
An introduction to feedback Turing
computability

NATHANAEL L. ACKERMAN, Department of Mathematics, Harvard University,
Cambridge, MA 02138, USA.
E-mail: nate@math.harvard.edu

CAMERON E. FREER, Computer Science and AI Lab, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.
E-mail: freer@mit.edu

ROBERT S. LUBARSKY, Department of Mathematical Sciences, Florida
Atlantic University, Boca Raton, FL 33431, USA.
E-mail: Robert.Lubarsky@alum.mit.edu

Abstract
Feedback computability is computation with an oracle that contains the correct convergence/divergence information for all
computations calling that same oracle. Here we study feedback Turing computability, as well as feedback for some smaller
classes of computation. We also examine some versions of parallelization of these notions.

Keywords: Computability theory, Turing machines, hyperarithmetic computability, least fixed points, parallel computation,
feedback, determinism, non-determinism, ref lection, gap-ref lection, admissibility

1 Introduction

Suppose you have some notion of computation that allows for oracle calls. What would be the most
canonical choice of oracle? Over the years, we have learned that would be the halting problem, the set
of indices of convergent computations. With that choice of oracle, note that the computations in the
oracle are different from those calling the oracle: the computations that are being run can query the
oracle, and the ones in the oracle cannot. What if they were the same? What if the oracle contained
all the correct con- and divergence information about computations that call that same oracle?

This is feedback. One can consider the procedure which takes as input an oracle and returns the
set of halting computations relative to that oracle. A model for feedback is exactly a fixed point of
this procedure. As a topic, then, feedback can be understood as centering on the study of such fixed
points.

The first time feedback was pursued seriously seems to have been by the third author in [8];
perhaps it is odd that the computability to which feedback was applied there is a somewhat exotic
form of computation, infinite time Turing machines (first introduced in [4]). The feedback version
of the most common notion of computability, Turing computability, was done only afterwards, by
the current authors in [1], where feedback primitive recursion was also analyzed. It was following
the preparation of that work that we discovered that the idea of feedback had already been articulated
clearly by Rogers [13, pp. 406–407], even if not under that name. Those few pages also anticipate

Vol. 00, No. 0, © The Author(s) 2020. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permission@oup.com.

doi:10.1093/logcom/exaa002

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

2 An introduction to feedback Turing computability

some of the results of [1], albeit without proof. Oddly enough, even though that was likely the
leading recursion theory text for decades, no one ever picked up on those ideas, not even to supply
the missing proofs of Rogers’ assertions.

Since then, progress has been made with feedback in the study of parallelism. While parallel
feedback infinite time Turing machines(ITTMs) were identified in [8], nothing much was done with
them there. In contrast, several versions of parallel feedback Turing computability were identified
in [1], and one was shown to be strictly stronger than its sequential analogue. Further progress was
made in [10], where one kind of parallelism was completely analyzed, among other results.

The feedback fixed points studied so far have all been least fixed points. Philip Welch has observed
that their study could well be couched differently, in more traditional terms. For instance, the least
feedback fixed point for Turing computability is Kleene’s O, and in fact that analysis ends up looking
like one of Kleene’s own [6], recursion relative to the jump operator J (both being based on the
well-foundedness, or not, of various trees). Similarly, the third author had conjectured that feedback
ITTMs have the exact computational strength of Σ0

3 Determinacy [9], and this was ultimately proven
by Welch [20], couched not in terms of feedback ITTMs, but rather via ITTM computation relative to
the ITTM-jump operator. All that notwithstanding, we feel that feedback stands on its own. For one,
even when the analyses end up being similar, the concept of feedback is a different idea from that of
recursion in J . If that argument leaves you cold, because your philosophy is that the only ultimate jus-
tification of a new idea is new results, then we have something for you too. The parallelism discussed
in [10] and here, although given by a least fixed point semantics, has apparently not been studied
elsewhere. Also, there are various natural non-fixed point semantics currently under investigation.

The current paper is a review and extension of [1] and [10]. Following this introduction, it starts
with the connections between feedback Turing computability and hyperarithmeticity. Then feedback
is applied to sub-recursive classes, such as primitive recursion. Finally, feedback parallelism is
discussed.

2 Feedback Turing machines

2.1 Feedback Turing machines

We would like to consider feedback as applied not only to regular Turing machines but also to their
relativization to an arbitrary oracle. So we will speak of (Turing) machines having the ability to
make two types of queries. First, they can query an oracle X : ω → 2, and second, they can query
a partial function α : A → {↑, ↓}, called the halting function, where A ⊆ ω. (By identifying ω

with ω × ω, such an A can sometimes be considered as a set of pairs.) The notation {e}X
α (n) denotes

the eth machine with oracle X and halting function α on input n. When a Turing machine queries
the oracle, it is said to make an oracle query, whereas when a Turing machine queries the halting
function it has made a halting query. A halting query behaves just like an oracle query, so long as
the number n asked about is in the domain of α. If not, the computation freezes: since α(n) cannot
return an answer, there is no next step, but the machine is not in a halting state, so it is not said to
halt either.

Our first result states that for any oracle X , there is a smallest collection H of codes of machines
for which the distinction between convergence and divergence is unambiguous.

LEMMA 2.1
For any X : ω → 2 there is a smallest collection HX ⊆ ω × ω such that there is a function
hX : HX → {↑, ↓} satisfying the following:

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 3

(↓) If {e}X
hX

(n) makes no halting queries outside of HX and converges after a finite number of
steps then (e, n) ∈ HX and hX (e, n) =↓, and conversely.

(↑) If {e}X
hX

(n) makes no halting queries outside of HX and does not converge (i.e. runs forever)
then (e, n) ∈ HX and hX (e, n) =↑, and conversely.

Furthermore, this hX is unique.

PROOF. For any halting function α, let

Γ ↓(α) = {
(e, n) : {e}X

α (n) converges
}
,

Γ ↑(α) = {
(e, n) : {e}X

α (n) diverges
}
,

h−1
α (↑) = Γ ↑(α) and

h−1
α (↓) = Γ ↓(α).

Then h(·) is a monotone inductive operator. (For background on such, see [2, 7, 14].) Let hX be its
least fixed point, with domain HX . These are as desired. �

DEFINITION 2.2
A feedback Turing machine (or feedback machine for short) is a machine of the form {e}X

hX
for

some e ∈ ω. The notation 〈e〉X (n) is shorthand for {e}X
hX

(n).
Then HX is the collection of non-freezing computations and the notation 〈e〉X (n) ⇓ means (e, n) ∈

HX . If (e, n)
∈ HX then 〈e〉X (n) is freezing, written 〈e〉X (n) ⇑.

While not surprising, it bears mention that the hX constructed in the preceding lemma as a fixed
point of a certain operation is not the only such fixed point. By the recursion theorem, let e be a code
of a machine which makes a halting query about itself; if it gets back ↓ it halts, and if it gets back
↑ it enters into a loop. Inductively, e
∈ HX . Also, the least fixed point (as in the previous lemma)
starting with hX ∪ {〈e, ↑〉} contains both hX and 〈e, ↑〉, similarly for 〈e, ↓〉. A similar construction
shows that no such fixed point can have domain all of ω. Let e code a machine that queries α(e); if it
gets back ↓ it loops, and if it gets back ↑ it halts. Such an e cannot be in the domain of any consistent
halting function h.

2.2 The tree of sub-computations

Just as a computation of a normal Turing machine converges if and only if there is a witness to this
fact, a feedback machine is non-freezing if and only if there is a witness to that fact.

The idea is that, from the outside of our computation (freezing or not), one can imagine that any
time a feedback machine makes a halting query, one creates a new feedback machine representing
this query. One then runs this sub-machine to figure out what the result of the query should be,
returning ↓ if the new machine converges and ↑ if it diverges (where each query, be it oracle or
halting, is considered to take one time step). The tree of sub-computations is just a record of this
process, organized naturally as a tree. We will see that a feedback machine is non-freezing if and
only if its tree of sub-computations is well founded. This tree is then a computational witness to the
machine being non-freezing.

What follows is the definition of the tree T = TX (e, n) of sub-computations of the feedback
machine 〈e〉X (n). It will be a sub-tree of ω<ω; in fact, it will be a nice sub-tree, in that the set of

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

4 An introduction to feedback Turing computability

successors of any node σ will be an initial segment of ω:

{n | σ n ∈ T} ≤ ω. ∗

Moreover, the nodes of the tree will be labeled with associated computations.
The root of the tree clearly is the empty sequence 〈〉, labeled with the main computation (e, n).

We think of this root as being on top and the tree growing downwards. Because it will be important
whether the tree is well founded or not, the ordering of nodes ≤ is ⊇: σ ≤ τ iff σ ⊇ τ (i.e. σ

extends τ). So the tree is well founded exactly when the relation ≤ is well founded.
We can finally turn to the definition of T . This will be done inductively on the ordinals. At every

ordinal, we describe how the computation proceeds. At some, not all, of these ordinal stages, nodes
are inserted into T . This insertion is done depth-first. That is, nodes are included starting with the
root and continuing along the left-most path. Once a terminal node is reached (if ever), we back
up until we hit a branching node and then continue down along the second-left-most path. Besides
defining these ordinal steps, and the nodes and their labels, at every ordinal stage control is with
one node.

At stage 0, control is with the root 〈〉, which is labeled with the index (e, n).
At a successor stage, if the computation at the node currently in control is in any state other than

making a halting query, no new node is inserted into T , and the action of the computation is as with
a regular Turing machine. If taking that action places that machine in a halting state, then, if there is
a parent, the parent gets the answer ‘convergent’ to its halting query and control passes to the parent.
If there is no parent, then the current node is the root, and the computation halts. If the additional
step does not place the machine in a halting state, then control stays with the current node. If the
current node makes a halting query, a new child is formed, after (to the right of) all of its siblings:
in notation, if the current node is σ , then the new child is σ k, the lexicographically least direct
extension of σ not yet used. Furthermore, this child is labeled with the index and parameter of the
halting query; a new machine is established at that node, with program the given index and with the
parameter written on the input tape and control passes to that node.

At a limit stage, there are three possibilities. One is that on some final segment of the stages there
were no halting queries made, and so control was always at one node. Then that computation is
divergent. At that point, if there is a parent, then the parent gets the answer ‘divergent’ to its halting
call, and control is passed to the parent. If there is no parent, then the node in question is the root,
and the entire computation is divergent.

The second possibility is that cofinally many halting queries were made, and there is a node ρ

such that cofinally many of those queries were ρ’s children. Note that such a node must be unique.
Then ρ was active cofinally often, and as in the previous case ρ is seen to be divergent. So control
passes to ρ’s parent, if any, which also gets the answer that ρ is divergent; if ρ is the root, then the
main computation is divergent.

The final possibility is that, among the cofinally many halting queries made, there is an infinite
descending sequence, which is the right-most branch of the tree. This is then a freezing computation.
The construction of the tree ends at this point.

LEMMA 2.3
For each e, n ∈ ω,

(1) 〈e〉X (n) ⇓ if and only if TX (e, n) is well founded and
(2) if 〈e〉X (n) ⇑ then TX (e, n) has a unique infinite descending chain, which is the right-most

branch (using �TX (e,n) and ≤TX (e,n)) through the tree.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 5

PROOF. Since hX and HX are least fixed points, (1) follows by induction on their construction. For
(2), the only way that 〈e〉X (n) can freeze is if it makes a freezing halting query. Once it does so, its
computation does not continue, so the first such query is (e, n)’s right-most child. That means that
everything to the left is well founded (by part (1)). Continuing inductively, each freezing query itself
has a freezing query for a child. �

Now, 〈e〉X (n) ⇓ if and only if there is a (unique) computational witness to this fact, but we can in
fact get a bound on how complicated this witness can be. In the following, let A(X):=LωX

1
(X) be the

smallest admissible set containing the real X . (For background on admissibility, see [14] or [3].)

PROPOSITION 2.4
If 〈e〉X (n) ⇓ then TX (e, n) ∈ A(X).

PROOF. Inductively on the height of the tree TX (e, n). Notice that if the node 〈k〉 in TX (e, n) is labeled
(ek , nk), then TX (e, n) restricted to the part beneath 〈k〉 is almost identical to the tree TX (ek , nk) (the
only difference being the presence of the k at the beginning of every node). So each such TX (ek , nk)

has a smaller rank than TX (e, n), and hence is in A(X). If there are only finitely many such k’s, then
it is a simple enough matter to string the TX (ek , nk)’s together to build TX (e, n). If there are infinitely
many such, then the admissibility of A(X) will have to be used. It is a simple enough matter to give
a Δ1 definition of the function from k to TX (ek , nk), and that function suffices to build TX (e, n). �

Note that if (∀n ∈ ω)〈e〉X (n) ⇓ then the sequence 〈TX (e, n) : n ∈ ω〉 is in A(X), as well
as a sequence witnesses that the trees in the sequence do indeed satisfy the Δ1 definitions of the
TX (e, n)’s.

Proposition 2.4 is the best possible, by the following two propositions.

PROPOSITION 2.5
There is a wf ∈ ω (independent of X) such that if T ⊆ ωω is a well-founded tree satisfying (∗), and
is computable in X , via index n say, then TX (wf, n) = T . Moreover, if T is not well founded, then
TX (wf, n) will be the sub-tree of T consisting of those nodes lexicographically less than (i.e. to the
left of) some node on T’s left-most path.

PROOF. Let 〈wf〉X (n) be the program that runs as follows. Query in order whether each of
〈0〉, 〈1〉, 〈2〉, . . . is in T . Whenever it is seen that 〈k〉 is in T , a halting query is made about 〈wf〉X (nk),
where nk is a code for T restricted to 〈k〉 (i.e. σ is in the restricted tree iff kσ ∈ T). Then the
generation of the tree of sub-computations for 〈wf〉X (n) is the depth-first search of T , from left to
right, until the first infinite path is traced. �
PROPOSITION 2.6
The ordinal heights of the well-founded trees TX (e, n) are those ordinals less than ωX

1 .

PROOF. By the previous proposition, it suffices to show there are computable (in X) trees of
such height. This is fairly standard admissibility theory, but just to be self-contained we sketch an
argument here.

This uses ordinal notations, also quite standard (see, e.g. [14]), described in the next subsection
for the convenience of the reader; we promise the argument won’t be circular. The ordinal notations
quite naturally present the ordinals as trees. That is, we define a function T such that, when n is
a notation for the ordinal α, then T(n) is a computable tree of height α. For n = 0, the tree T(0)

consists of the empty sequence. For n = 2e, the tree T(n) consists of the empty sequence and T(e)
appended at 〈0〉. For n = 3 · 5e, the tree T(n) consists of the empty sequence, and, for each k,
T({e}(k)) appended to 〈k〉. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

6 An introduction to feedback Turing computability

Regarding freezing computations, 〈e〉X (n) is freezing exactly when during its run it makes a
halting query outside of HX , or, in other words, it makes a halting query about a freezing index.
Because the computation cannot continue after that, this halting query is the right-most node on
level 1 of TX (e, n). Similarly, that node makes a freezing halting query, and so on. So for a freezing
computation, TX (e, n) has a unique infinite path, which is its right-most path. If TX (e, n) is truncated
at any node along this path (i.e. the sub-tree beneath that node is eliminated), what’s left is well
founded. This truncated tree can be built just the way trees for non-freezing computations can be
built, with the use of the finite parameter of the path leading down to the truncation node, and so
is a member of A(X), hence with height less than ωX

1 . In fact, there are computations such that the
heights of these well-founded truncated sub-trees are cofinal in ωX

1 , as follows.

EXAMPLE 2.7
Let A∗(X) be a non-standard admissible set with ordinal standard part ωX

1 . Let (e, n) be a non-
freezing computation in the sense of A∗(X) with TX (e, n) of height some non-standard ordinal.
When run in the standard universe, (e, n) is as desired.

2.3 Feedback reducibility

Having described the notion of feedback machines, we may now define feedback reducibility. Just
as one set X is Turing reducible to Y when there is a Turing machine that with oracle Y computes the
characteristic function of X , the set X is feedback reducible to Y when there is a feedback machine
that with oracle Y computes the characteristic function of X . We make this precise.

DEFINITION 2.8
Suppose X , Y : ω → 2. Then X is feedback reducible to Y , or feedback computable from Y ,
written X ≤F Y , when there is an e ∈ ω such that

• for all n ∈ ω, 〈e〉Y (n) ⇓,
• for all n ∈ ω, 〈e〉Y (n) ↓and
• for all n ∈ ω, 〈e〉Y (n) = X (n).

It is easy to see that ≤F is a preorder.
It turns out that feedback reducibility is intimately connected with hyperarithmetical reducibility.

Therefore, we present the central definitions and results of that theory. For a more thorough
treatment, with background and further citations, we refer the reader to [14].

DEFINITION 2.9
Suppose X , Y : ω → 2. Then X is hyperarithmetically reducible to Y , written X ≤H Y , when
X ∈ A(Y).

DEFINITION 2.10
The ordinal notations (relative to X), which are an assignment of ordinals to certain integers, and
are written [n]X = α, are as follows.

• [0]X = 0.
• If [n]X = γ then [2n]X = γ + 1.
• If e is such that {e}X is a total function, and for each n, {e}X (n) is an ordinal notation, with

[{e}X (n)]X = λn, then

[3 · 5e]X = sup{λn : n ∈ ω}.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 7

Then OX , the hyperarithmetical jump or hyperjump of X , is the domain of this mapping.
For n ∈ OX , the iterated Turing jump X [n]X is defined inductively:

• X [0]X = X .
• If n = 2n′

then X [n]X is the Turing jump of X [n′]X , i.e. the set of those e such that {e}X [n′]X
(e) ↓.

• If n = 3 · 5e then X [n]X = {〈m, i〉 : i ∈ X [{e}X (m)]X }.
LEMMA 2.11
If [n]X = [k]X then X [n]X and X [k]X have the same Turing degree.

Hence, we can define the αth Turing jump of X , X α , as the Turing degree of X [n]X , for any n
such that α = [n]X . For which α is there such an n?

LEMMA 2.12
The ordinals for which there is an ordinal notation are exactly the ordinals less that ωX

1 . Furthermore,
for any real R ⊆ ω, there is an n ∈ OX such that R ≤T X [n]X iff R ∈ A(X).

Returning to the actual subject at hand, we show that various of the objects above are feedback
computable.

LEMMA 2.13
There is a code hj (for ‘hyperarithmetical jump’) where for any X : ω → 2 the feedback machine
〈hj〉X (m, n) does the following:

• If m
∈ OX it freezes.
• If m ∈ OX then 〈hj〉X (m, n) = X [m]X (n) for all n ∈ ω.

PROOF. We start by defining several auxiliary feedback machines. First is 〈r〉X (e0, e1), which is
intended to help with the case of n = 3 · 5e in the definition of OX . Namely, r assumes that e0 is
telling the truth about membership in OX and uses that to decide whether 3 · 5e1 ∈ OX . Formally, let
〈s〉X (e1, n) be the feedback machine that makes a halting query of {e1}X (n). If it gets back the answer
‘diverges,’ then it freezes; if it gets back the answer ‘converges,’ then it halts. Then let 〈t〉X (e1) (t for
‘total’) go through each n ∈ ω in turn, and make a halting query of 〈s〉X (e1, n). Notice that 〈t〉X (e1)

cannot halt. Rather, 〈t〉X (e1) diverges iff {e1}X is total and freezes otherwise. Finally, let 〈r〉X (e0, e1)

begin by making a halting query of 〈t〉X (e1). If it gets the answer ‘diverges,’ it then runs through
each n ∈ ω and makes a halting query of 〈e0〉X ({e1}X (n)). So 〈r〉X (e0, e1) freezes if {e1}X is not
total, or if 〈e0〉X is not total on {e1}X ’s range; else it diverges.

We now leverage r to build a machine which returns 1 on any input from OX and freezes otherwise.
Let 〈h〉X (m) be the feedback machine that does the following:

• If m = 0, it halts and returns 1.
• If m = 2m′

, it makes a halting query about 〈h〉X (m′) and then returns 1.
• If m = 3 · 5e, it makes a halting query about 〈r〉X (h, e) and then returns 1.
• If m has another value, it freezes.

A straightforward induction shows that 〈h〉X (m) ⇓ if and only if m ∈ OX , and in this case
〈h〉X (m) = 1.

Next is the case of computing the Turing jump of a computable set. Let 〈c∗〉X (m, n) be the feedback
machine that runs {n}(n) as an oracle (not feedback) Turing computation, and anytime n makes an
oracle call for a (i.e. queries whether a is in the oracle), it runs 〈m〉X (a) and uses the result as the
response to the query. So if 〈m〉X is the characteristic function of some set Y , then 〈c∗〉X (m, n), as a
function of n converges on the Turing jump of Y and diverges on the complement. Then let 〈c〉X (m, n)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

8 An introduction to feedback Turing computability

be the code that asks a halting query of 〈c∗〉X (m, n) and returns 1 if it halts and 0 otherwise. So then
c is the code that (as a function of n) computes the characteristic function of the Turing jump of Y .

Finally, define 〈hj〉X (m, n) as follows. We will have use of the notation 〈hj∗m〉X (n) � 〈hj〉X (m, n),
which is well defined by the recursion theorem. First call 〈h〉X (m). If this does not freeze, then
m ∈ OX , and we have the following three cases:

• If m = 0, make an oracle query of X (n) and return the result.
• If m = 2m′

, run 〈c〉X (hj∗m′ , n) and return the result.
• If m = 3 · 5e, then for n = 〈q, i〉, first run {e}X (q) (which must converge as m ∈ OX)) with

output a; then run 〈hj〉X (a, i) and return the result.

A straightforward induction on the definition of X [m]X shows that

• 〈hj〉X (m, n) ⇓ if and only if m ∈ OX , and
• for m ∈ OX , if n ∈ X [m]X then 〈hj〉X (m, n) = 1, and otherwise 〈hj〉X (m, n) = 0. �

The following lemma can be thought of as a stage comparison test.

LEMMA 2.14
There is a code hj≤ where for any X → 2 the feedback machine 〈hj≤〉X (m0, m1) does the following:

• If m1
∈ OX , then 〈hj≤〉X (m0, m1) ⇑.
• Otherwise,

– if m0 ∈ OX and [m0]X ≤ [m1]X , then 〈hj≤〉X (m0, m1) = 1, and
– if m0
∈ OX or [m0]X > [m1]X , then 〈hj≤〉X (m0, m1) = 0.

PROOF. Define 〈hj≤〉X (m0, m1) to be the code that does the following in order:

(0) Call 〈hj〉X (m1, 0).
(1) If m0 = 0, return 1.
(2) If m0 = 2m′

0 and m1 = 2m′
1 , then call 〈hj≤〉X (m′

0, m′
1) and return the result.

(3) If m0 = 2m′
0 and m1 = 3 · 5e1 , make a halting query on the following code:

– At stage n compute {e1}X (n), call the output an.
– If 〈hj≤〉X (m0, an) = 1 then return 1.
– Otherwise, move to stage n + 1.

– If the code halts, then return 1; if not, return 0.
(4) If m0 = 3 · 5e0 , make a halting query on the following code:

– At stage n if {e0}X (n) ↑ then return 0; otherwise, let an = {e0}X (n).
– If 〈hj≤〉X (an, m1) = 0, then return 0.
– Otherwise, move to stage n + 1.

– If the code halts then return 0; if not return 1.
(5) Else return 0.

Clause (0) in the above ensures that 〈hj≤〉X (m0, m1) will freeze if m1 is not in OX .
Clause (1) ensures that if [m0]X = 0 then 〈hj≤〉X (m0, m1) = 1.
Clause (2) ensures that if [m0]X = [m′

0]X + 1 and [m1]X = [m′
1]X + 1 then 〈hj≤〉X (m0, m1) =

〈hj≤〉X (m′
0, m′

1).
Clause (3) ensures that if [m0]X = [m′

0]X + 1 and

[m1]X = lim
n→∞[{e1}X (n)]X ,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 9

then 〈hj≤〉X (m0, m1) = 1 if and only if there is some n with

〈hj≤〉X (m0, {e1}X (n)) = 1.

That is, if [m0]X is a successor ordinal and [m1]X is a limit ordinal, then [m0]X ≤ [m1]X if and only
if [m0]X is less than or equal to one of the elements whose limit is [m1]X .

Clause (4) ensures that if

[m0]X = lim
n→∞[{e0}X (n)]X ,

then 〈hj≤〉X (m0, m1) = 1 if and only if for every n ∈ ω, both {e0}X (n) ↓ and 〈hj≤〉X ({e0}X (n), m1) =
1 hold. That is, if [m0]X is a limit ordinal, then [m0]X ≤ [m1]X if and only if every element of the
sequence whose limit is [m0]X is also less than or equal to [m1]X .

An easy induction then shows that

• If m0, m1 ∈ OX , then 〈hj〉X (m0, m1) = 1 if [m0]X ≤ [m1]X , and 〈hj〉X (m0, m1) = 0 if
[m0]X > [m1]X .

• If m1 ∈ OX and m0
∈ OX , then 〈hj〉X (m0, m1) = 0.
• If m1
∈ OX , then 〈hj〉X (m0, m1) ⇑. �

The next lemma is well known (e.g. see [14, II.5.6]).

LEMMA 2.15
For reals X , Y : ω → 2, there is an n ∈ OY such that X ≤T Y [n]Y (where ≤T is Turing reducibility)
iff X ∈ A(Y).

The following, which is the main result of this paper, shows that feedback reducibility and
hyperarithmetical reducibility are in fact the same thing. This therefore tells us that feedback
machines give us a model for hyperarithmetical reducibility.

THEOREM 2.1
For any X , Y : ω → 2, we have X ≤F Y if and only if X ≤H Y .

PROOF. Suppose X ≤F Y , and let e ∈ ω be such that X (n) = 〈e〉Y (n) for all n ∈ ω. By the
observation immediately after Proposition 2.4 we have 〈TY (e, n) : n ∈ ω〉 ∈ A(Y). The output
〈e〉Y (n) can be computed from TY (e, n), using the admissibility of A(Y). (In a little detail, inductively
on the tree TY (e, n), the computation at a node can be run in ω-many steps, using the results from
the children.) Hence, X ∈ A(Y), and X ≤H Y .

Now suppose X ≤H Y . By Lemma 2.15 we know for some m ∈ OY , X ≤T Y [m]Y . By Lemma
2.13, Y [m]Y ≤F Y . Hence, X ≤F Y . �

We then have the following as an easy corollary of Theorem 2.1.

COROLLARY 2.2
For any X , Y : ω → 2 we have X ≤F Y if and only if X is A(Y)-recursive (i.e. Δ1-definable
over A(Y)).

3 Feedback jumps and feedback semicomputable sets

3.1 Feedback jump

Just as how there is a natural Turing jump (the set of halting computations), there is a natural feedback
jump: the set of non-freezing computations.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

10 An introduction to feedback Turing computability

DEFINITION 3.1
Fix a computable bijection p : ω → ω × ω. Define the feedback jump of X : ω → 2 to be the
function X (f) : ω → 2 such that X (f)(a) = 1 if and only if p(a) = (e, n) and 〈e〉X (n) ⇓.

The following lemma is then immediate.

LEMMA 3.2
If X ≤F Y then X (f) ≤F Y (f). Furthermore, for any X : ω → 2, we have X <F X (f).

PROOF. The proofs are identical to their Turing jump counterparts. �
We will show that the feedback jump is Turing equivalent to the hyperjump. First, though, we

need the notion of a bounded computation. This is analogous to the notion of an iterated infinite
time Turing machine from [8].

LEMMA 3.3
There is a feedback machine 〈b〉X (e, n, a) such that

• 〈b〉X (e, n, a) ⇓ if and only if a ∈ OX ,
• for a ∈ OX ,

〈b〉X (e, n, a) � 〈e〉X (n) ⇔ ht(TX (e, n)) ≤ [a]X

and
• for a ∈ OX ,

〈b〉X (e, n, a) = ‡ ⇔ ht(TX (e, n)) > [a]X ,

where ht returns the height of a tree.

(Implicitly, ‡ is a new symbol. Formally, identify ω with ω ∪ {‡}.)
PROOF. Notice that TX (e, n) is never empty, always having at least the root 〈〉. If that is all of TX (e, n),
then we say the height is 0.

Let 〈b〉X (e, n, a) be the code that does the following:

• Run 〈hj〉X (a, 0). Note that this will freeze if and only if a
∈ OX . If it does not freeze, proceed
as follows.

• Run 〈e〉X (n), except that any time a halting query for (e∗, n∗) is requested, do the following
instead:
– If a = 0 then stop and output ‡.
– If a = 2a′

then ask a halting query of 〈b〉X (e∗, n∗, a′).
∗ If the result is that it diverges then accept ↑ as a response to the halting query about

(e∗, n∗) and continue with the simulation of 〈e〉X (n).
∗ Otherwise, 〈b〉X (e∗, n∗, a′) converges, say to c. If c = ‡ then stop and output ‡;

otherwise, accept ↓ as a response to the halting query about (e∗, n∗) and continue
with the simulation of 〈e〉X (n).

– If a = 3 · 5ea then ask a halting query on the following code:
∗ At stage m let am = {ea}X (m).
∗ If 〈b〉X (e∗, n∗, am) ↑ then converge to 0.
∗ If 〈b〉X (e∗, n∗, am) ↓ and 〈b〉X (e∗, n∗, am)
= ‡ then converge to 0.
∗ If 〈b〉X (e∗, n∗, am) = ‡ then advance to stage m + 1.

∗ If this code converges, then run the halting query for 〈e∗〉X (n∗) and pass the result back
to 〈e〉X (n). Otherwise, stop and output ‡.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 11

The intuitive idea of the above code is that at each stage of the computation, we keep track of a
bound on the size of the computational witness. Then, whenever a halting query is made of a pair
(e∗, n∗), instead of asking it about (e∗, n∗), we instead ask it about 〈b〉X (e∗, n∗, a∗), where a∗ is some
smaller bound on the computational witness. Then if we can find such an a∗, we simply proceed
as normal. But if we cannot, then we return ‡, which signifies that our computational witness is
too large. �
THEOREM 3.1
For any X : ω → 2, we have X (f) ≡T OX .

PROOF. It follows directly from Lemma 2.13 that OX ≤T X (f).
To show that X (f) ≤F OX , notice that by Lemma 3.3 and Proposition 2.4,

〈e〉X (n) ⇓ if and only if (∃a ∈ OX)〈b〉X (e, n, a)
= ‡.

The latter is Σ1-definable over A(X). So X (f) is Σ1-definable over A(X) and hence Turing reducible
to OX . �

3.2 Feedback semicomputability

DEFINITION 3.4
A set B ⊆ ω is feedback semicomputable (in X) when there is an e ∈ ω such that b ∈ B ⇔
〈e〉X (b) ⇓.

In particular, it is easy to see that for any X , {(e, n) : 〈e〉X (n) ⇓} is feedback semicomputable.
Feedback semicomputable sets look like the analogues of computably enumerable sets, and this is

confirmed by the following.

PROPOSITION 3.5
A set B ⊆ ω is feedback semicomputable in X if and only if it is Σ1-definable over A(X), i.e.
in Π1

1 (X).

PROOF. Suppose b ∈ B ⇔ 〈e〉X (b) ⇓. By Lemma 2.3 and Proposition 2.4, b ∈ B if and only if there
is a function in A(X) witnessing the well-foundedness of TX (e, b), which provides the desired Σ1
definition.

Now suppose b ∈ B is Σ1-definable over A(X). Thus, B ∈ Π1
1 (X). Hence, there is a relation

RB ⊆ ω<ω × ω computable in X satisfying

b ∈ B ⇔ ‘RB(·, b) is well founded′.

Let 〈e∗〉X (b, σ , i) (where σ ∈ ω<ω and i ∈ ω) be the following program:

• Make a halting query about the program which searches for the least j ≥ i such that RB(σ j, b)

holds.
• If the answer comes back ‘divergent’ then stop.
• If the answer comes back ‘convergent’ then find the least such j. Make a halting query about

〈e∗〉X (b, σ j, 0). Then run 〈e∗〉X (b, σ , j + 1).

Let 〈e〉X (b) be 〈e∗〉X (b, ∅, 0). By construction, TX (e, b) is RB(·, b) (with a few extra nodes thrown
in, by the first step, which do not affect well-foundedness). So 〈e〉X (b) ⇓ if and only if RB(·, b) is
well founded, which holds if and only if b ∈ B. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

12 An introduction to feedback Turing computability

COROLLARY 3.6
A set is feedback computable in X if and only if both it and its complement are feedback
semicomputable.

It is worth mentioning that the argument that a set is computable if and only if it and its
complement are computably enumerable does not lift to this context. Is there a way to uniformly
transform a pair (e0, e1) into a code e where e0 (resp. e1) witnesses the feedback semicomputability
of B (resp. B’s complement) and e(B) witnesses the feedback computability of B?

We next show that the range of any total feedback computable function is a feedback computable
set. Hence, unlike with computably enumerable sets, not every feedback semicomputable set is the
range of some total feedback computable function.

LEMMA 3.7
If (∀n)〈e〉X (n) ⇓ and b ∈ B ⇔ (∃n)〈e〉X (n) = b, then B is feedback computable.

PROOF. Let e∗ be such that 〈e∗〉X (b) is the program that calls e on each n ∈ ω and halts if and only if
b is ever returned. Note that 〈e∗〉X (b) never freezes, by our assumption that (∀n)〈e〉X (n) ⇓. Now let
f be such that the program 〈f 〉X (b) returns 1 if 〈e∗〉X (b) halts and 0 otherwise. Then 〈f 〉X is a total
feedback computable function that computes the characteristic function of B. �

4 Turing computability as feedback

Our purposes here are twofold: substantive and methodological. For the former, we want to do the
inverse of the previous sections. Whereas earlier we answered the question, what is feedback Turing
computability, now we want to answer the question, what is Turing computability the feedback of.
Regarding the latter, we would like to see how feedback can be done when the computation is not
thought of as step-by-step. Until now, the notions of computation for which feedback has been
worked out, namely Turing and infinite time Turing, are thought to run by one step proceeding
after another. This leads to a very simple feedback model. When a halting query is made, a new
entry is made into the tree of sub-computations, and whenever that query is answered, the answer is
passed to the querying instance, and the computation resumes. This works fine, but there are other
models of computation. Even within the Turing algorithms, there are different kinds of programming
languages, which capture differing computational paradigms. The step-by-step model captures the
run of an imperative program. Functional and declarative programming, in contrast, run differently.
So it might turn out to be useful for the study of machine computability to see how feedback could
be implemented in a different context, to say nothing of other more abstract uses in mathematics,
which considers computations way beyond Turing procedures.

For these reasons, we consider feedback primitive recursion. We will show that it yields exactly
the (partial) Turing computable functions. Furthermore, they are not presented in an imperative style,
but rather functional, as are the recursive functions. (For the sake of definiteness, we use as our
reference for the primitive recursive and the recursive functions [19].) This naturally leads to a nested
semantics, as is most easily seen in the definition of Kleene’s T predicate [19, Theorem 7.2.12]: a
witness to a computation {e}(x) exists only when the computation converges.

When turning to feedback p.r., one is quickly struck by two differences to feedback Turing. For
one, all of the base functions are total. One might immediately ask, does this mean that all of the
halting queries should come back with ‘yes’? That is not the case, as evidenced by the self-querying
function. That is, there is still a function which asks the halting oracle whether it itself halts. This
represents a freezing computation. What it does mean, as we shall see, is that there are no divergent

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 13

computations, no computations that loop forever. Every computation either halts or gets stuck at
some finite step, without being able to proceed. One could then ask whether anything has been gained
by allowing for feedback. After all, if a halting query is freezing, then the computation itself freezes,
and if the halting query is not freezing, then we already know the answer. There are two possible
rejoinders. One is that there is information in the distinction between the freezing and the non-
freezing computations, providing a certain kind of enumerability, akin to computable enumerability.

The other rejoinder also speaks to the other difference with feedback Turing computability. For
Turing computability, an oracle is a set. For primitive recursion, the closest thing to an oracle is
a function. That is, the primitive recursive functions are those generated by some base functions,
closing under certain inductive schemes. If you want to include more, you would most naturally
include another function f among the base functions, thereby getting the functions primitive
recursive in f . So one is led to consider a halting oracle that returns not whether a computation halts
(especially since we know it always does, when non-freezing), but rather the value of a computation.

With these considerations as motivation, we are now prepared to formalize the notions involved.

DEFINITION 4.1
For a partial function f (from ω to ω), the f -primitive recursive functions are those in the smallest
class containing f , the constant functions, projection and successor, and closed under substitution and
primitive recursion (cf. [19, Section 7.1]). Implicitly, when defining g(−→n), if any of the intermediate
values are undefined, then so is g(−→n).

We will need to use standard integer codings of the f -p.r. functions. Notice that these names can
be defined independently of any choice of f . One can simply introduce a symbol for f , leaving it
uninterpreted, and consider all the names so generated. If e is such a code, we will refer to e as
an oracle p.r. index. We will use the standard notation from computability theory {e}f (−→n) for the
application of the eth oracle p.r. function, with oracle f , to a tuple of inputs. This makes sense even
in a context with codes for non-p.r. functions, since it is easily computable whether e codes an oracle
p.r. function (and if not {e}f (−→n) can be given any desired default value).

THEOREM 4.2
There is the smallest set H ⊆ ω and unique function h : H → ω such that, for all 〈e, −→n 〉 ∈ H ,

• if e is not an oracle p.r. index, or if arity(e)
= arity(−→n), then h(e, −→n) = ERROR (some default
value),

• else h(e, −→n) � {e}h(−→n).

PROOF. H is the least fixed point of a positive inductive definition. (For more background, see
[2, 7, 14].) �

DEFINITION 4.3
The feedback primitive recursive functions are the h-p.r. functions, with the h from the preceding
theorem.

THEOREM 4.4
The feedback primitive recursive functions are exactly the partial computable functions.

PROOF. In one direction, we must show only that h is computable. The least fixed point construction
of h(e, −→n) � {e}h(−→n) is naturally given by a finitely branching tree, with the finite branching
corresponding to the substitution and primitive recursion calls. The construction of the tree is

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

14 An introduction to feedback Turing computability

uniformly computable in e and −→n . If the tree is infinite then it is ill founded, and h(e, −→n) � {e}h(−→n)

is undefined. If not, then the value is computable.
In the other direction, we will use the fact that if x is a tuple coding finitely many steps in a Turing

computation of {e}(−→n), then it is p.r. in that data either to extend x by one step of the computation,
for which we use the notation x+, or recognize that x ends in a halting state. Consider the feedback
p.r. function f (e, −→n , x) which returns

• ERROR, if x is not an initial run of {e}(−→n), else
• the output of the computation, if x ends in a halting state, else
• h(f , 〈e, −→n , x+〉).

Then {e}(−→n) = f (e, −→n , 〈〉). �
There remains the question of what would happen if, instead of considering h to ω, returning the

output of a computation, we took h to tell us merely that a computation converged. This is the goal
of what follows.

THEOREM 4.5
There is the smallest set H ⊆ ω such that, for h the unique function h : H → 1, H = {〈e, −→n 〉 | e is
an oracle p.r. index, arity(e) = arity(−→n) and {e}h(−→n) converges}.
PROOF. H is the least fixed point of a positive inductive definition. �

DEFINITION 4.6
The convergence feedback primitive recursive functions are the h-p.r. functions, with the h from
the preceding theorem.

LEMMA 4.7
Let f and g be partial functions and e an oracle p.r. index. If f ⊆ g then {e}f ⊆ {e}g.

PROOF. An easy induction on the definition of {e}. �
COROLLARY 4.8
Every convergence feedback p.r. functions is a sub-function of a primitive recursive function.

PROOF. Letting 0 be the constant function with value 0, note that h ⊆ 0 (for h from the previous
theorem). Then {e}h ⊆ {e}0, and of course 0 is p.r. �
THEOREM 4.9
The convergence feedback primitive recursive functions are exactly the sub-functions of the p.r.
functions with computably enumerable domains.

PROOF. For e a feedback p.r. index, the computations of {e}h(−→n) for the various −→n ’s can be
computably simulated and dovetailed, making the domain of {e}h enumerable.

In the other direction, given a c.e. set W , let w be a Turing index with domain W . Consider the
convergence feedback p.r. function f (w, −→n , x) which returns

• ERROR, if x is not an initial run of {w}(−→n), else
• 0, if x ends in a halting state, else
• h(f , 〈w, −→n , x+〉),

where x+ is as above. Then −→n ∈ W iff f (w, −→n , 〈〉) = 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 15

Finally, for e a p.r. index, let g(−→n) be

{e}(−→n) · (1 + h(f , 〈w, −→n , 〈〉〉)). �

5 Feedback on other sub-recursive classes

The choice of primitive recursion in the previous section was really just based on the convenience of
having a particular, concrete notion of computation to work with that was also well known. Here we
show that a similar result is obtained when starting from any of a number of families of computable
functions.

DEFINITION 5.1
An indexed collection is a pair (e, E) such that the following hold.

• E ⊆ ω, which can be thought of as codes for Turing machines in the collection.
• e ∈ E is such that (∀n){e}(n) ↓ and E = {n : {e}(n) = 0}. Hence, e is a code for a Turing

machine which picks out elements of E.

In other words, an indexed collection is a computable collection of codes for Turing machines
along with a witness to its computability which is itself one of the Turing machines in the collection.

The constructions below make use of indexed collections where all elements compute total
functions, moreover with respect to any oracle. We use two oracles, the first of which allows for
an arbitrary relativization, and the second is taking the role of a potential feedback oracle.

DEFINITION 5.2
An indexed collection (e, E) is absolutely halting if for all f ∈ E,

(∀X , Y : ω → 2) (∀n ∈ ω) {f }X ,Y (n)↓ .

So an indexed collection is absolutely halting if every element of E, when considered as code for
a Turing machine with two oracle tapes, always halts no matter the oracle or the input. In particular,
a standard diagonalization argument shows that there can be no universal function for an absolutely
halting indexed collection.

An easy example of such a collection is given by programming languages that are restricted to be
total but not necessarily Turing complete.

EXAMPLE 5.1
As is well known (e.g. by considering the programming language LOOP [15]), the primitive recursive
functions are exactly those which can be computed with bounded loops (i.e. loops whose length is
specified in advance). Let E be the collection of natural numbers that code programs which only
use these operations. It is easy to see that there is a primitive recursive program e which checks its
input to see if it represents code for such a program. Hence, (e, E) is an absolutely halting indexed
collection.

Another example of such collections comes when the resources of computation are restricted, but
in a way that is not so severe that a computation cannot check to confirm when a code satisfies the
restrictions.

EXAMPLE 5.2
Suppose X is any class of computable functions from ω to ω satisfying the following.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

16 An introduction to feedback Turing computability

• X is closed under composition, pairing and projections.
• There is a subset EX ⊆ ω such that for all α ∈ X there is an fα ∈ EX such that {fα} computes α.
• The characteristic function of EX is in X .
• If α ∈ X , then for all a, b ∈ ω the map n → α(n) + an + b is in X as well.

Then the collection of functions which run in time at most X is an absolutely halting indexed
collection. In particular, the collection of machines which run in linear time, polynomial time or
exponential time are all absolutely halting indexed collections.

Given an absolutely halting family, and any fixed oracle X , one can define the least fixed point for
Y , and the trees of sub-computations, exactly as above for the full collection of Turing computations.
Intuitively, an (e, E)-feedback computation freezes if it makes a feedback call on code, which makes
a feedback call on code, etc., in a way that never terminates. In this situation, there ceases to be a
unique way to determine the value of the computation.

The one difference is that instead of the feedback oracle returning just↓ and↑, it is supposed to
return the value of the called computation, just as in the previous section for primitive recursion. In
the context of feedback Turing machines, there is no computational difference between simply being
told that code for a feedback machine halts and being given the halting output, since the Turing
machine could, when the code it queried halts, simply simulate that code. However, in the context
of (e, E)-feedback machines, not only is there no assumption of a universal element in the indexed
collection (which would make simulation of code possible), but also there is an assumption that all
code is absolutely halting, i.e. will halt no matter what answers are given to the feedback queries
(so long as they do not freeze). Hence, in this case, simply asking halting queries provides no new
information (as the answer will always be ‘yes’), and further, there may be no way to simulate the
query to discover the output at halting. Because of this, it is important in this implementation to not
only answer whether the queried code halts but also give the resulting output.

EXAMPLE 5.3
Let f be code that does the following in order.

• Ask a feedback query on (f , 0).
• If the feedback query returns 0, then return 1. If the feedback query returns 1, then return 0.

Note that, when considered as a Turing machine, the code f halts on all oracles. However, for any
indexed collection (e, E) with f ∈ E, the code f must freeze as an (e, E)-feedback machine.

The following is then easy to check by induction.

LEMMA 5.3
Suppose e is absolutely halting and f , g are well-founded computational trees for (e, n). Then

• f = g, and
• f is finitely branching.

This then motivates the following definition.

DEFINITION 5.4
The feedback machine e is said to converge on input n, written 〈e〉(n) ⇓, if there is a well-founded
computation tree for (e, n). If the output of computational tree is m, then one writes 〈e〉X (n) = m.
Otherwise, e is said to freeze on n, written 〈e〉X (n)⇑.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 17

We are now in a position to prove our goal theorem.

THEOREM 5.5
Suppose (e, E) is an absolutely halting indexed collection containing the linear-time functions. Then
the functions computable from a feedback machine from this collection are exactly the Turing
computable functions.

PROOF. For the left-to-right direction, we will define a Turing machine m such that, for all f ∈ E,

(a) {m}X (f , n)↓ if and only if 〈f 〉X (n)⇓ and
(b) if {m}X (f , n)↓, then {m}X (f , n) = 〈f 〉X (n).

Define m recursively, as follows. First, have m mimic 〈f 〉X (n) until a feedback query is made, say
for (g, r). Then call {m}X (g, r) and continue to mimic 〈f 〉X (n) with the call to the feedback query
returning {m}X (g, r). When {m}X (f , n) mimics 〈f 〉X (n) halting, then return the value it halted at.

Part (a): First note that if {m}X (f , n) converges, then {m}X (f , n) traces out a computational tree
for (f , n) and so 〈f 〉X (n)⇓. But by Lemma 5.3, (f , n) has a finite computational witness if and only
if all of its computational witnesses are finite, if and only if 〈f 〉X (n) ⇓. Therefore, as {m}X (f , n) is
tracing out the computational witness, {m}X (f , n) halts whenever 〈f 〉X (n)⇓.

Part (b): This is immediate from the definition of the output of a computational.
(Note the use made here of the fact that f is absolutely halting, i.e. that no matter the result of oracle

or feedback queries, the computations of f always halts (because f ∈ E). Without this hypothesis,
one cannot guarantee that the computational witnesses are finitely branching, and hence the Turing
machine which mimics it might run forever despite it not freezing.)

In particular, this implies that every total function which can be computed by an (e, E)-feedback
machine is in fact computable, that every set which is the domain of a partial (e, E)-feedback machine
is computably enumerable and that every set which is the range of a total (e, E)-feedback machine is
computably enumerable.

In the other direction, for every Turing machine {f }X we will describe a feedback machine f +
such that

(a) {f }X (n)↓⇔ 〈f +〉X (〈n, 〈〉〉)⇓ and
(b) if {f }X (n)↓ then {f }X (n) = 〈f +〉X (〈n, 〈〉〉).
Let f + work as follows. It decomposes its input into a pair 〈n, x〉. It views x as the state information

of a Turing machine. If x is in a halting state, f + returns the contents of the output tape. Else f +
computes one step of the computation of f with input n and state x, to produce a new state x+. Then
f + makes a feedback oracle call on 〈f +, 〈n, x+〉〉 and returns whatever answer it gets from the oracle.

It is then immediate that f + has the desired properties. �

6 Parallelism

A variant of feedback, as identified in [8], is parallel feedback. Imagine having an infinite,
parametrized family of feedback machines and asking, ‘does any of them not freeze?’ It is not
clear that this could be simulated by the sequential feedback machines from above. Perhaps this
is surprising, because the situation is different for regular Turing machines. With them, you could
use a universal machine to run all of the Turing machines together, by dovetailing. Indeed, most of
the notions of computability studied by mathematical logicians have universal machines, which may
well explain why they have never, as far as we know, studied parallelism, in contrast with complexity
theorists and computer scientists, where parallelism is of great importance (for instance in P vs.
NP or in quantum or distributed computing). With feedback, the trick of simulating parallelism

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

18 An introduction to feedback Turing computability

by sequential computation does not work. For sure, you could start to dovetail all of the feedback
computations. But as soon as you make a freezing oracle call, the entire computation freezes.
Similarly, for a parallel call, one might first think of going down the line until one finds a non-
freezing machine, and certainly a feedback machine could ask the oracle ‘does the first in the family
not freeze?’ But if you are unlucky, and the first machine does freeze, then so does your computation
right then and there; if a later one does not, you will never get there to find out.

For parallel feedback infinite time Turing machines as explored in [8], it was left open there
whether or not they yield more than sequential FITTMs. That unhappy fact notwithstanding, we
identify below several versions of parallelism and determine whether in fact they do yield more
than their sequential counterparts, in most cases analyzing their computational strengths completely.
Since there is this variety in the kinds of parallelism, including some that we do not study here, it
is not yet clear which are most fruitful. By analyzing some of them, we hope to bring this issue
along.

So, what should be the oracle’s response to the question whether, for some n, 〈e〉X (n) does not
freeze? One possibility is a straightforward yes-or-no answer. We do not want to go there just now:
as a simple example of this, one could simulate non-parallel oracle calls, by asking the oracle about
〈e〉X (n) where in the program 〈e〉 the input n is never examined, and thereby answer the question
whether a feedback computation freezes or not. This is of interest but would take us too far afield
for now. A related option is just to answer ‘yes’ when that is the truth and to freeze otherwise. This
is useless, since one could not thereby compute anything new: if a computation does not freeze, then
one knows without needing to make an oracle call that all of the oracle calls would have to answer
‘yes’ (lest the computation freeze).

Hence we will have our parallel machines return at least some witnessing input n to this non-
freezing, some n such that 〈e〉X (n) does not freeze. Which n? The most natural choice seems to be
to minimize the ordinal height of the tree of sub-computations, in case of a tie returning the smallest
integer (in the natural ordering of ω) of that bunch. This is the topic of the next section, where it is
shown that it provides no increase in computational power over sequential feedback.

In the section after that, the option considered is to punt on the determinism. Allow the oracle to
return non-deterministically any n such that 〈e〉X (n) does not freeze. There is a choice to be made
here. For some n’s that might be returned, the current computation could freeze, and for others not.
So it is possible that some runs of a computation freeze and others not. So when we say that an oracle
call of e will return ‘any n such that 〈e〉X (n) does not freeze,’ does that mean that some run does not
freeze or that all runs do not freeze? Both notions seem interesting. We work here with the former,
leaving the other for future investigation.

Since our efforts with non-deterministic parallelism end up being only partially successful, we
then return to determinism, by distinguishing a canonical choice of n, albeit slyer than the one above.

Finally, we will have the oracle return not only some n with 〈e〉X (n) not always freezing but
also some possible output of 〈e〉X (n). To be sure, one could simulate the calculation of 〈e〉X (n)

within the current computation instead, so nothing is gained or lost by doing this when the output
is finite. The difference emerges when a computation diverges, meaning the output is ↑. For the
part of the construction below that makes essential use of the parallelism, we will not need the
output to be handed to us. The reason we are taking it anyway is to combine the parallel calls
with the halting queries. That is, to simulate a halting query, one need only ask about a family
of computations 〈e〉X (n) that do not depend on n. If a natural number is returned as an output,
then the original computation converges; if ↑, then it diverges. A finer-grained analysis could
have halting queries separate from parallel calls, the latter of which return only a non-freezing
input.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 19

Yet another option is to have a possible response give only the output 〈e〉X (n) and not the input n,
from which n is not obviously computable; this strikes us as less natural, and so we mention it only
in passing, to be thorough.

In the following, we recycle notation, by using 〈e〉(n) ambiguously to refer to any notion of
feedback Turing computation, whether sequential or parallel, of any of the stripes listed above, the
choice of which we hope is clear from the context.

7 Absolutely deterministic parallelism

The idea here is that the oracle is supposed to return the ‘least’ n leading to non-freezing, by some
measure. The measure to be used is primarily that of ordinal height of a computation. That is, n
minimizes the height of the tree of sub-computations.

The tree D(e,n)
α (D for determinism) is defined inductively on α, simultaneously for all e, n, as

is whether rank(e, n) = α. Assume this is known for all β < α. Start the run of 〈e〉(n), which is
considered as taking place at the root of D(e,n)

α . Suppose at some stage of that computation, an oracle
call e′ is made. Then a child of the root is established, to the right of any previous children, for the
outcome of this oracle call. Suppose there is an n′ such that rank(e′, n′) < α. Then let n′ be chosen
to minimize this rank; if there is more than one such, then among those pick the least in the natural
ordering of ω. The tree D(e′,n′) = D(e′,n′)

rank(e′,n′) is placed at the child, and the value 〈e′〉(n′) is returned
to the main computation, which then continues. If there is no such n′, then the computation pauses,
and the construction of D(e,n)

α is finished.
If no oracle calls pause, then by this stage α the computation 〈e〉(n) is seen to be non-freezing;

D(e,n) can be taken to be D(e,n)
α and is the tree of sub-computations; rank(e, n) ≤ α; and the value of

〈e〉(n) is the content on the output tape if the main computation ever entered into a halting state, else
↑ if it did not.

It is not hard to show that the rank of a computation is the ordinal height of its tree of sub-
computations. For a freezing computation, i.e. one that remains paused however big α is taken to
be, we do not (yet) have a good notion of a tree of sub-computations. For the eternally paused node,
which is trying to run, say, e′ in parallel, it is paused because for each n′ the trees D(e′,n′)

β remain
paused, say at e′′

n′ . This could be viewed as countable branching from e′, but of course this branching
is different from that in D(e,n): in the latter tree, the branching shows the sequential computation,
and the unsuccessful parallel runs are suppressed; from e′, the branching represents all the parallel
attempts. Of course, from e′′

n′ , the same story continues.
The problem with this notion is that it does not get us anything new.

THEOREM 7.1
If 〈e〉(n) does not freeze, then D(e,n) ∈ LωCK

1
.

PROOF. By induction on the ordinal height of D(e,n). Consider the sub-trees D(e′,n′) that occur on
the top level (i.e. children of the root) of D(e,n). Inductively, they are all in LωCK

1
. If there are only

finitely many of them, then the ordinal α by which they all appear is easily less that ωCK
1 , since the

latter is a limit ordinal. D(e,n) is then easily definable over Lα . If there are infinitely many, then the
admissibility of ωCK

1 must be used to get α to be strictly less than ωCK
1 . The set of such D(e′,n′)’s

is the range of a Σ1 definable function f with domain ω, since the run of 〈e〉(n) is simply defined,
and (mod the oracle calls) continues for ω-many steps; f (k) is then the sub-tree D(e′,n′) for the kth
oracle call. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

20 An introduction to feedback Turing computability

8 Non-deterministic parallelism

Since choosing one canonical output to a parallel call did not work out so well, let us go to other
extreme and allow all possible answers. As with sequential feedback machines, we will formalize
this in two ultimately equivalent ways, first as a positive inductive operator, of which we take the least
fixed point, and then via a canonical tree, albeit one different from the tree of sub-computations.

8.1 Semantics

In the following definition, think of H(e, n) as our current belief of the set of possible outputs for
〈e〉X

H (n).

DEFINITION 8.1
Given X : ω → 2 and H : ω × ω → P(ω ∪ {↑}), a legal run of 〈e〉X

H (n) is (some standard encoding
of) a run of a Turing machine calculation of {e}X

H (n), in which, whenever a halting query f is made,
the answer is of the form 〈m, k〉, where k ∈ H(f , m). (Implicitly, if H(f , m) is always empty, then
the computation freezes at this point.) If the last state of a finite legal run is a halting state, then the
content on the output tape is the output of that run. If the legal run is infinite, then ↑ is the output of
that run. A legal output is the output of a legal run.

Notice that the set of legal runs is not absolute among models of ZF. Suppose, for instance, that
H(f , m) = {0, 1}. Consider a computation that just keeps making the halting query f . Then both
〈m, 0〉 and 〈m, 1〉 are always good answers, so the legal runs depend on the reals in the model.
Nonetheless, the set of legal outputs is absolute. To see this, we will need to view the computation
via an associated tree, the tree of runs. The tree of runs is not to be confused with the tree of
sub-computations, so central in developing feedback. The tree of sub-computations summarized the
sequential running of an algorithm, which can be viewed as traversing that tree, depth-first, from
left to right. In contrast, the tree of runs captures the non-determinism. The splitting at a node is the
many parallel runs of an oracle call. A single run of the algorithm is a path through the tree. There
is no room in this tree for the sub-computations: if a node in the tree of runs represents 〈e〉(n) = k,
the witness to that last computation is not contained in the tree but rather must be found in the tree
of runs for 〈e〉(n). The tree of sub-computations is hidden in the step from a node with end ê to its
children, or to its lack of children, which can be determined only by building ê’s own tree of runs.

DEFINITION 8.2
The tree of runs is built from the root (thought of as being on the top) downwards, or, equivalently,
as the computation proceeds, starting from the beginning, step 0. Each node has a start, meant to be
the state of the computation when that node becomes active, and an end, meant as the state of the
computation when the node becomes inactive. The start of the root is the program (e, n) being run.
What the end of the root, or any other node for that matter, is depends. If continuing the computation
from the start of the node leads to an oracle call, say ê, then the end of the node is this ê; as need be,
we may assume that the state of the computation at that point is also recorded in the node. If no such
oracle call exists, then there are two possibilities. One is that after finitely many steps from the start
of the node the computation has entered into a halting state. Then the end of the node is this halting
state, and the content of the output tape is an output of the main computation. The other possibility
is that the computation from the node’s start never enters into a halting state, and so it diverges. Then
the end of the node is this divergence, symbolically ↑, which is an output of the main computation.

Nodes that end in a halting state or with divergence have no children. A node that ends with ê may
have children. For any natural number n̂, and any k ∈ H(ê, n̂), there is a child with start (ê, n̂, k),

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 21

and which continues the computation of its parent with that start as the answer to the oracle call.
Implicitly, and now explicitly, if there are no such n̂ and k, then that node has no children, and the
computation freezes there.

The tree outputs consist of the following: for each terminal node in the tree of runs ending in a
halting state, the contents of the output tape; for each terminal node ending in ↑, ↑ itself; and if the
tree of runs is ill founded, ↑.

LEMMA 8.3
The legal outputs of 〈e〉X

H (n) are the same as the tree outputs and are absolute among all standard
models of ZF.

PROOF. A legal run is exactly a maximal path through the tree of runs, which is itself absolute.
Such a path is either finite or infinite. The finite paths are absolute, as they correspond to terminal
nodes (leaves). A finite run ends either in a halting state, and so gives a finite output, or by asking a
halting query with no answer, and so thereby freezes. Hence, the integer legal outputs are absolute.
An infinite legal run is given by either a finite path ending in ↑ or an infinite descending path. While
the set of such paths is not absolute, whether the tree is well founded or not is absolute among all
standard models, so whether ↑ is a legal output is absolute. �

DEFINITION 8.4
For any X : ω → 2 and H : ω ×ω → P(ω ∪{↑}) let H+(e, n) be the set of legal outputs of 〈e〉X

H (n).

LEMMA 8.5
There is a smallest function H such that H = H+.

PROOF. The operator that goes from H to H+ is a positive inductive operator: as any H(f , m)

increases, so does the set of legal runs. So the least fixed point exists and is the desired H . �

DEFINITION 8.6
〈e〉X (n) refers to 〈e〉X

H (n), with H as from the lemma above.

Because the semantics is given by a least fixed point, ordinal heights can be associated with these
computations (when non-freezing). Ultimately, we will define the height of an output. But we must
be careful here: because of the non-determinism, there could be wildly different ways to arrive at
the same output. The simple solution to that would be to define the height of an output as the least
ordinal among all the ordinals given by the different ways to get to that output. To do this right, one
must define the height of a run of a computation, or, actually, the height of a hereditary run.

A hereditary run of a non-freezing computation is a run of that computation, along with an
assignment, to each oracle call in the run (i.e. node in the run with end ê), with answer (ê, n̂, k) (i.e.
the child in this run of that aforementioned node has start (ê, n̂, k)), a hereditary run of (ê, n̂) with
output k.

The height of a hereditary run is defined inductively as the least ordinal greater than the heights
of all of the sub-runs, meaning the hereditary runs assigned to oracle calls along the way.

The height of a computation 〈e〉X (n) = k is the smallest height of any hereditary run of such a
computation. We will want to show that this is absolute among all transitive models.

Define T (e,n)
α , the sub-tree of the tree of runs of (e, n) which contains only those children of rank

less than α, inductively on α.
For α = 0, this tree contains only the root; if 〈e〉X (n) makes an oracle call then T (e,n)

0 does not
witness any output, else it witnesses either some finite k or ↑ as an output.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

22 An introduction to feedback Turing computability

More generally, if β < α, then T (e,n)
β ⊆ T (e,n)

α . Furthermore, if a node in T (e,n)
α ends with an oracle

call ê, and there are β < α, n̂ and k (including ↑) such that T (ê,n̂)
β witnesses that k is an output, then

the child with start (ê, n̂, k) is in T (e,n)
α .

The outputs witnessed by T (e,n)
α are the outputs of any terminal node (i.e. k if a node ends in a

halting state with output k, or ↑ if a node ends with ↑), and also ↑ if T (e,n)
α is ill founded.

Notice that the height of 〈e〉X (n) = k is at most α iff T (e,n)
α witnesses k as an output.

PROPOSITION 8.7
The height of 〈e〉(n) = k is absolute among all transitive models.

PROOF. Inductively on α, the trees T (e,n)
α and the outputs they witness are absolute. The outputs

witnessed by terminal nodes are clearly absolute, individual nodes being finite, and for divergence,
well-foundedness is absolute for well-founded models. �

8.2 Functions and ordinal notations

Ultimately we would like to characterize just what is parallel feedback computable. In the context of
multi-valued functions, what this means should be clarified.

DEFINITION 8.8
A function f is parallel feedback computable (pfc) (from X) if there is an index e such that 〈e〉X (·)
is single valued and 〈e〉X (n) = f (n). A set is pfc if its characteristic function is. Notice that in both
cases 〈e〉X (n) could still have freezing legal runs.

We would like to know what functions are pfc and what relations are pfc.
While it should be no surprise that functions offer some benefits over relations, let us bring out

a particular way that happens. Consider the index e which on any n returns both 0 and 1. (In more
detail, let p be the parity function: {p}(n) is 0 when n is even, 1 when odd. Let 〈e〉X (n) make a
parallel call to p and return its output.) Notice that the characteristic function of any set at all is given
by some run of e. So if you are non-deterministically searching for, say, the truth set of some Lα ,
there may well be a pfc function that gives you what you want, but you cannot distinguish that from
this e. And it does you no good to pick one non-deterministically, because if you pick e, when you
go to use it again later, you might get different answers.

Since we expect that the analysis of this will involve computing initial segments of L, we might
have need of notation for ordinals, which can be defined à la Kleene’s O. In honor of this history, and
since the current subject is parallelism, we will call it P . Because of the non-determinism present,
there are several options for how this can be defined (in the limit case).

DEFINITION 8.9
Functional P (f P) is defined inductively:

• 0 ∈ f P and ord(0) = 0.
• If a ∈ f P then 2a ∈ f P and ord(2a) = ord(a) + 1.
• If 〈a〉(·) is a function, and for all n we have 〈a〉(n) ∈ f P , then 3 · 5a ∈ f P and ord(3 · 5a) =

supn{ord〈a〉(n)}.
DEFINITION 8.10
Strict P (sP) is defined inductively:

• 0 ∈ sP and ord(0) = 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 23

• If a ∈ sP then 2a ∈ sP and ord(2a) = ord(a) + 1.
• If 〈a〉(·) is a total relation, and for all n and any possible output kn of 〈a〉(n) we have kn ∈ sP ,

and moreover ord(kn) is independent of the choice of kn (for a fixed n), then 3 · 5a ∈ sP and
ord(3 · 5a) = supn{ord(kn)}, where kn is any output for 〈a〉(n).

DEFINITION 8.11
Loose P (lP) is defined inductively:

• 0 ∈ lP and ord(0) = 0.
• If a ∈ lP then 2a ∈ lP and ord(2a) = ord(a) + 1.
• If 〈a〉(·) is a total relation, and for all n and any possible output kn of 〈a〉(n) we have kn ∈ lP ,

and supn{ord(kn)} is independent of the choice of kn’s, then 3 · 5a ∈ lP and ord(3 · 5a) =
supn{ord(kn)}, where kn is any output for 〈a〉(n).

Clearly, f P ⊆ sP ⊆ lP .

PROPOSITION 8.12
Every pfc well-ordering is isomorphic to one given by a functional ordinal notation.

PROPOSITION 8.13
If Y is pfc then OY is pfc and ωY

1 has a functional ordinal notation.

PROOF. From the subsection on feedback semicomputability, there is a (sequential, hence also
parallel) machine f which does not freeze (and WLOG outputs 1) on input n iff n ∈ OY .

To handle the case of those n
∈ OY , consider the following computation g. If at any time it
considers a number not of the form 0, 2e or 3 · 5e, then g outputs 0, because it is immediately clear
that number is not in OY . When considering 0, g freezes, because 0 is in OY . When considering
2e, g moves on to e. When considering 3 · 5e, first g checks whether {e}Y is total. If not, then the
machine halts. Else it picks an n non-deterministically and then continues the computation from that
n. This g, when run on any n ∈ OY , will always freeze, because the machine will eventually consider
0. When started on some n
∈ OY , it is possible that some legal runs will freeze too, depending
upon the non-deterministic choice made. But there will be at least one legal run that does not freeze:
since n
∈ OY , we know n
= 0; if n = 2e then e
∈ OY ; else if n is not of the form 3 · 5e then the
computation halts; else there is some k such that {e}Y (k)
∈ OY , so the computation can continue.
Hence, there is a legal output (either 0 or ↑).

Now consider the machine 〈h〉Y (e, i), which, for i even, returns 〈f 〉Y (e), and, for i odd, returns
〈g〉Y (e). Running 〈h〉Y (e, ·) in parallel, an even i is returned iff e ∈ OY , and an odd i is returned iff
e
∈ OY . In the former case, output 1, in the latter output 0.

From a computation of OY , it is easy to get an ordinal notation for ωY
1 . �

PROPOSITION 8.14
If α has a loose ordinal notation then the Σ1 truth set Trα of LωCK

α
is pfc (where, as a function of α,

ωCK
α enumerates the closure of the set of admissible ordinals).

PROOF. Let e ∈ P be a fixed representation of α. By the recursion theorem, we can do this
inductively on the ordinal height of f <P e.

If f = 0, then Trf = ∅.
If f = 2g, then Trf = OTrg from the previous proposition. (It is standard hyperarithmetic theory

that OX is Turing equivalent to the Σ1 truth predicate of LωCK
1

.)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

24 An introduction to feedback Turing computability

If f = 3 ·5g, then the truth or falsity of any Σ1 assertion φ in the limit structure can be determined
as follows. Let n run through ω, and see whether φ is true according to each Trg(n) in turn. If you
ever find such an n making φ true, halt, else continue. Using feedback, ask whether that computation
halts. If so, then φ is true in the limit structure; else φ is false there. �

Because of that last proposition, it seems that the loose notations are ultimately the best, since
they seem to capture the f lavor of this kind of computation.

PROPOSITION 8.15
The characteristic function of T (e,n)

α (along with the start and end of each node) is computable from
a loose ordinal notation for α, as are the outputs witnessed by T (e,n)

α .

With a bit of work, this could be presented as a corollary of the previous proposition, since T (e,n)
α

and its outputs are definable over LωCK
α

.

PROOF. By a simultaneous induction on ordinal notations.
The only notation for the ordinal 0 is 0. To compute T (e,n)

0 , one first asks the oracle whether
computing 〈e〉(n) will ever lead to an oracle call. If so, one runs 〈e〉(n) until that call, which becomes
the end of the root, and then stops. If not, one asks the oracle whether computing 〈e〉(n) will ever
halt. If so, one runs it until it halts; if not, then the output is ↑.

Consider the ordinal notation a = 2b for α = β +1. Of course, the root of T (e,n)
α is computable, as

above. For any node in T (e,n)
α , to see whether a child is in T (e,n)

α , we may assume the node ends with
ê. A child starting with (ê, n̂, k) is in T (e,n)

α iff T (ê,n̂)
β witnesses that k is an output, which inductively

is computable from b. The end of such a node is deterministic in the start. To compute whether k
is witnessed to be an output, one can use the oracle to see whether the search through T (e,n)

α for a
terminal node with output k will halt. In addition, when k =↑, check whether T (e,n)

α is well founded,
which is computable in its hyperjump (cf. the penultimate proposition).

Now consider the ordinal notation a = 3 · 5b. We must decide membership in T (e,n)
α of children of

nodes ending in ê. For the child starting with (ê, n̂, k), use the oracle to see whether the search
for an i such that, with βi = ord(b(i)), the tree T (ê,n̂)

βi
witnesses that k is an output, halts. The

determination of b(i) is, of course, non-deterministic, as is the value βi, but as βi is guaranteed
to be cofinal in α, this makes no difference. The computation of the outputs witnessed is as
above. �

The hope is that the structure just identified will help in determining the pfc functions and
relations, which we have not been able to do. Although the next section is dedicated to the study
of a different kind of computation for its own sake, it also provides at least a coarse upper bound for
those studied here.

9 Context-dependent determinism

In this section, we omit reference to the oracle X . It is easy to see that everything relativizes.

9.1 Semantics

The problem of the first alternative offered is that it is too restrictive and so gives you nothing new.
The problem with the second is that it is too liberal, allowing for multi-valuedness, and so we could
not analyze it. This time we are going for something in the middle. Any oracle call will return at
most one value, but possibly a different value every time it is called.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 25

The semantics begins just as in the non-deterministic case. Trees C(e,n)
α (C for context) are defined

inductively on α. The new intuition here is that these trees are built until an output is seen, and that
first output is taken as the value of 〈e〉(n). More precisely, C(e,n)

α yields an output if it contains a
halting node (with some integer output k) or a diverging node (with output ↑) or is ill founded
(with output ↑). Let α be the least ordinal such that C(e,n)

α yields an output. If it yields more than
one output, pick the left-most one. That is, starting at the root, traverse the tree downwards. Every
non-terminal node ends with an oracle call ê. The child to be followed has start (ê, n̂, k), where n̂ is
the least natural number such that the tree beneath that node yields an outcome (and k is the value
of 〈ê〉(n̂)).

As an example of this semantics in practice, the proof above that OY is pfc from Y still works. The
way that construction goes, given a non-well-founded order, and an n in the non-standard part, if k
is in the standard part, it would not be chosen as a successor step after n, because that will definitely
lead to a freezing state. Only a non-standard k (less than n in this ordering) will be chosen, and in
fact that least such k in the natural ordering of ω will be.

9.2 Lemmas

LEMMA 9.1
There is a program which, on input e, diverges if e computes (the characteristic function of) the truth
set of a model of some computable theory T and freezes otherwise.

We assume here some standard coding of syntax into arithmetic. The model can be taken to be
a structure on, say, the odd integers, so that the even integers can be used for the symbols of the
language, and formulas with parameters can be considered. Of course, this program can easily be
converted into one that halts instead of diverges: ask the oracle about this program, and if the answer
comes back ‘divergent,’ then halt. It will be easy to see that in some instances it can be recognized
that e does not compute such a set, and our program could return that instead of diverging; but if,
say, 〈e〉(0) freezes, then any such program as ours would have to freeze, and there seemed to be no
benefit in a program that sometimes recognizes when e is not as desired and sometimes freezes.

PROOF. It is feedback Turing computable to dovetail the generation of T , the computations of 〈e〉(n)

for all n and the check that that latter theory is complete, consistent and contains T . If e computes
such a model, this procedure will never end; if e finds some violation, the procedure can be taken to
freeze. If some 〈e〉(n) freezes, the procedure will necessarily freeze. �

We will be using this to see if e codes a model of V = Lα . We do not sharply distinguish between
the Σ1 truth set of some Lα and the full truth set, since this computational paradigm can easily shuttle
between them.

LEMMA 9.2
There is a program such that, if e computes a partial order on a subset of ω, on input e it will return
0 if e’s order is well founded and 1 if ill founded.

PROOF. This is a lot like the proof of the computability of O.
For pre-processing, check whether the domain of e is finite. If so, you have your answer. Else,

continue.
First we check for well-foundedness. Go through the natural numbers, and for each such n, if

n has no e-predecessors (determined by an oracle call), halt, else run this same procedure, via the
fixed-point or recursion theorem, on the same order restricted to those elements e-less than n. In the
tree of sub-computations, the children of a node given by n are exactly the e-predecessors of n. So

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

26 An introduction to feedback Turing computability

this tree is well founded iff <e is well founded. So this procedure diverges iff <e is well founded,
else it freezes.

To check for ill-foundedness, run in parallel the following procedure on each n ∈ ω. If n has no
predecessor, freeze. Else, by the fixed point theorem, run this same procedure on the same order
restricted to those elements e-less than n. In the tree of runs, the children of a node given by n are
exactly the e-predecessors of n. So this tree is well founded iff <e is well founded. Since the terminal
nodes all freeze, the only possible non-freezing semantics is an infinite descending path, which exists
exactly when <e is ill founded.

Now run both of those checks in parallel. Whichever one does not freeze is what tells you whether
<e is well or ill founded. �

As usual, it is easy to see that what can be computed is exactly some initial segment of L. We will
shortly see just what this initial segment is. Before that, we will prove some lemmas which handle
some simpler cases, partly to get the reader (and author!) used to the kind of arguments employed,
and partly so in the main theorem we can ignore some of the cases of weaker, messier ordinals and
focus on just the more strongly closed ones.

LEMMA 9.3
The supremum α of the computable ordinals is admissible.

PROOF. Suppose not. Let f : ω → α witness α’s inadmissibility. For each n, using the previous
lemmas, one can check whether 〈e〉 codes a model of ‘V = Lγ is the least admissible set in which
f (n) is defined,’ and if so whether the model so coded is well founded. On many inputs this will
freeze, but since by hypothesis α is the least non-computable ordinal, there is at least one en on
which this halts (possibly more, allowing for some flexibility in the coding). By making a parallel
call of all natural numbers, one can produce such an en.

To see whether a Σ1 formula φ is in the Σ1 truth set for Lα , consider the procedure which runs
through each n, finds a truth set for f (n) as above and stops whenever φ shows up as true in one of
those sets. Now ask the oracle whether that procedure halts. If so φ is true in Lα , else not. �
LEMMA 9.4
α is greater than the least recursively inaccessible.

PROOF. The following procedure will generate the Σ1 truth set of the first recursively inaccessible.
Start with (a code for) the truth set of LωCK

1
. We will describe a procedure which pieces larger

and larger initial segments of L together, which diverges (continues indefinitely) as long as it is still
working on the first inaccessible and which freezes whenever it finds a contradiction in what it has
done so far.

At any stage along the way, there will be a well-founded model of V = Lγ , as well as a finite set
of Π1 sentences the procedure is committed to making true. As soon as the model at hand falsifies
one of those sentences, then the procedure freezes, because it sees that the jig is up.

Dovetail consideration of all countably many Σ1 formulas φ(x, y, �z) and all countably many sets A
and tuples �b that show up in the models produced in this construction. At stage n we are considering
a certain φ, A and �b and will decide whether we think ∀a ∈ A ∃y φ(a, y, �b) is true or false in the
first recursively inaccessible. In parallel, choose either true or false. Moreover, if you choose true,
then you must provide a well-founded model of V = Lγ extending the previously chosen model by
at least one admissible, in which the chosen formula with parameters is true and which also models
there is no recursively inaccessible. If you choose false, then you must also choose a specific a ∈ A
and include in the set of sentences “∀y ¬φ(a, y, �b)".

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 27

Since this construction has no halting condition, the only way it can not freeze is if it diverges. It
cannot diverge by always making the chosen formula false, if for no other reason than there are
infinitely many total Σ1 functions in the starting model, and they cannot consistently be made
partial. So infinitely often the model under consideration will be extended by at least one admissible.
Hence, the limit model will be an initial segment of L which is a limit of admissibles. Let φ be
Σ1 and A, �b be in the limit model. Suppose it is true in this model that ∀a ∈ A ∃y φ(a, y, �b).
When that formula came under consideration, it could not have been deemed false, because then
we would have committed ourselves to a specific counter-example, and that counter-example
would have been seen to be invalid at some point, leading to a freezing computation. So the
formula was deemed to be true. Hence, a model was picked in which the induced relation was
total, thereby providing a bound on the range. Hence, the limit model is admissible. Since it
is a limit of models of ‘there is no recursively inaccessible,’ it is itself the least recursively
inaccessible.

We have just argued that any divergent run of this program produces the least recursively
inaccessible. Furthermore, there are divergent runs, by always choosing whatever is in fact true of
that ordinal. �

9.3 Main theorems

DEFINITION 9.5
Let Γ be a collection of formulas, X a class of ordinals and ν+X the least member of X greater than
ν. We say that α is Γ -ref lecting on X if, for all φ ∈ Γ , if Lα+X |� φ(α), then for some β < α,
Lβ+X |� φ(β).

We are interested in the case Γ = Π1 and X = the collection of admissible ordinals. For this
choice of X , we abbreviate ν+X by ν+, which is standard notation for the next admissible anyway.
This is called Π1 gap-ref lection on admissibles. Let γ be the least such ordinal.

It may seem like a strange notion. But this is not the first time it has come up. Extending work in
[12], it was shown in [7] that such ordinals are exactly the Σ1

1 ref lecting ordinals. (In this context,
the superscript 1 refers not to reals but to subsets of the structure over which the formula is being
evaluated.) The reason this topic came up in the latter paper is that a particular case of its main
theorem is that γ is the closure point of Σ2-definable sets of integers in the μ-calculus. (The μ-
calculus is first-order logic augmented with least and greatest fixed-point operators. In this context,
Σ2 refers to the complexity of the fixed points in the formula, namely, in normal form, a least fixed
point in front, followed by a greatest fixed point, followed by a fixed-point-free matrix.) In [12] it was
also shown that the least Σ1

1 ref lecting ordinal is also the closure point of Σ1
1 monotone inductive

definitions. (Here the superscript does refer to reals.) Furthermore, that is the same least ordinal
over which winning strategies for all Σ0

2 games are definable (Solovay, see [11, 7C.10] or [18]). As
though that were not enough, [17] shows the equivalence of closure under Σ1

1 monotone inductive
definitions with the Σ1

1 Ramsey property. (For all Σ1
1 partitions P of ω there is an infinite set H ⊆ ω

such that the infinite subsets of H are either all in P or all not in P.) With all of these applications,
this definition counts as natural.

THEOREM 9.6
The ordinals so computable are exactly those less than γ .

So there is an intimate connection between parallel feedback computability and all of the other
notions listed above. This was not expected. In the simpler case of feedback Turing computability

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

28 An introduction to feedback Turing computability

[1], it was really no surprise that it turned out to be the same as hyperarithmeticity, as both are
essentially adjoining well-foundedness to computation. But we have no intuition, even after the fact,
in support of the current result.

PROOF. For one direction, we will argue that no computation 〈e〉(n) can be witnessed to converge
or diverge from stage γ onwards. Notice that for any γ ′ > γ , if T (e,n)

γ ′ is different from T (e,n)
γ ,

that can only be because some other computation 〈e′〉(n′) was seen to converge or diverge at some
stage at least γ and less than γ ′. Tracing back the computation of 〈e′〉(n′), we are eventually led to a
computation that was seen to converge or diverge at exactly stage γ . Since γ is a limit of admissibles,
there are no new terminal nodes on any tree of runs at stage γ . Hence, there is some computation
〈e〉(n) such that T (e,n)

γ is ill founded, but T (e,n)
β is well founded for any β < γ . How could the ill-

foundedness of T (e,n)
γ be most economically expressed? Since γ is the γ th admissible ordinal, T (e,n)

γ

is definable over Lγ . It is a basic result of admissibility theory that a tree in an admissible set is well
founded iff there is a rank function from the tree to the ordinals in that very same admissible set.
So the ill-foundedness of such a tree is witnessed by the non-existence of such a function in any
admissible set containing the tree. In the case at hand, that is a Π1 statement in Lγ + with parameter

γ . By the choice of γ , this ref lects down to some smaller β. So T (e,n)
β , for some smaller β, was

already seen to be ill founded. So there can be no new computation values at stage γ , and hence not
beyond either.

For the converse, let β be strictly less than γ ; by Lemmas 9.2 and 9.3, we can assume that β is
a limit of admissibles. Assume inductively that for each α < β there is an e such that 〈e〉(·) is the
characteristic function of the Σ1 truth set of Lα . Let φ witness that β is not Π1 gap-ref lecting on
admissibles: so φ is Π1, and Lβ+ |� φ(β), but if α < β then Lα+
|� φ(α). We must show that (the
characteristic function of) the Σ1 truth set of Lβ is computable.

As in Lemma 9.4, start with (a code for the Σ1 truth set of) LωCK
1

. At any stage along the way, there
will be a well-founded model of V = Lα , as well as two finite sets (both empty at the beginning) of
sentences. The intent of this construction is that, if it continues for ω-many steps, the union of the
Lα’s so chosen will be Lβ , all of the sentences in the first set will be true in Lβ and the second set
will provide a term model of V = Lβ+ .

The action at any stage is much as in the previous lemma. First, check for the consistency of a
theory, to be described below. If an inconsistency is found, freeze. Else we are going to continue
building the ultimate model. This involves interleaving steps to make sure that the union of the
chosen Lα’s, Lδ , is admissible (and δ ≤ β), with steps to insure that Lδ+ |� φ(δ) (guaranteeing
δ ≥ β). We assume a dovetailing, fixed at the beginning, of all (countably many) formulas ψ with
parameters. For the formulas in the first set, the parameters are the sets in the Lα’s chosen along the
way. For the formulas in the second set, the parameters include, in addition to the members of the
Lα’s, also constants ci for the term model, as well as a dedicated constant we will ambiguously call
δ, since the ordinal δ is its intended interpretation.

At any even stage 2n, consider the nth formula of the form ∀a ∈ A ∃y ψ(a, y, �b), where ψ is Σ1
and the parameters are from the Lα at hand. In parallel, choose it to be either true or false. Moreover,
you must provide a well-founded model of V = Lα , extending the previously chosen model by at
least one admissible. Furthermore, if you had deemed the formula to be true, then it must hold in
the chosen Lα; if false, then you must also choose a specific a ∈ A and include in the first set of
sentences ‘∀y ¬ψ(a, y, �b)’. Notice that this step includes as a degenerate case those instances in
which ψ does not depend on a, thereby forcing us to decide all Σ1 and Π1 formulas. Finally, it must
be the case that α < β, which can be verified computably, since it needs only a well-founded model

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 29

of V = Lα+ (which exists by the inductive hypothesis and the choice of β) which also satisfies
‘¬φ(α) ∧ ∀ν < α Lν+
|� φ(ν)’.

At an odd stage 2n + 1, consider similar to the above the nth formula of the form ∀a ∈
A ∃y ψ(a, y, �b), where ψ is Σ1, only this time the parameters are for the second set (that means
the parameters are from an already chosen Lα and the ci’s and δ). Include in the second set either
‘∀a ∈ A ∃y ∈ τ ψ(a, y, �b)’, for some term τ , or ‘τ ∈ A∧∀y ¬ψ(τ , y, �b)’, for some term τ . Of course,
this step is meant to include all possible degenerate cases, such as Σ1 assertions, even quantifier-free
sentences. Also, if ‘τ < δ’ for some term τ is ever included in the second set, then, extending Lα if
need be, for some ε < α the sentence ‘τ = ε’ is included in the second set.

With regard to the theory referenced above but there left unspecified, at any stage along the way
it will be ‘V = Lδ+ is admissible, and δ is admissible and α < δ (where Lα is the model we have at
this stage), and everything in the first set is true in Lδ , and everything in the second set is true in V .’

For this computation, the tree of runs has neither halting nor divergence nodes (since, whenever
it does not freeze, it makes another oracle call). It is ill founded, since there is a run of the
computation which does not halt, namely one using the truth about Lβ and Lβ+ to make decisions
along the way. We would like to show that along any infinite path in the tree of runs, the induced δ

equals β.
Consider the term model induced by the second set. There is an isomorphism between the term δ

and the union of the α’s chosen along the way: on the one hand, the assertion ‘α < δ’ was included in
the theory along the way, and on the other, anything ever deemed less than δ was forced to be less than
some α. So we can consider the term model as including some (standard) ordinal δ. Also, this δ is at
most β, since each α is less than β. The next observation is that this term model satisfies ‘V = Lδ+
is admissible,’ by the Henkinization (choice of explicit witnesses) performed on the second set. Of
course, the term model might well be ill founded. But its well-founded part has ordinal height the
real δ+. By the downward persistence of Π1 sentences, since φ(δ) holds in the term model, it holds
in the actual Lδ+ . By the choice of φ, δ is at least as big as β.

We must turn this procedure into a way of getting the characteristic function for the truth set of
Lβ . For any Σ1 sentence χ , run the procedure as above, with χ and ¬χ each separately, in parallel,
included in the first set. The false option is inconsistent and so any such computation will freeze, so
the answer you will get is the true option, along with the information that the procedure diverges. �
COROLLARY 9.7
For β < γ , the order types of the Σ1(Lβ)-definable well-orderings of ω are the ordinals less
than β+.

This is a generalization of the earlier result that the order types of the Π1
1 well-orderings are

cofinal in ωCK
2 . Sacks [14], giving this special case as an exercise (p. 51, 7.10), attributes it to

Richard Platek, who never published a proof. Although Platek may have been the first to notice this
(Sacks in personal correspondence dates it from the ’60s), Tanaka [16] seems to have discovered it
independently.

The corollary as stated is not the optimal result, since the conclusion holds for any β which is
Σ1 projectible, by arguments similar to Tanaka’s. It’s just that this more general result is no longer a
corollary to the theorem.

PROOF. For simplicity, assume that β is a limit of admissibles. The construction of the theorem is
of an ill-founded tree Tβ , Σ1 definable over Lβ , such that any infinite path yields a term model
of V = L with ordinal standard part β+. If the well-founded nodes all had rank less than some
β ′ < β+, then they could all be distinguished from the non-well-founded nodes definably over Lβ ′ .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

30 An introduction to feedback Turing computability

So an infinite path, and hence such a term model, is also definable over Lβ ′ . It is then easy (which we
can here take to mean ‘definable over Lβ ′ ’) to read off all the reals in this model. This includes reals
with L-rank cofinal in β+. This is a contradiction. Hence, for any β ′ < β, there is a node in Tβ with
that rank. The nodes of Tβ are labeled with pairs (e, n). They also have associated with them two
finite sets of formulas. The formulas are just finite pieces of syntax, except for the parameters from
Lβ ’s. But Lβ is the Σ1 Skolem hull of ω, which provides an integer name for each of its members (for
instance, a Σ1 formula that it uniquely satisfies). So each formula can be coded by a natural number.
All told, each node can be represented by a natural number. This produces an ordering of a subset of
ω with rank β ′. To get this to be a well-ordering, it suffices to take the Kleene–Brouwer ordering of
that tree. �

Happily, the work done also enables us to determine at least an upper bound for the non-
deterministic computations.

THEOREM 9.8
Any relation computable via a non-deterministic parallel feedback Turing machine, as in the previous
section, is Σ1(Lγ).

PROOF. By much the same argument as before. The only possible values come from halting nodes,
divergent nodes and the ill-foundedness of trees. A node is seen to halt at a successor stage, and γ is
not a successor ordinal. A node is seen to diverge at a stage of the form α + ω, and γ is not of that
form. As for the last possibility, the tree T (e,n)

γ is Δ1 definable in Lγ + with parameter γ . If it’s not

well founded, that fact is Π1 expressible in Lγ + . By the choice of γ , a smaller T (e,n)
α was already ill

founded, so divergence was already a value for 〈e〉(n). Hence, there are no new possible values for
any computation at or after stage γ . �

10 Parallel feedback primitive recursion

The essence of sequential feedback p.r. was a least (i.e. smallest domain) function h such that
h(e, −→n) � {e}h(−→n), for e an oracle p.r. index. If we allow for non-determinism, then there will
be more than one possible output. So we consider h as a multi-valued function, which we take to be
a function from ω × ω to P(ω).

In what follows, we make use of the fact that an oracle p.r. computation is most naturally expressed
as a finite tree, in which the splitting corresponds to substitution and primitive recursion and the
terminal nodes to applications of the base functions.

DEFINITION 10.1
For H a multi-valued function, a legal computation of {e}h(n) (from H) is an oracle p.r. computation
in which any value taken for h(f , m) is a member of H(f , m). A parallel computation of {e}h(n)

(from H) is an oracle p.r. computation in which any value taken for h(f) is of the form 〈m, k〉, where
k ∈ H(f , m).

PROPOSITION 10.2
There is a smallest multi-valued function h such that h(e, n) is the collection of outputs of all possible
parallel computations of {e}h(n) from h. (The notion of h being smaller than g is taken pointwise:
for all e and n, h(e, n) ⊆ g(e, n).)

PROOF. Take h to be the least fixed point of the obvious positive inductive definition. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 31

DEFINITION 10.3
The parallel feedback p.r. functions are those multi-valued functions f given by some oracle p.r.
index e using parallel computations from the h of the previous proposition.

THEOREM 10.4
The parallel feedback p.r. functions are those multi-valued functions f such that f (n) is computably
enumerable, uniformly in n.

PROOF. Given an oracle p.r. index e, a computation of {e}h(n) can be run computably, uniformly in
e and n. Any occurrence of h(g) can be handled by dovetailing the computations of {g}h(m) for all
m. As outputs are generated in the sub-computations, they are then used by the calling instances,
making the set of outputs computably enumerable.

In the other direction, let f (n) be a c.e. set, uniformly in n. We identify f (n) with a Turing code for
the corresponding c.e. set, so that f is taken to be a Turing code also. (In the end, the set in question
is the range of {{f }(n)}.) Let g(n, x) be the function that checks that x codes a computation of {f }(n),
along with a computation of {{f }(n)}(i) for some i with output y. If any of those checks fail, g(n, x)
freezes (by, e.g. calling h on itself: h(〈g, n, x〉, z), where z is some dummy variable). If they all pass,
then g(n, x) outputs y. Notice that those checks are p.r., so that g is feedback p.r. (sequential even).
Let {e}h(n) be a call to h(g(n, ·)). Then e is as desired. �

So, in contrast to the non-deterministic parallel Turing machines, there is really nothing new
gained by parallelizing primitive recursion.

11 Future directions

We consider this work to be just an early exploration into feedback for oracle computability. There
are other possible applications than those considered here.

11.1 Iterated feedback

In a way, feedback, by providing an oracle for divergence and convergence, replaces that distinction
with one between freezing and non-freezing. It takes little imagination to ask what would happen
with a feedback-style oracle that also answered freezing questions. That is, the feedback computation
sketched here is a notion of computability that allows for oracles and maintains a distinction between
freezing and non-freezing computations. Hence, the considerations above apply and allow for a
discussion of oracles that say whether a computation freezes or not. We call this hyper-feedback.
So, what can hyper-feedback Turing machines compute?

One possible answer is already afforded by the analysis of the μ-calculus from [7]. Namely, are the
hyper-feedback definable sets exactly those definable in the μ-calculus over the natural numbers?
The reason to think so is that the base computations for hyper-feedback, by our work here, are the
hyperarithmetic sets, or, depending on just how you set the problem up, those sets definable from
O. It is well known that this corresponds to least points of positive inductive operators in arithmetic,
which is the first step in the μ-calculus, one application of the least-fixed-point operator. What gives
the μ-calculus its enormous strength is the feedback built into the language. So both hyper-feedback
and the μ-calculus are extensions of least fixed points by feedback. Hence, one might think they
produce the same sets. Also, hyper-feedback yields the computability of the parallelism studied
here, by dovetailing, and this parallelism gives the beginning of the μ-calculus hierarchy.

On the other hand, the μ-calculus provides a canonical ω-sequence through its limit, namely via
those sets you get by restricting the number of alternations between least and greatest fixed point to a

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

32 An introduction to feedback Turing computability

finite number. There seems to be no such ω-sequence in hyper-feedback. So the ultimate comparison
between these two models is of independent interest.

11.2 Feedback for other computabilities

It could go without saying that feedback applies to any notion of computation that allows for oracles.
If you consider the feedback version of any known theory of computability, the result is a notion of
computability that is either already known, or not. In the former case, it is interesting because it is a
new connection between already established theories of computation. An example of this is one of
the main results here, that feedback Turing machines are exactly the hyperarithmetic algorithms. The
latter case is interesting, because you then have a newly identified kind of computation to explore. An
example of this is feedback ITTMs [9, 20]. We would like to see what happens with other examples
of feedback.

11.3 Alternative semantics

All of the semantics we have considered so far have been the most conservative possible: the
interpretations we took were always least fixed points, allowing something in only when necessary.
Of course, one gets a perfectly coherent semantics by taking any fixed point. Is there anything to be
gained by studying these alternative interpretations?

Once one hears least fixed point, one naturally thinks of greatest fixed point and so could naively
think that there is a second natural semantics. It is actually more complicated than that, though. The
considerations here are not only about a set of non-freezing computations but also the determination
of whether such a computation is convergent or divergent. If one were to follow the gfp dictum ‘start
with everything and whittle it down until you have a fixed point,’ we would have to start with a set
containing both assertions ‘e converges’ and ‘e diverges.’ Such an oracle we would call inconsistent.
Among the consistent oracles, there is no natural largest one, since any function from ω to {↑, ↓}
is maximal; so there is no unique greatest fixed point. One could of course consider inconsistent
oracles, thereby allowing for a gfp, but we are unsure how they should be interpreted. If for instance
an oracle says that e both converges and diverges, if e is called several times during a computation,
would a legal run insist that the oracle give the same answer every time? So our questions are, how
should inconsistent oracles be interpreted, and what, if anything, are they useful for?

11.4 Parallelism

The section above on parallelism is incomplete. Some forms of parallelism were mentioned but not
analyzed. Non-deterministic parallelism was studied, but we were unable to determine just what
it computes. Those items remain open. Another question comes from considering the other case
discussed, that parallel feedback primitive recursion does not get any more than sequential feedback
primitive recursion. Is there some general way, applicable to many cases, to distinguish those versions
of feedback for which the parallel variant is stronger than the sequential from those versions for
which it is not?

11.5 Kolmogorov complexity

One of the properties of Martin-Löf randomness which makes it stand out among the other notions,
such as Schnorr randomness or Kurtz randomness, is that the same notion is obtained through several
natural, but very different, definitions. Two of the most significant such definitions are via Martin-
Löf tests and via Kolmogorov complexity.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

An introduction to feedback Turing computability 33

As with many concepts in classical computability theory there is an analogue of a Martin-Löf test
in higher computability theory which is obtained by simply replacing ‘computable’ in the definition
with ‘Δ1

1’ and ‘computably enumerable’ with ‘Π1
1 ’. The resulting notion of a Martin-Löf test is

called a Π1
1 -Martin-Löf test, and the corresponding notion of a Martin-Löf random real is called a

Π1
1 -Martin-Löf random real.
Given that there is a natural meta-computable analogue of a Martin-Löf random real, it is natural

to ask if there is also a meta-computable analogue of a Kolmogorov random real. Here, though, we
run into a small problem.

The difficulty of generalizing Kolmogorov randomness arises in defining Kolmogorov complexity
for finite strings. In particular, to have this notion make sense, we need a notion of ‘machine’ which
takes in finite elements and outputs finite elements. One solution to this problem was proposed
in [5], which introduced the notion of a Π1

1 -machine and showed that the analogous notion of
Kolmogorov randomness agrees with the notion of passing Π1

1 Martin-Löf tests. Feedback machines
provide another natural notion of a finite machine that performs a meta-computation. This leads to
the following definition.

DEFINITION 11.1
Fix a universal (parallel) feedback machine U . The (parallel) feedback complexity of a finite string X
(relative to U), denoted KF(X) (or KPF(X)), is the length of the shortest input Y such that U(Y) = X .
A real r ∈ 2ω is said to be (parallel) feedback Kolmogorov random if there is a constant c such that
(∀n)KF(r|n) ≥ n − c (or (∀n)KPF(r|n) ≥ n − c).

Because feedback computation captures the Π1
1 -sets, we expect that the notion of a feedback

Kolmogorov random real should coincide with that of a Π1
1 -Martin-Löf random real. Furthermore,

just as parallel feedback machines can characterize sets which ordinary feedback machines cannot,
we expect the collection of parallel feedback Kolmogorov random reals to be strictly contained in the
collection of feedback Kolmogorov random reals. It is then an interesting problem to characterize
this notion of randomness.

References
[1] N. Ackerman, C. Freer and R. Lubarsky. Feedback Turing computability, and Turing

computability as feedback. In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2015), IEEE and Curran Associates, Kyoto, Japan, pp. 523–534,
2015.

[2] A. Arnold and D. Niwinski. Rudiments of u-calculus. In Studies in Logic and the Foundations
of Mathematics, vol. 146, North Holland, 2001.

[3] J. Barwise. Admissible Sets and Structures, Perspectives in Mathematical Logic. Springer,
Berlin, 1975.

[4] J. Hamkins and A. Lewis. Infinite time Turing machines. The Journal of Symbolic Logic, 65,
567–604, 2000.

[5] G. Hjorth and A. Nies. Randomness via effective descriptive set theory. Journal of the London
Mathematical Society, Second Series, 75, 495–508, 2007.

[6] S. C. Kleene. Recursive functionals and quantifiers of finite types I. Transactions of the
American Mathematical Society, 91, 1–53, 1959.

[7] R. Lubarsky. μ-Definable sets of integers. The Journal of Symbolic Logic, 58, 291–313, 1993.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

34 An introduction to feedback Turing computability

[8] R. Lubarsky. ITTMs with feedback. In Ways of Proof Theory, R. Schindler, ed, pp. 341–354,
Ontos, 2010, available at http://math.fau.edu/lubarsky/pubs.html.

[9] R. Lubarsky. Feedback ITTMs and Σ0
3 -determinacy. Slides, available at http://math.fau.edu/

lubarsky/pubs.html.
[10] R. Lubarsky. Parallel feedback Turing computability. In Proceedings of LFCS 2016, Lecture

Notes in Computer Science, S. Artemov and A. Nerode, eds, Springer pp. 236–250.
[11] Y. Moschovakis. Descriptive Set Theory, 1st edn. AMS, North Holland, 1987; 2nd edn., 2009.
[12] W. Richter and P. Aczel. Inductive definitions and ref lecting properties of admissible ordinals.

In Generalized Recursion Theory, W. Fenstad and P. Hinman, eds, pp. 301–381, North-
Holland, 1974.

[13] H. Rogers. Theory of recursive functions and effective computability. McGraw-Hill, 1967.
[14] G. Sacks. Higher recursion theory. In Perspectives in Mathematical Logic, p. xvi+344.

Springer, Berlin, 1990.
[15] U. Schöning. Theoretische Informatik Kurz Gefaßt. Bibliographisches Institut, Mannheim,

1992.
[16] H. Tanaka. On analytic well-orderings. Journal of Symbolic Logic, 35, 198–204, 1970.
[17] K. Tanaka. The Galvin–Prikry theorem and set existence axioms. Annals of Pure and Applied

Logic, 42, 81–104, 1989.
[18] K. Tanaka. Weak axioms of determinacy and subsystems of analysis II (Σ0

2 games). Annals of
Pure and Applied Logic, 52, 181–193, 1991.

[19] D. van Dalen. Logic and Structure. Springer, 2008.
[20] P. Welch. Gδσ -games and generalized computation, available at https://arxiv.org/abs/1509.

09135.

Received 1 March 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa002/5754083 by guest on 27 February 2020

