4.1 Extensionality
I Proposition 10 (Extensionality for closed terms). Suppose Γ, q |∆ ` t and Γ, q |∆ ` u. If
Γ |∆ ` νi,jq.t = νi,jq.u for all i, j, then also Γ |∆ ` t = u.

Proof. We show the contrapositive. By the model completeness theorem (Thm. 9), we can
reason in the model rather than syntactically. So we consider t and u such that JtK 6= JuK as
functions RIm1 × RImk → RIl+1 , and show that there are i, j such that Jνi,jq.tK 6= Jνi,jq.uK.
By assumption there are ~f and ~p, q such that JtK(~f)(~p, q) 6= JuK(~f)(~p, q) as real numbers.

Now we use the following general reasoning: For any real q ∈ I we can pick monotone
sequences i1 < · · · < in < . . . and j1 < · · · < jn < . . . of natural numbers so that in

in+jn → q

as n → ∞. Moreover, for any continuous h : I → R, the integral
∫
h dβin,jn converges

to h(q) as n → ∞: one way to see this is to notice that the variance of βin,jn vanishes
as n → ∞, so by Chebyshev’s inequality, limn βin,jn is a Dirac distribution at q. Thus,∫ (

JtK(~f)(~p, r) − JuK(~f)(~p, r)
)
βin,jn(dr) is non-zero as n → ∞. By continuity, for some n,∫

JtK(~f)(~p, r) βin,jn(dr) 6=
∫

JuK(~f)(~p, r) βin,jn(dr). So, Jνin,jnq.tK 6= Jνin,jnq.uK. J

I Proposition 11 (Extensionality for ground terms). In brief: If t[v1...vk/x1...xk ] = u[v1...vk/x1...xk ]
for all suitable ground v1 . . . vk, then t = u.

In detail: Consider t and u with − |x1 : m1 . . . xk : mk ` t, u. Suppose that whenever v1 . . . vk
are terms with (p1 . . . pm1 | y, z : 0 ` v1), . . . , (p1 . . . pmk | y, z : 0 ` vk), then we have − | y, z :
0 ` t[v1...vk/x1...xk ] = u[v1...vk/x1...xk ]. Then we also have − |x1 : m1 . . . xk : mk ` t = u.

Proof. Again, we show the contrapositive. Let ∆ = (x1 : m1 . . . xk : mk). Suppose we
have t and u such that ¬(− |∆ ` t = u). Then by the model completeness theorem
(Thm. 9), we have JtK 6= JuK as linear functions RIm1 × · · · × RImk → R. Since the
functions are linear, there is an index i ≤ k and a continuous function f : Imi → R with
JtK(0 . . . 0, f, 0 . . . 0) 6= JuK(0 . . . 0, f, 0 . . . 0). By the Stone-Weierstrass theorem, every such f
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is a limit of polynomials, and so since JtK and JuK are continuous and linear, there has to be
a Bernstein basis polynomial bI,k : Rmi → R that already distinguishes them. This function
is definable, i.e. there is a a term p1, . . . , pmi | y, z : 0 ` w with JwK(1, 0) = bI,k. Define terms
vj = w for i = j and vj = z for i 6= j. Then

Jt[v1...vk/x1...xk ]K(1, 0) = JtK(0, . . ., bI,k, . . ., 0) 6= JuK(0, . . ., bI,k, . . ., 0) = Ju[v1...vk/x1...xk ]K(1, 0).

The required ¬
(
− | y, z : 0 ` t[v1...vk/x1...xk ] = u[v1...vk/x1...xk ]

)
follows from the above dis-

equality because of the model soundness property (Props. 3 and 4). J

From the programming perspective, a term − | y, z : 0 ` t0 corresponds to a closed program of
type bool, for it has two possible continuations, y and z, depending on whether the outcome
is true or false . From this perspective, Proposition 11 says that for closed t, u, if C[t] = C[u]
for all boolean contexts C, then t = u.

4.2 Relative syntactical completeness
I Proposition 12 (Neumann, [17]). If t, u are terms in the theory of rational convexity
(Def. 1), then either t = u is derivable or it implies x i?j y = x i′?j′ y for all nonzero i, i′, j, j′.

I Corollary 13. The theory of Beta-Bernoulli is syntactically complete relative to the theory
of rational convexity, in the following sense. For all terms t and u, either t = u is derivable,
or it implies x i?j y = x i′?j′ y for all nonzero i, i′, j, j′.

This is proved by combining Propositions 10, 11 and 12. As an example for extensionality and
completeness, consider the equation ν1,1p.x(p, p) = ν1,1p.(ν1,1q.x(p, q)). It is not derivable, as
can be witnessed by the substitution x(p, q) = (y ?q z) ?p z. Normalizing yields y 1?2 z = y 1?3 z
which is incompatible with discrete probability (see the full paper [27]). In programming
syntax, the candidate equation is written

LHS = let p = M.new(1,1) in (p,p) RHS = (M.new(1,1) , M.new(1,1))

and the distinguishing context is C[−] = let (p,q)=(−) in if M.get(p) then M.get(q) else false .
That is to say, the closed ground programs C[LHS] and C[RHS] necessarily have different
observable statistics: this follows from the axioms.

4.3 Remark about stateful implementations
In the introduction we recalled the idea of using Pólya’s urn to implement a Beta-Bernoulli
process using local (hidden) state.

Our equational presentation gives a recipe for understanding the correctness of the
stateful implementation. First, one would give an operational semantics, and then a basic
notion of observational equivalence on closed ground terms in terms of the finite probabilities
associated with reaching certain ground values. From this, an operational notion of contextual
equivalence can be defined (e.g. [4, §6], [23, 32]). Then, one would show that the axioms of
our theory hold up-to contextual equivalence. Finally one can deduce from the syntactical
completeness result that the equations satisfied by this stateful implementation must be
exactly the equations satisfied by the semantic model.

In fact, in this argument, it is not necessary to check that axioms (C1) and (D2) hold in
the operationally defined contextual equivalence, because the axiomatized equality on closed
ground terms is independent of these axioms. To see this, notice that our normalization
procedure (§3.2.3) doesn’t use (C1) or (D2) when the terms are closed and ground, since
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then we can take n = k = 0. This is helpful because the remaining axioms are fairly
straightforward, e.g. (Conj) is the essence of the urn scheme and (D1) is garbage collection.

5 Conclusion

Exchangeable random processes are central to many Bayesian models. The general message
of this paper is that the analysis of exchangeable random processes, based on basic concepts
from programming language theory, depends on three crucial ingredients: commutativity,
discardability, and abstract types. We have illustrated this message by showing that just
adding the conjugacy law to these ingredients leads to a complete equational theory for the
Beta-Bernoulli process (Thm. 9). Moreover, we have shown that this equational theory has
a canonical syntactic and axiomatic status, regardless of the measure theoretic foundation
(Cor. 13). Our results in this paper open up the following avenues of research.
Study of nonparametric Bayesian models: We contend that abstract types, commutativity

and discardability are fundamental tools for studying nonparametric Bayesian mod-
els, especially hierarchical ones. For example, the Chinese Restaurant Franchise [30]
can be implemented as a module with three abstract types, f (franchise), r (restaur-
ant), t (table), and functions newFranchise:()→ f, newRestaurant:f→ r, getTable: r→ t,
sameDish:t∗t→ bool. Its various exchangeability properties correspond to commutativ-
ity/discardability in the presence of type abstraction. (For other examples, see [28].)

First steps in synthetic probability theory: As is well known, the theory of rational convex
sets corresponds to the monad D of rational discrete probability distributions. Commut-
ativity of the theory amounts to commutativity of the monad D [15, 12].
As any parameterized algebraic theory, the theory of Beta-Bernoulli (§2) can be understood
as a monad P on the functor category [FinSet,Set], with the property that to give
a natural transformation FinSet(`,−) → P (

∐k
j=1 FinSet(mk,−)) is to give a term

(p1 . . . p` |x1 : m1 . . . xk : mk ` t), and monadic bind is substitution ([25, Cor. 1], [26,
§VIIA]). This can be thought of as an intuitionistic set theory with an interesting notion
of probability. As such this is a ‘commutative effectus’ [7], a synthetic probability theory
(see also [13]). Like D, the global elements 1→ P (2) are the rationals in [0, 1] (by Prop. 7)
but unlike D, the global elements 1→ P (P (2)) include the beta distribution.

Practical ideas for nonparametric Bayesian models in probabilistic programming:
A more practical motivation for our work is to inform the design of module systems
for probabilistic programming languages. For example, Anglican, Church, Hansei and
Venture already support nonparametric Bayesian primitives [11, 33, 16]. We contend that
abstract types are a crucial concept from the perspective of exchangeability.
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