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Abstract. We introduce the notion of feedback computable functions from
2ω to 2ω, extending feedback Turing computation in analogy with the standard
notion of computability for functions from 2ω to 2ω. We then show that the
feedback computable functions are precisely the effectively Borel functions.
With this as motivation we define the notion of a feedback computable function
on a structure, independent of any coding of the structure as a real. We show
that this notion is absolute, and as an example characterize those functions that
are computable from a Gandy ordinal with some finite subset distinguished.
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1. Feedback machines and Borel maps

One of the most important observations of (effective) descriptive set theory is
that every continuous map between Polish spaces is computable with respect to
some oracle, and every map which is computable with respect to some oracle is
continuous. (See [Mos09, Ex. 3D.21].)

This fact allows one to transport results from computability theory to the
theory of continuous functions, and vice versa. But it also is important because it
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provides a machine model for continuity. Specifically, it provides a way of thinking
about a continuous map on a Polish space as a construction of the output from the
input, instead of simply via the abstract definition (requiring the inverse image of
open sets to be open).

We will show that this correspondence extends to feedback Turing computation
[AFL15] and Borel functions. That is, we will show that feedback Turing com-
putability provides a machine model for Borel functions on 2ω, and conversely that
every feedback computable function is itself Borel. These results should not be
surprising, as it is already known (as reviewed below) that feedback computable
reals are exactly the hyperarithmetic (i.e., ∆1

1) reals, and it is an old result of
descriptive set theory that the Borel sets are exactly the ∆1

1-definable sets. So
what we are doing here could be viewed as merely a type shift — from ∆1

1 reals,
which are ∆1

1 properties of natural numbers, to ∆1
1 properties on reals (for sets,

or on pairs of reals if thinking about the graph of a function).

1.1. Notation. It will be useful to let τ : N× N→ N be a computable bijection.
We will also need a computable bijection ι : N → 2<ω. For σ ∈ 2<ω, define
[σ]:={x ∈ 2ω : σ ≺ x}, i.e., the collection of elements of 2ω extending σ.

For a set A, define P<ω(A) to be the finite powerset of A, i.e., the set of all
finite subsets of A.

By a countable ordinal we will mean a well-founded linear order (A,C) such
that A ⊆ ω. In particular, this representation of countable ordinals will make
it possible for oracle machines, as well as feedback machines, to access them as
oracles.

Given an admissible ordinal α, let α+ be the next admissible after α, i.e., the
least admissible ordinal greater than α. An ordinal α is defined to be a Gandy
ordinal [AS76] if it is admissible and for all γ < α+ there is an α-computable
well-ordering of order type γ.

For more details on admissible sets and ordinals, and on (effective) descriptive
set theory, see [Sac90], [Kec95], and [Mos09].

1.2. Feedback computability. We now review the notion of feedback com-
putability studied in [AFL15]. The intuitive idea is that we want to make sense
of the notion of a machine which can ask halting queries of machines of the same
type.

The notation {e}XF (n) denotes the eth Turing machine with oracle X and
halting function F (which can also be interpreted as an oracle) on input n. When
{e}XF (n) queries X it is said to be making an oracle query, and when it queries
F it is said to be making a halting query.

Definition 1. For any X : ω → {0, 1} define the set HX ⊆ ω × ω to be the
smallest collection for which there is a function hX : HX → {↑, ↓} satisfying the
following:
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(↓) If {e}XhX (n) makes no halting queries outside of HX and converges after a
finite number of steps then (e, n) ∈ HX and hX(e, n) =↓, and conversely.

(↑) If {e}XhX (n) makes no halting queries outside of HX and does not converge
(i.e., runs forever) then (e, n) ∈ HX and hX(e, n) =↑, and conversely.

Furthermore, this hX is unique.

Definition 2. A feedback Turing machine (or feedback machine for short)
is a machine of the form {e}XhX for some e ∈ ω. The notation 〈e〉X(n) is shorthand

for {e}XhX (n).
The set HX is the collection of non-freezing computations and the notation
〈e〉X(n) ⇓ means (e, n) ∈ HX . If (e, n) 6∈ HX then 〈e〉X(n) is freezing, written
〈e〉X(n) ⇑.

One of the most important results about feedback computability is that feedback
reducibility is equivalent to ∆1

1- or hyperarithmetic reducibility. A set X is
hyperarithmetically reducible to Y if X is in the least admissible set containing
Y .

Theorem 3 ([AFL15, Theorem 16]). For any X, Y : ω → {0, 1} the following are
equivalent.

• X is ∆1
1(Y ).

• There is a feedback machine e such that 〈e〉Y (n) = X(n) for all n ∈ N.

Having recalled the notion of feedback computability, we now introduce the
notion of a feedback computable function from 2ω to 2ω.

Definition 4. For X ⊆ N, a map f : 2ω → 2ω is feedback computable with
respect to X if there is a feedback machine with code e such that for all Y ∈ 2ω,
the function 〈e〉X,Y is total and for all n ∈ ω, 〈e〉X,Y (n) = f(Y )(n). In this case e
is said to code (with respect to X) a feedback computable function from 2ω to 2ω.

In other words, a function is feedback computable if there is a feedback machine
which, when given a description of a point in the domain, outputs a description
of the image of the point in the range.

1.3. Borel codes. A Borel code of a Borel subset of 2ω captures the way in which
the Borel set was built up from basic open sets using the operations of countable
union and complementation. There are many different types of Borel codes, all of
which are, for practical purposes, equivalent. However, for our purposes it will
be convenient to give a concrete coding system where each Borel code is a an
element of NN.

We begin with a couple of basic operations on functions from N to N. Suppose
f : N→ N. Let f∗ : N→ N be such that f∗(n):=f(n+ 1) for all n ∈ N. Also, for
m ∈ N, let fm : N→ N be such that fm(n):=f(τ(m,n) + 1) for all n ∈ N.

Definition 5. Let BC ⊆ NN be the collection of Borel codes (for 2ω), defined
by induction as follows.
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• BC0:={f : f(0) ≥ 2}.
• If β ∈ ORD is greater than 0 then BCβ is the smallest set containing
◦ Bβ∗ ∪ {f : f(0) = 0 ∧ f∗ ∈ BCβ∗} for β∗ < β, and
◦ all functions f : N→ N such that f(0) = 1 and for all m ∈ N there is

a βn < β such that fm ∈ Bβn.

Finally, set BC:=
⋃
α<ω1

BCα. If f ∈ BC then define the rank of f to be the
least ordinal α such that f ∈ BCα.

A Borel code (for 2ω) has an associated Borel set, called its realization.

Definition 6. Suppose ζ ∈ NN is a Borel code (for 2ω). Define the realization
of ζ, written RRR(ζ), to be the Borel subset of 2ω defined by induction on the rank
of the ζ as follows.

• If ζ(0) ≥ 2, then RRR(ζ):=[σ] where σ = ι(ζ(0)− 2). Note that in this case,
rank(ζ) = 0.
• If ζ(0) = 0, then let RRR(ζ):=2ω \RRR(ζ∗). Note that in this case, if rank(ζ) =
β + 1 for some β ∈ ORD, then rank(ζ∗) = β.
• If ζ(0) = 1 then RRR(ζ):=

⋃
m∈NRRR(ζm). Note that in this case, rank(ζm) <

rank(ζ) for all m ∈ N.

By the union or intersection of a collection of Borel codes, we will mean the
code for union or intersection of their realizations.

One of the first steps in showing that the Borel functions and the feedback
computable functions coincide is to show that feedback computability interacts
well with Borel codes.

For any ordinal α ∈ ω1, define an encoding of α to be a linear ordering on a
subset of ω of order type α.

Lemma 7. There is a feedback machine bor such that for any α ∈ ω1, any
encoding α̂ of α, any X ∈ 2ω, and any n ∈ N such that 〈n〉X is total, we have

• 〈bor〉X,α̂(n) = 1 if 〈n〉X ∈ BCα, and
• 〈bor〉X,α̂(n) = 0 if 〈n〉X 6∈ BCα.

Proof. Let 〈bor〉X,α̂(n) do the following.

Step 1:

If 〈n〉X(0) ≥ 2 then return 1.

Step 2:

If 〈n〉X(0) = 0 then search for a β < α such that 〈bor〉X,β̂(n∗) = 1 where β̂ is the
encoding of β induced by α̂, and where 〈n∗〉X(m):=〈n〉X(m+ 1) for all m ∈ N. If
there exists such a β then return 1, and otherwise return 0.

Step 3:
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If 〈n〉X(0) = 1 then for eachm ∈ N search for a βm < α such that 〈bor〉X,β̂m(nm) =

1 where β̂m is the encoding of βm induced by α̂, and where for all m ∈ N,
〈nm〉X(k):=〈n〉X(τ(m, k) + 1). If there exists such a βm for each m ∈ N then
return 1, and otherwise return 0.

It is an easy induction to show that bor is the desired code. �

In other words, there is a feedback machine which, uniformly in α and an oracle
X, can check whether or not a total function feedback computable in X is a Borel
code of rank at most α.

Lemma 8. There is a feedback machine in such that for any Borel code C, any
X ∈ 2ω and any n ∈ N such that 〈n〉X is total, we have

• 〈in〉C,X(n) = 1 if 〈n〉X ∈ RRR(C), and
• 〈in〉C,X(n) = 0 if 〈n〉X 6∈ RRR(C).

Proof. Call C the first oracle and X the second oracle. We will need to unravel
the code C. However, there is no mechanism for changing an oracle. This ends
up not being a problem, because the changes we would like to make are simple —
which we formalize using the Recursion Theorem.

Toward this end, suppose we have computer code e, which we will think of as
instructions for a feedback machine 〈e〉. We will define new code e∗, as follows.
The behavior of the computation 〈e∗〉C,X depends on the value of C(0).

Case 1: C(0) ≥ 2.
Let σ:=ι(C(0) − 2). If 〈n〉X(m) = σ(m) for all m ∈ dom(σ), then return 1.
Otherwise return 0.

Case 2: C(0) = 0.
Let 〈e〉C∗,X be the machine that runs just like 〈e〉 with oracle C,X, except that
whenever e makes a query of k to the first oracle, a query of k+ 1 is made instead.
Return 1− 〈e〉C∗,X .

Case 3: C(0) = 1.
Let 〈e〉Cm,X be the machine that runs just like 〈e〉 with oracle C,X, except that
whenever e makes a query of k to the first oracle, a query of τ(m, k) + 1 is made
instead. Let 〈e∗〉C,X search for an m such that 〈e〉Cm,X = 1, and if it finds such
an m it returns 1, else 0.

The function from e to e∗ is computable. Let in be a fixed point. It is an
easy induction on the rank the Borel code C to show that in has the desired
properties. �



FEEDBACK COMPUTABILITY ON CANTOR SPACE 6

In other words, there is a feedback machine which can determine whether or
not a feedback computable function (relative to an oracle) is in the realization
of a Borel code, uniformly in the Borel code and the oracle. Now we show,
unsurprisingly, that if given a feedback computable collection of Borel codes, they
can be combined to form a new Borel code.

Lemma 9. There are feedback machines neg, cup such that

• if 〈n〉X ∈ BC, then 〈neg〉X(n, · ) ∈ BC with RRR
(
〈neg〉X(n, · )

)
= 2ω \

RRR
(
〈n〉X

)
, and

• if 〈n〉X(m, · ) ∈ BC for all m ∈ N, then 〈cup〉X(n, · ) ∈ BC with
RRR
(
〈cup〉X(n, · )

)
=
⋃
m∈ωRRR

(
〈n〉X(m, · )

)
.

Proof. Let 〈neg〉X(n, 0) = 0 and 〈neg〉X(n,m+ 1) = 〈n〉X(m) for all m ∈ N. Let
〈cup〉X(n, 0) = 1 and 〈cup〉X(n,m+ 1) = 〈n〉X(τ−1(m)). �

We now define the notion of ∆1
1(X) function. We do this in terms of Borel

codes, since the Borel subsets of 2ω are exactly all the ∆1
1-sets. For more on this

notion of ∆1
1-function, see [Mos09, Section 3D and Theorem 3E.5].

Definition 10. A map f : 2ω → 2ω is ∆1
1(X) for X ⊆ N if there is a ∆1

1(X)
sequence of functions (γσ)σ∈2<ω such that RRR(γσ) = f−1([σ]).

The following result is standard (see, e.g., [Mos09, Chapter 2]).

Lemma 11. A map f : 2ω → 2ω is Borel if and only if f is ∆1
1(X) for some

X ⊆ N.

1.4. A characterization of feedback computable functions. We now show
that we can isolate Borel codes for those oracles that cause a feedback computation
to halt with a tree of subcomputations of height at most α.

Proposition 12. There is a computable collection of codes for feedback machines,
e↓, e↓j, e↑, e↑j for j ∈ ω, such that

• for all α ∈ ω1 and encodings α̂,
• for all X ⊆ ω,
• for all σ ∈ 2<ω,
• for all f ∈ ω, and
• for all x ∈ {↓, ↑} ∪ {↓, ↑} × ω,

〈ex〉X,α̂(f, n, σ, · ) is a Borel code, which we will refer to as ζx.
Further, whenever Y ∈ 2ω with σ ≺ Y and j ∈ ω the following properties hold.

• Y ∈ RRR(ζ↓) if and only if 〈f〉X,Y (n) halts with a tree of subcomputations of
height ≤ α.
• Y ∈ RRR(ζ↓j) if and only if 〈f〉X,Y (n) halts with a tree of subcomputations

of height ≤ α and outputs j.
• Y ∈ RRR(ζ↑) if and only if 〈f〉X,Y (n) does not halt and the tree of subcompu-

tations is of height ≤ α.
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• Y ∈ RRR(ζ↑j) if and only if 〈f〉X,Y (n) does not halt after j-many steps, and
up to the jth step the tree of subcomputations has height ≤ α.

Finally, we always have Y 6∈ RRR(ζx) if σ 6≺ Y .

Proof. We begin with some notation. Enumerate all triples (η, ν, k) such that η
and ν are elements of 2<ω and {f}X,ην (n) does not make any invalid oracle calls
in the first k-many steps, i.e., does not make any oracle queries outside of η or ν.
Call this collection B.

For each ηηη = (η, ν, k) ∈ B, let 〈(rηηηi ,m
ηηη
i )〉i≤`ηηη be the sequence such that

〈τ(rηηηi ,m
ηηη
i )〉i≤`ηηη are the queries made by {f}X,ην (n) to ν. Note that the length of

the sequence is `ηηη. Recall these are called halting queries. In particular if ν is
the correct response to every halting query made by 〈f〉X,Y (n), i.e., ν agrees with
hX,Y , then {f}X,Yν (n) ∼= 〈f〉X,Y (n). With this notation we will use the convention
that ν(τ(a, b)) = 0 means ν “believes” 〈a〉X,Y (b) halts and ν(τ(a, b)) = 1 means ν
“believes” 〈a〉X,Y (b) does not halt.

Our goal will be to define Borel codes C α̂
ηηη for all ηηη ∈ B in such a way that C α̂

ηηη

is the Borel code of all Y extending η such that the behavior of halting calls of
〈f〉X,Y (n) on the first k-many steps agrees with that of ν, and for which the tree
of computations has height at most α.

Let B↓ be the collection of triples (η, ν, k) ∈ B such that {f}X,ην (n) halts in at
most k steps. For j ∈ ω, let B↓j be the collection of triples in B↓ with output j.
Let B↑j be the collection of triples in B \B↓ whose third coordinate is j.

For each ηηη = (η, ν, k) ∈ B we define a Borel code C α̂
ηηη as follows.

(i) If 〈f〉X,η(n) makes no halting queries, then C α̂
ηηη is a code for [η].

(ii) If {f}X,ην makes any halting queries and α = 0, then C α̂
ηηη is a Borel code

for ∅.
(iii) Suppose ν(τ(rηηηi ,m

ηηη
i )) = 0, i.e., {f}X,ην “thinks” 〈rηηηi 〉X,Y (mηηη

i ) halts. Then
let Dα̂

ηηη,i be the Borel code which is the union of the Borel codes of

〈e↓〉X,β̂(rηηηi ,m
ηηη
i , η, · ) for β < α, where β̂ is the encoding of β induced

by α̂. In other words Dα̂
ηηη,i is a Borel code for the collection of those Y such

that 〈rηηηi 〉X,Y (mηηη
i ) = 0 and has a tree of subcomputations of rank less than

α. Or said another way, Dα̂
ηηη,i is a Borel code for the collection of those Y

such that 〈f〉X,Y (n) agrees with ν on the ith halting query and has a tree
of subcomputations of rank less than α.

Suppose ν(τ(rηηηi ,m
ηηη
i )) = 1, i.e., {f}X,ην “thinks” 〈rηηηi 〉X,Y (mηηη

i ) does not
halt. Then for j ∈ ω and β < α, let Eα̂

ηηη,i,j,β̂
be the Borel code of the union

of 〈e↑j〉X,β̂(rηηηi ,m
ηηη
i , η, · ). In other words Eα̂

ηηη,i,j,β is a Borel code for those

Y such that 〈rηηηi 〉X,Y (mηηη
i ) hasn’t halted by step j and which has a tree

of subcomputations of height at most β. Now for γ < α let Dα̂,γ̂
ηηη,i be the

Borel code of the intersection of Eα
ηηη,i,j,β over j ∈ ω and β < γ, where γ̂
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is the encoding of γ induced by α̂. So Dα̂,γ̂
ηηη,i is a Borel code for those Y

such that 〈rηηηi 〉X,Y (mηηη
i ) doesn’t halt and has a tree of subcomputations of

height at most γ. Now let Dα̂
ηηη,i be the union of Dα̂,γ̂

ηηη,i over γ < α. So Dα̂
ηηη,i

is a Borel code for those Y such that 〈rηηηi 〉X,Y (mηηη
i ) doesn’t halt and has a

tree of subcomputations of height at less than α.
Let C α̂

ηηη be the intersection of Dα̂
ηηη,i for i ≤ `ηηη. Note that as `ηηη is finite

the rank of the tree of subcomputations of anything in C α̂
ηηη bounded by the

supremum of the tree of subcomputations of 〈rηηηi 〉X,Y (mηηη
i ) plus 1. Therefore

the rank of the tree of subcomputations of 〈f〉X,Y (n) is at most α for all
Y ∈ C α̂

ηηη .

Finally for j ∈ ω we define the codes as follows.

(I) 〈e↓〉X,α̂(f, n, η, · ) is the union of C α̂
ηηη such that ηηη ∈ B↓.

(II) 〈e↓j〉X,α̂(f, n, η, · ) is the union of C α̂
ηηη such that ηηη ∈ B↓j.

(III) 〈e↑j〉X,α̂(f, n, η, · ) is the union of C α̂
ηηη such that ηηη ∈ B↑j.

(IV) 〈e↑〉X,α̂(f, n, η, · ) is the intersection of the codes given by 〈e↑j〉X,α̂(f, n, η, · )
for j ∈ ω.

Claim 13. C α̂
ηηη is a Borel code of the set of all Y extending η such that the behavior

of 〈f〉X,Y (n) on the first k-many steps agrees with that of ν, and for which the
tree of computations has height at most α̂.

Proof. Our proof that these codes satisfy our theorem proceeds by induction on
α. Notice by conditions (i) and (ii) that if α = 0 then C α̂

ηηη satisfies the claim.

But then by induction on α and condition (iii), Dα̂
ηηη,i is a Borel code for those Y

extending η for which the ith halting call agree with ν and the tree of subcompu-
tations has height < α. This then implies that C α̂

ηηη satisfies the claim. �

It is then straightforward to check from Claim 13 that these definitions satisfy
the proposition. �

Before moving on to the main application of Proposition 12, it is worth taking
a moment to highlight the importance of the ordinal α. Specifically, if we did
not have a uniform bound on the height of the tree of subcomputations we were
considering, we might accidentally make a halting query which would cause our
computation to freeze — causing the entire construction to break. However, we
show in Lemma 14 that this is not an issue, as there will always be a single bound
on all trees of subcomputations, which is itself feedback computable from X.

Lemma 14. Suppose e is a code (with respect to X) for a feedback computable
function from 2ω to 2ω. Then there is a countable ordinal α and an encoding α̂
that is feedback computable in X such that for every Y ∈ 2ω and n ∈ N the tree
of subcomputations of 〈e〉X,Y (n) has height bounded by α.
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Proof. Let P (β) be the statement “(∃Y ∈ 2ω)(∃n ∈ N) such that β is the height
of a tree of subcomputations for 〈e〉X,Y (n)”. Then P ( · ) is a Σ1

1(X) predicate.
Hence, by [Sac90, Chapter II Ex. 5.9], there is some ordinal α hyperarithmetic
in X such that α bounds all β satisfying P . Further, by [AFL15, Theorem 16],
some encoding α̂ is feedback computable in X because α is hyperarithmetic in X.

However, for all Y ∈ 2ω and n ∈ N, the feedback computation 〈e〉X,Y (n) does
not freeze and hence its tree of subcomputations is well-founded. In particular
this implies that α bounds the height of the tree of subcomputations of 〈e〉X,Y (n)
for all Y ∈ 2ω and n ∈ N. �

Proposition 15. Suppose f : 2ω → 2ω is a feedback computable map (with respect
to X). Then f is ∆1

1(X).

Proof. Let e be a code (with respect to X) for the map f , and let α and α̂ be
as in Lemma 14. By Proposition 12, there is a uniformly computable (in X
and α̂) collection of Borel codes ζ↓j such that RRR(ζ↓j) = {Y : 〈e〉X,Y (n) = j and
〈e〉X,Y (n) has a tree of subcomputations of height < α}. But then RRR(ζ↓j) =
{Y : 〈e〉X,Y (n) = j}, as the trees of subcomputations for feedback machines of
the form 〈e〉X,Y (n) have height < α. Hence there is a collection of Borel codes
(γσ)σ∈2<ω , uniformly feedback computable in X, such that RRR(γσ) = f−1([σ]) for
each σ ∈ 2<ω. But then by [AFL15, Theorem 16], the functions γσ : N→ N are
∆1

1(X) uniformly in σ. Therefore f is ∆1
1(X). �

Proposition 16. Suppose f : 2ω → 2ω is ∆1
1(X). Then f is feedback computable

(with respect to X).

Proof. There is a sequence 〈γσ〉σ∈2<ω which is in ∆1
1(X) such that for σ ∈ 2<ω

the real γσ is a Borel code for f−1([σ]). By Theorem 3, we therefore have that
〈γσ〉σ∈2<ω is feedback computable from X.

Then by Lemma 8 there is a feedback machine e such that 〈e〉X,Y (n) = 1 if there
is a σ ∈ 2n+1 such that σ(n) = 1 and Y ∈ RRR(γσ), and 〈e〉X,Y (n) = 0 otherwise. In
other words, 〈e〉X,Y (n) is the value of f(Y )(n). Hence e is a code (relative to X)
for f . �

At this point, we have accomplished our main purpose in this section, to provide
a machine model for Borel functions from 2ω to 2ω, by showing that the Borel
functions are exactly the feedback computable functions. To round this out, we
include some other characterizations of feedback computable functions.

If f is feedback computable (mention of the parameter X ⊆ ω will be sup-
pressed), then f(Y ) is in any admissible set containing Y . So f is uniformly
Σ1 definable over all admissible sets, as f(Y ) = Z iff within any admissible set
containing Y there is a tree witnessing the computation of f(Y ) [AFL15, Proposi-
tion 4]. In fact, f can trivially be extended to a function on the entire universe V ,
by letting f(Y ) be the empty set whenever Y is not a real. Conversely, suppose
f : V → V is uniformly Σ1 definable over all admissible sets, and f takes reals
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to reals. Then, as a function on reals, f is Σ1
1; namely, f(Y ) = Z iff there is a

real coding an ω-standard admissible set modeling f(Y ) = Z. (In a little more
detail, it costs nothing to say the model is ω-standard, as you can insist that the
members of the model’s version of ω are given by the evens in their natural order.
Furthermore, the ordinal standard part of an admissible set is itself admissible, so
an ω-standard admissible set containing Y , even if non-standard, will also contain
f(Y ).) It is folklore that every Σ1

1 function is ∆1
1, as f(Y ) 6= Z iff there is a W

such that f(Y ) = W and W 6= Z.
For another characterization of the functions in question, van de Wiele [vdW82]

showed that a function is uniformly Σ1 over all admissible sets iff it is E-recursive.
This was later extended by Slaman [Sla86] (see also [Lub88] for a different proof) to
include hereditarily countable parameters. Slaman’s result is that for a hereditarily
countable parameter p, a function f is uniformly Σ1(p) over all admissible sets iff
f is ESp recursive, where ESp recursion is E-recursion augmented by selection
from p, a schema first identified in [Hoo82] and further studied in [Sla85]. In our
case, the parameter is a real X; by Gandy Selection, selection from a real follows
from the regular E-recursion schema [Sla85], so that f is uniformly Σ1(X) over
all admissible sets iff f is E-recursive in X.

Summarizing the above, we have the following theorem.

Theorem 17. For any function f : 2ω → 2ω and any X ⊆ ω the following are
equivalent.

(a) f is ∆1
1(X).

(b) f is feedback computable with respect to X.
(c) f can be extended to a function on V which is uniformly Σ1(X) definable

over all admissible sets.
(d) f can be extended to a function E-recursive in X.

2. Feedback computability relative to a structure

In this section, we extend the notion of an oracle from a set of natural numbers
to a structure (up to isomorphism). If the structure is countable, it can be coded
as a set of natural numbers, however this cannot be done if the structure is
uncountable. As such, we want our definition of computation from a structure to
ultimately be independent of any coding of our structure. This can be seen as a
feedback analogue of Medvedev reducibility on isomorphism classes of structures.
(For a survey of Muchnik and Medvedev degrees, see [Hin12].) We will make use
of the fact (Theorem 17) that Borel functions can be thought of as those that are
feedback computable from an oracle, and the fact that the isomorphism classes

There is a minor mistake in the latter which can easily be corrected. Slaman’s proof
uses selection from the parameter p. It is mistakenly claimed in [Lub88] that selection from p is
not necessary. In fact, the construction in [Lub88] is perfectly good; it’s just that the use of
selection from p in the construction was overlooked.
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of countable structures are Borel (see [Kec95, Theorem 16.6]). In fact, using
Theorem 17, one can rephrase the results in this section in terms of notions from
effective descriptive set theory, instead of feedback computability, if so desired.

Definition 18. A countable language L0 is feedback computable if the sets
of relation, function, and constant symbols in L0, and their arities, are uniformly
feedback computable.

A particular feedback computable enumeration of such data gives rise to a
natural encoding of each countable L0-structure with underlying set N, which we
will sometimes call its L0-encoding, and often use implicitly. (For more details
on such encodings, see, e.g., [Mon18].)

A structure is hereditarily countable when its underlying set and the sets
of its relations, functions, and constants are hereditarily countable. Note that
a structure is isomorphic to a hereditarily countable one if and only if it is a
countable structure in a countable language. However, there are hereditarily
countable structures that are uncountable in some admissible sets that contain
them as an element. Hence we may think of a structure being hereditarily
countable in an admissible set as a measure of its computability with respect to
the admissible set.

We now give two definitions of different kinds of structures that can be computed
from a structure independent of any coding.

2.1. Feedback computing expansions. We now introduce the notion of feed-
back computing an expansion of a structure.

Definition 19. For j ∈ {0, 1}, let Lj be a feedback computable language, and let
M∗

j be an Lj-structure with underlying set N and natural Lj encoding ij. We say
that e ∈ N feedback computes M∗

1 from M∗
0 using the natural encodings

if 〈e〉i0(M∗
0) is a total function with 〈e〉i0(M∗

0) = i1(M∗
1).

We will later use the following lemma.

Lemma 20. For j ∈ {0, 1}, let Lj be a feedback computable language, and let M∗
j

be an Lj-structure with underlying set N. The statement “e feedback computesM∗
1

from M∗
0 using the natural encodings” is Σ1 over any admissible set containing

both M∗
j ’s, as is the statement “there exists an M∗

1 such that e feedback computes
M∗

1 from M∗
0 using the natural encodings”. Further, for every M∗

0 and e, there
is at most one M∗

1 for which e feedback computes M∗
1 from M∗

0 using the natural
encodings.

Proof. Each convergent feedback computation 〈e〉i0(M∗
0)(n) has a witness to its

convergence and value in any such admissible set. So if 〈e〉i0(M∗
0) is total, by

admissibility a set of witnesses to the convergence of each 〈e〉i0(M∗
0)(n) can be

formed, witnessing the totality of 〈e〉i0(M∗
0). It is then arithmetic in the output

of 〈e〉i0(M∗
0) whether that function is the natural encoding of a structure, and
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what that structure would be, in particular whether it equals M∗
1. So the Σ1

sentence claimed to existence is the existence of a witness or a construction that
〈e〉i0(M∗

0) = i1(M∗
1). �

Definition 21. Let L0 ⊆ L1 be feedback computable languages,M0 be a countable
L0-structure, and M1 a countable L1-structure which is an expansion of M0,
i.e., M1|L0 =M0. Then e feedback computes the expansion M1 of oracle
M0, written 〈e〉M0 �+ M1, if for every L0-structure M∗

0 with underlying set N
and isomorphism f : M∗

0 →M0, for all L1-structures M∗
1 such that e feedback

computes M∗
1 from M∗

0 using the natural encodings, we have M∗
1|L0 =M∗

0 and f
is an isomorphism from M∗

1 →M1.

As an example, consider the case where L0 = (id,×) and L1 = (id,×, (·)−1)
with id a constant, × a binary function, and (·)−1 a unary function. Suppose M0

is a group in the language L0 and M1 is the same group but in the language L1

(i.e., with the inverse function). Then, as we can feedback compute the inverse
function when we are passed a group, there is a feedback machine which computes
the expansion M1 of M0.

The following generalization of the relativized Lévy–Shoenfield Absoluteness
Theorem [Jec97, Theorem 36′] will be used in Propositions 23 and 28. A version of
it is stated as Exercise 15.14 of [Jec97] (in only the first two editions); we include
its proof for completeness.

Theorem 22 ([Jec97, Ex. 15.14]). Let A be a transitive admissible set containing
the countable ordinals and in which p is hereditarily countable. If ϕ is a Σ1(p)
sentence true in V , then ϕ is true in A.

Proof. Let ϕ(p) be ∃x ψ(x), where ψ is ∆0 and in prenex form. Replace the
existential quantifiers in ψ by terms for Skolem functions. By Löwenheim–Skolem,
and using the hereditary countability of p, there is a witness x to ψ(x) in a
countable transitive model. In particular, the height of this model is a countable
ordinal, say γ. Work relative to some coding Z of p, which by hypothesis exists in
A. Build the tree of finite structures (allowing the Skolem functions to be partial),
which we think of as finite substructures of models of ψ(x), with a ranking function
(of the sets of the model) into γ. There are two additional constraints on this tree.
A node on level n must contain (at least) the first n-many elements (according to
Z) of the transitive closure of p, along with their elementary diagram, and no node
may contain an element of the transitive closure of p not given by Z. (This way,
in the model induced by any infinite path through the tree, the interpretation of
the symbol “p” will be p itself.) Furthermore, for a node τ to be a child of a node
σ, all of the Skolem functions must have a value at τ on any input from σ. (This
way, the model induced by any infinite path through the tree will be a model of
ϕ(p).) Conversely, any countable model of ϕ(p) of height at most γ, along with
a counting of that model, induces an infinite path through this tree. (To make
choices among the successor of a node, you will in general need a choice function
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on this tree, which can be assumed to exist, since the tree can be constructed in
L of some real parameters.)

Note that, for any γ, this tree is in A. Also, if it is well-founded, then it has a
ranking function in any admissible set in which it is countable; and if it is not
well-founded, then it has a branch definable over any such admissible set. It bears
mention that there is such an admissible set in A, namely Lα[Z], where α is the
least Z-admissible beyond γ. So if ϕ(p) is true in V , then there is a countable γ
such that the tree built on γ is not well-founded, and hence has a branch definable
over Lα[Z], and therefore in A, from which a witness to ϕ(p) can be built. �

Observe that by the upwards persistence of Σ1(p) formulas, if ϕ is a Σ1(p)
sentence true in A, then it is true in all supersets of A. Hence the absoluteness
result Theorem 22 also holds for all supersets of a transitive admissible set
containing the countable ordinals in which p is hereditarily countable.

Often the parameter in the statement of Theorem 22 is taken to be a real
Z ⊆ N, in which case the statement can be simplified to absoluteness between V
and L

ω
L[Z]
1

[Z]. The formulation above is more general in that no coding Z ⊆ N of

the transitive closure of p need be assumed specified, there being no canonical
choice of such a Z. The formulation above is superficially weaker in that, once Z
is chosen, A must be at least Lω1 [Z], whereas in truth the potentially smaller set
L
ω
L[Z]
1

[Z] would suffice. However, this stronger version follows from the formulation

given, since the theorem as stated gives absoluteness between V and L[Z], and
then the theorem could be interpreted in L[Z].

Proposition 23. Let L0 ⊆ L1 be countable languages, let M0 be an L0-structure,
and let M1 be an L1-structure whose reduct to L0 is M0. Let A be a transitive
admissible set containing the countable ordinals and in which M0 and M1 are
hereditarily countable. Then the statement 〈e〉M0 �+ M1 is absolute between V
and all supersets of A.

Proof. Consider the definition of �+, Definition 21. It is of the form “for all M∗
0

and f and M∗
1, where the M∗

j ’s are structures on N, if e feedback computes M∗
1

fromM∗
0 thenM∗

1 is an expansion ofM∗
0 and the isomorphism f extends toM∗

1”.
Whether e feedback computes M∗

1 from M∗
0 is, by Lemma 20, ∆1 expressible as

“all admissible sets containing the M∗
j ’s satisfy a certain sentence” and “there

is an admissible set containing the M∗
j ’s satisfying a certain sentence”. What

follows is arithmetic in the parameters. Hence the entire definition is Π1. By
Theorem 22, applied to the negation of this relation, it is absolute between V and
A, and hence also with respect to all supersets of A. �

It follows from Proposition 23 that the following definition is well-defined
and doesn’t depend on the specific forcing extension. Note that this can be
seen as a feedback computability analogue of relations being uniformly relatively
intrinsically (u.r.i.) computable (see [Mon18]).
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Definition 24. Let L0 ⊆ L1 be languages, M0 be a (not necessarily countable)
L0-structure, andM1 an L1-structure which is an expansion ofM0, i.e.,M1|L0 =
M0. Then e feedback computes the expansion M1 of oracle M0, written
〈e〉M0 �+ M1, if there is some forcing extension V[G] of the universe in which
M0 is countable and V[G] |= 〈e〉M0 �+ M1.

We now define what it means for a subset of a structure to be feedback
computable.

Definition 25. Suppose L0 is a language and M is a (not necessarily countable)
L0-structure. Suppose U ⊆ M is fixed by all automorphisms of M and MU is
the expansion of M which adds U as a new unary predicate. Then U is feedback
computable from M if there is an e ∈ N such that 〈e〉M �+ MU .

Note that by Proposition 23 the specific forcing extension is irrelevant. The
reason why we require U to be closed under automorphisms of M is so that the
set U is uniquely defined by MU . Our main use of this notion is when M is of
the form (γ,∈γ, A) for some ordinal γ and finite subset A, where ∈γ denotes the
relation ∈ restricted to γ.

2.2. Feedback computing a structure. Having defined what it means for an
expansion of a structure to be feedback computable, we now define what it means
for a structure to be feedback computable from another structure.

Definition 26. Let Lj be a language and Mj a countable Lj-structure for j ∈
{0, 1}. Then e feedback computes M1 from M0, written 〈e〉M0 � M1, if
for every L0-structure M∗

0
∼=M0 with underlying set N there is an L1-structure

M∗
1
∼= M1 with underlying set N such that e feedback computes M∗

1 from M∗
0

using the natural encodings.

As an example, let G be a group and H a normal subgroup. Consider the
structure given by the group G along with a distinguished relation for H. We can
feedback compute the group G/H by simply choosing a representative from each
coset of H along with the group multiplication table for these representatives
induced by multiplying the corresponding cosets.

Note that for a structure M with underlying set N and natural encoding i, the
notation 〈e〉i(M) denotes the feedback computable (partial) function from N to N
that takes as an oracle the natural encoding of M. In contrast, 〈e〉M will not be
used on its own, and 〈e〉M � N (or 〈e〉M �+ N ) can be thought of as saying that
no matter what copy of M is passed as an oracle to 〈e〉, the output is always a
copy of N (or in the case of �+ a copy of N which is also an expansion of M).

It is worth noting that if 〈e〉M �+ N then we also have 〈e〉M � N . However
the converse need not hold as if 〈e〉M � N the output may be a structure whose
restriction to LM (the language of M) is only isomorphic to M and not equal to
it.
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Lemma 27. Let A be an admissible set in which models M and N (for the same
language) are hereditarily countable. Then whether M and N are isomorphic
in V is Π1 definable over A, and if they are isomorphic then an isomorphism is
definable over A.

Proof. Observe that the set of isomorphisms is Σ1
1 definable (in a real parameter

coding M and N by any fixed standard way of coding a model by a real). Hence
by the Kleene Basis Theorem, this set has a member computable in the hyperjump
of the parameters (if non-empty) [Sac90, III.1.3]. �

At its core, the proof is essentially building, in A, the tree of finite partial
isomorphisms between M and N (that is, isomorphisms between finite subsets
of M and N ). They are isomorphic (in V ) iff the tree is ill-founded iff there is
no ranking function from the tree to the ordinals in A, a Π1 statement over A;
furthermore, an isomorphism can be built from any path through the tree, one of
which is definable over A (when the tree is ill-founded).

Proposition 28. Let L0 and L1 be languages, and let M0 be an L0-structure and
M1 an L1-structure. Let A be a transitive admissible set containing the countable
ordinals and in which M0 and M1 are hereditarily countable. Then the statement
〈e〉M0 �M1 is absolute between V and all supersets of A.

Proof. Consider the definition of �, Definition 26. It is of the form “for all M∗
0

isomorphic to M0 there is an M∗
1 such that e feedback computes M∗

1 from M∗
0

and M∗
1 and M1 are isomorphic”. As above, whether e feedback computes M∗

1

from M∗
0 is, by Lemma 20, ∆1 expressible as “all admissible sets containing the

M∗
j ’s satisfy a certain sentence” and “some admissible set containing the M∗

j ’s
satisfies a certain sentence”. Also, by Lemma 27, so is the assertion “M∗

1 and
M1 are isomorphic”, as a definable assertion over any admissible set in which the
parameters are hereditarily countable. It bears observation that there is such an
admissible set in A; namely, if R ∈ A is a real coding (in some simple, standard
way) both M1 and M∗

1, then LωR1 [R] ∈ A, as A contains all countable ordinals

and LωR1 [R] ⊆ A. This provides a Π1 definition of �. By Theorem 22, applied to
the negation of this relation, it is absolute between V and A, and hence also with
respect to all supersets of A. �

The absoluteness of the relation of feedback reducibility between structures
(Definition 26) allows us to make sense of feedback reducibility between structures
even when those structures happen to be uncountable by considering the question
of reducibility in a forcing extension where the structures are countable.

It follows from Proposition 28 that the following definition is well-defined and
doesn’t depend on the specific forcing extension.

Definition 29. Let L0, L1 be languages, M0 be a (not necessarily countable) L0-
structure, and M1 a (not necessarily countable) L1-structure. Then e feedback
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computesM1 fromM0, written 〈e〉M0 �M1, if there is some forcing extension
V[G] of the universe in which M0 is countable and V[G] |= 〈e〉M0 �M1.

The relative computability of uncountable structures was studied using generic
extensions and Muchnik degrees in [KMS16]. Our consideration of the feedback
reducibility of uncountable structures can be seen as a feedback analogue of
these notions, except using the analogue of Medvedev degrees instead of Muchnik
degrees, because of the uniformity of our reductions.

Furthermore, both notions of feedback reducibility that take a structure as an
oracle (Definitions 21 and 26) allow us to perform computation in a way that
ignores the particular instantiations of the structures. This is important, as there
are times when there is more computable information that can be obtained by the
encoding of the structure than can be obtained intrinsically from the structure.

2.3. Example: Functions from ω to ω. There is one example of computing
one structure from another which is particularly important. Note that if (W,C, c)
is a well-ordering of order type ω and c is a constant in W , then, uniformly
in an encoding of an oracle (W,C, c), we can return the element of N which c
represents. Therefore if 〈e〉M � (W,C, c) there is little harm in identifying the
output with the number c represents. In particular we can define 〈e〉M(n) = m
if 〈e〉M×(ω,∈,n) � (ω,∈,m). Hence we can think of 〈e〉M(n) = m as saying that
whenever e is handed a copy ofM as an oracle, along with the natural number n,
it outputs the natural number m.

As an example of this, suppose G is a torsion group. There is a feedback
computable function 〈e〉 which takes n, computes the nth prime p and returns
the smallest m > 0 such that there is a subgroup of size pm if such an m exists
and returns 0 otherwise. While the input depends on the specific group, it does
not depend on the encoding of the group.

The following is then immediate from Proposition 28.

Corollary 30. LetM be an L-structure. The statement 〈e〉M(n) = m is absolute
among all transitive admissible sets containing the countable ordinals and in which
M is hereditarily countable.

2.4. Example: α-infinite time Turing machines. For an admissible ordinal
α, the (α, α)-infinite time Turing machines (ITTMs) provide a different model
which captures the α-computable sets. We now show how to represent this
model via oracle feedback computation, which highlights the value of feedback
computation as a machine model for Borel maps.

The following definition is a straightforward generalization of the (∞, ω)-Turing
machines of [HL00] and the (α, α)-Turing machines in [KS09].

Definition 31. Let α, β be ordinals. A (run of a) α-time, β-space Turing
machine (referred to as an (α, β)-ITTM) consists of the following data.
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• A function T : α × β → {0, 1}, called the tape. For γ ∈ α, the function
T (γ, · ) : β → {0, 1} is called the values of the tape at time γ. The values
at time 0 are called the initial values.
• A function H : α→ β, called the head location.
• A function S : α→ E, called the state space, where E is a finite linearly

ordered set containing a special starting state s and halting state h. For
γ ∈ α, the value S(γ) is called the state of the machine at time γ.
• A function C : E × {0, 1} → E × {0, 1} × {LEFT,RIGHT, STAY}, called

the look up table. It can be thought of as taking the state of the machine
and the symbol written under the tape and returning the new state, the
new symbol, and whether to move the head left or right, or to have it stay
where it is.

This data is required to satisfy the following conditions.

• C(h, z) = (h, z, STAY) for all z ∈ {0, 1}.
• H(0) = 0 and S(0) = s.
• If γ ∈ α is a limit ordinal then H(γ) = lim infζ∈γ H(ζ) and S(γ) =

lim infζ∈γ S(ζ).
• If γ + 1 ∈ α and (e, z,M) = C

(
S(γ), T (γ,H(γ))

)
, then the following hold.

◦ S(γ + 1) = e.
◦ T (γ + 1, H(γ)) = z.
◦ T (γ + 1, η) = T (γ, η) for η 6= H(γ).
◦ If M = STAY then H(γ + 1) = H(γ).
◦ If M = RIGHT then H(γ + 1) = H(γ) + 1.
◦ If M = LEFT and H(γ) = p+ 1 then H(γ + 1) = p.
◦ If M = LEFT and H(γ) is a limit ordinal then H(γ + 1) = 0.

The input of the machine is T (0, · ). The machine halts if there is some
γ < α such that S(γ) = h, and in this case, T (γ, · ) is the output of the machine
(which is well-defined by the first condition).

We will refer to an (α, α)-ITTM as simply an α-ITTM.

We now show how to perform such computations using feedback.

Lemma 32. There is a feedback machine ittm such that if

Mα,β,X,C :=〈(α,∈α), (β,∈β), X, C〉
where X : β → {0, 1} and C is a lookup table, then

〈ittm〉Mα,β,X,C ∼= Nα,β,X,C
where Nα,β,X,C = 〈(α,∈α), (β,∈β), TX , HX , SX , C〉, with (TX , HX , SX , C) the
(unique) (α, β)-ITTM with TX(0, · ) = X and code C.

Proof. Note that given (α, β), a code C, and initial values X, the definition of an
(α, β)-ITTM uniquely determines the functions TX , HX , and SX by a transfinite
recursion along α that is uniform in α, β, and X. Given a representation of an
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ordinal, we can feedback computably identify if an element of that representation
corresponds to a limit ordinal (and if not find its successor). Hence from any
isomorphic copy of Mα,β,X,C we can feedback compute Nα,β,X,C . �

Henceforth all (α, β)-ITTMs will have α = β. As is standard in this situation,
we will imagine that there is an input tape, an output tape, and an extra parameter
tape (in which all but finitely many values are 0). This can be encoded into the
ITTM in the standard way by interleaving these three tapes.

Definition 33. A function f : P<ω(α) → P<ω(α) is α-ITTM computable if
there is an α-ITTM with a fixed finite extra parameter set such that when the input
tape is the characteristic function of A for some finite sequence A of elements of α,
then the α-ITTM halts with the characteristic function of f(A) on the output tape.
The notion of α-ITTM computability naturally extends to functions f : αn → αm

for n,m ∈ N.

Lemma 34. Let α and γ be ordinals. Suppose (α,C) is well-ordered with order
type γ where C is α-ITTM computable. Then for all finite B ⊆ γ there is a
feedback machine e such that 〈e〉(α,∈α,A) � (γ,∈γ, B) for some finite A ⊆ α.

Proof. For any finite lookup table C and finite A∗ ∈ P<ω(α), from (α,∈α, A∗)
we can feedback compute Mα,α,A∗,C (via a feedback machine that intrinsically
encodes C). Hence for any such C and A∗, the structure Nα,α,A∗,C is feedback
computable from (α,∈α, A∗) by Lemma 32. By assumption, there is some C
and some finite A ∈ P<ω(α) such that from Nα,α,A,C we can feedback compute
(γ,∈γ, B). Hence for some A ∈ P<ω(α), the structure (γ,∈γ, B) can be feedback
computed from (α,∈α, A). �

2.5. Feedback computation from ordinals. For the remainder of this section,
we consider an extended example, feedback computability relative to a countable
admissible ordinal.

Proposition 35. Let γ be an ordinal, let A be a finite subset of γ, let U ⊆ γ, and
suppose that e is such that the function 〈e〉(γ,∈γ ,A) feedback computes (γ,∈γ, U).
Then U ∈ L(γ+).

Proof. First note we can assume without loss of generality that γ is countable,
as if it isn’t we can move to a forcing extension where γ is countable. Next note
that the partial ordering (γ<ω,�) ∈ L(γ+) where a � b if a is an initial segment
of b. Let G be a generic for (γ<ω,�). Then G is a surjection from ω onto γ. By
[Ers90, Theorem 1], the set L(γ+)[G] is admissible. From the surjection G it is
easy to find a real G∗ ∈ 2ω encoding (γ,∈γ) such that G∗ ∈ L(γ+)[G].

Now let M ∈ L(γ+)[G] be a real encoding the structure (γ,∈γ, A) and let MU be
the corresponding real encoding (γ,∈γ, A, U). Then MU is feedback computable
from M (by assumption). Therefore, by [AFL15, Proposition 16], the structure
MU is in any admissible set containing M and in particular is in L(γ+)[G]. In
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particular this implies that U ∈ L(γ+)[G]. But as G was an arbitrary generic for
(γ<ω,�), we must have that U ∈ L(γ+), as desired. �

In general, even for a countable admissible α, an ordinal γ < α+, and a
finite subset A of γ, there are not necessarily reals in L(α+) encoding (α,∈α) or
(γ,∈γ, A). However, Proposition 35 still yields an upper bound on how complicated
a function can be that is feedback computable from an arbitrary ordinal γ.

It is an interesting open question to pin down exactly how complicated the
sets feedback computable from α can be. This is a question that we completely
answer when α is a Gandy ordinal. It is worth pointing out that in Proposition 35
we cannot simply absorb the finite set A into the code of the program, as the
specific natural numbers representing the elements of A depend on the particular
representation of (γ,∈γ).

Proposition 36. There is an e such that 〈e〉(γ,∈γ) � (L(γ),∈L(γ)). Further, e is
independent of γ.

Proof. Without loss of generality we can assume γ is countable. For a first-
order formula ϕ in the language of set theory, an ordinal α ∈γ γ, a tuple A of
ordinals in α of length one less than the number of free variables in ϕ, define
Sϕ,A,α:={x ∈ L(α) : L(α) |= ϕ(x,A)}.

Note that from (γ,∈γ) we can feedback compute the set of all such Sϕ,A,α.
Further we can feedback compute the relation Sϕ0,A0,α0 ∈L(γ) Sϕ1,A1,α1 by induction
on α0 and α1. Next, by induction on α we can compute an equivalence relation
≡ where Sϕ0,A0,α0 ≡ Sϕ1,A1,α1 if and only if they contain the same elements.

Let i be a surjection from first-order formulas in the language of set theory to
N. For each ≡-class, choose as a distinguished representative the Sϕ,A,α where
(i(ϕ), A, α) is lexicographically minimal. Finally, observe that (L(γ),∈L(γ)) is
isomorphic to the resulting collection of representatives under ≡. �

We then have the following corollary.

Corollary 37. If there is an α-computable well-ordering of α of height γ, then
for any finite B ⊆ γ there is an e ∈ N and a finite subset A ⊆ α such that
〈e〉(α,∈α,A) � (γ,∈γ, B).

Proof. We can feedback compute L(α + 1) along with a well-ordering vL(α+1)

from (α,∈α), and so by Proposition 36 we can feedback compute L(α+ 1) from α.
But every α-computable well-ordering of α is in L(α + 1), and so there must be
some triple (ϕ,A∗, α) such that Sϕ,A∗,α is an α-computable well-ordering of α of
order type γ. Therefore for some finite A encoding ϕ, A∗, and B, we can compute
(γ,∈γ, B). �

This suggests the following definition.
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Definition 38. An admissible ordinal α is defined to be a feedback Gandy
ordinal if for all γ < α+ there is a well-ordering (α,C) of order type γ which is
feedback computable from (α,∈α, A) for some finite A ⊆ α.

In particular, Corollary 37 shows that all Gandy ordinals are feedback Gandy
ordinals. Whereas it has been established that there are admissible ordinals that
are not Gandy ordinals [Gos79], it is an open question whether or not every
admissible ordinal is a feedback Gandy ordinal.

The following corollary is then immediate.

Corollary 39. If α is a feedback Gandy ordinal and γ < α+, then for all finite
B ⊆ γ there is a finite A ⊆ α such that (γ,∈γ, B) is feedback computable from
(α,∈α, A).

Proposition 40. Let α < γ be ordinals, let A be a finite subset of α, and let e ∈ N.
Suppose that U ∈ L(γ) is such that U ⊆ α, and suppose that 〈e〉(α,∈α,A) � (γ,∈γ).
Then there is some finite A∗ ⊆ α and e∗ ∈ N such that 〈e∗〉(α,∈α,A∗) �+ (α,∈α, U).

Proof. This follows immediately from Proposition 36 by letting A∗:=A ∪ {a},
where a is a code for U in a definable bijection from γ to L(γ). �

Combining Propositions 35 and 40 and Corollary 39, we obtain the following.

Theorem 41. If α is a feedback Gandy ordinal then the following are equivalent
for U ⊆ α.

• U ∈ L(α+).
• U is feedback computable from (α,∈α, A) for some A ∈ P<ω(α).

3. Open questions

We end with several open questions. For each of these questions, let α be an
ordinal and A a finite subset of α.

• For what β is there some set U ∈ L(β + 1) \ L(β) that is feedback
computable from (α,∈α, A)?
• If there is some U ∈ L(β + 1) \ L(β) that is feedback computable from

(α,∈α, A), must L(β + 1) be feedback computable from (α,∈α, A∗) for
some finite A∗ ⊆ α?
• Which ordinals are feedback Gandy? In particular, are there feedback

Gandy ordinals that are not Gandy ordinals? Indeed, are there any
admissible ordinals that are not feedback Gandy ordinals?
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