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Quantum marginal problems

Space of d-tensors, denoted C" @ C"? @ - - - @ C"d:

d-dimensional complex arrays of dimensions n, ..., ny; entries
Xip,..ig €C

fori; € [nj]. Letn =nq...ng.
eg N=n=n=2
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Marginals of a tensor

- Let X be a d-tensor
- Consider j™ slice in it" direction:

X**-u**j**u-**
i—1 —i
itisa (d—1)-tensor.
- The it" marginal p)(<i) is the n; x n; Gram matrix of the slices in the
it direction.
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Example:ny=n,=n3; =2

m._ = Xt — — Xax — ! . 0.5 0.25
e — X2wx — — Xowse — N 0.25 0.5

Note: Trp{) = ||x]2



Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X,
p)(<1),p)(< ), p>(<) are the mixed states of their respective qubits.

P—

<

A



Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X,
p)(<1),p)(< ), p>(<) are the mixed states of their respective qubits.

P—
'

A

A

One body quantum marginal problem, d = 3:
Can PSD matrices A, B, C arise as the marginals of some tensor X?



Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X,
p)(<1),p)(< ), p>(<) are the mixed states of their respective qubits.
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A

One body quantum marginal problem, d = 3:
Can PSD matrices A, B, C arise as the marginals of some tensor X?

Fact: the answer depends only on spec(A), spec(B), spec(C). 6
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Convenient notation

fXcCh®-...®@C"isasetof d+ 1-tensors, let
d
AX) = { (spec(l)/IVI7. .. spec(pl) /1Y) : Y € X}

A(X) is all the tuples of spectra of marginals of elements of X,
normalized to have trace one.
Quantum marginal problem, restatement:

Input: p = (p1, p2, p3) list of sequences of nonnegative reals
Output: Whetherp e A(C""'@C" ® - - ® C).
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More generally:

Given a tensor X, can we locally change basis to obtain specific
marginals?

We considerad +TtensorX e C"" @ C"M @ ---®@ C", and let

G :=GLp, x--- x GLp,.

g-X:=(n,®G1®G2® - ®gg)X.
G - X denotes the orbit of X, and G - X the orbit closure.

Question: TENSORSCALING(X, p)

InpUt: p= (p'la"'7pd)y
atensorinC"@C"® ... @ Ch

Output: whether p € A(G - X).
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Moment polytopes

A(C" ®---® C") and A(G - X) are convex polytopes!

More generally: Holds if X is a variety and G- X € X. Then A(X) is
called the moment polytope for the action of G on X.
The groups can also be more general.

10
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Question: MATRIXSCALING(A)
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Output: Whether 3D4, D, = 0 diagonal with D1AD, doubly stochastic.
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Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)

Input: A, nonnegative matrix
Output: Whether 3D4, D, = 0 diagonal with D1AD, doubly stochastic.

Let A = [ i Z] be a nonnegative matrix, and let
0 vb 0 0
7 - - 4
Va 0 0 0
p1=p;=(1,1) and X = | | |
0 —|—0—|—0—|—+d
/ / 7 S

0 0 NG 0




Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)

Input: A, nonnegative matrix
Output: Whether 3D4, D, = 0 diagonal with D1AD, doubly stochastic.

a b ) .
LetA = [ ] be a nonnegative matrix, and let

7 /

0

0 vb
/e | |
p1=p2=(1,1) and X = ‘ ‘
0 —|—o0—
e e
0 0 NG 0

Fact: MATRIXSCALING(A) <= TENSORSCALING(X, p)
11
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Applications of tensor scaling

Matrix scaling:

e deterministically approximating permanent

Operator scaling: (The d = 2 case of tensor scaling)

e noncommutative rational identity testing

e Forster's radial isotropic position

e computing the Brascamp-Lieb constant in analysis

e Horn's problem on eigenvalues of sums of matrices

One body quantum marginal problem: (Tensor scaling for random X)
e equivalence under SLOCC to locally maximally mixed state

e The Kronecker polytope in representation theory

Tensor scaling:

e null-cone: do all SLp, x ...SLy,-invariant polynomials vanish on X?

12



Approximate tensor scaling: TENSORSCALING(X, p, €)
Input: Tensor X, tuple p,e > 0
Output: If either output g such that for all i € [d]

| spec(p$)) = pill < &,

or correctly output that p ¢ A(G - X).

13



History of approxmate scaling algorithms

MATRIXSCALING(A, r, ¢):
e [Sinkhorn '64]: simple poly(1/¢) algorithm when r = ¢ =1
e [Linial, Samorodnitsky, Wigderson '98]: poly log(1/¢) for any r, ¢
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History of approxmate scaling algorithms

MATRIXSCALING(A, r, ¢):

e [Sinkhorn '64]: simple poly(1/¢) algorithm when r = ¢ =1

e [Linial, Samorodnitsky, Wigderson '98]: poly log(1/¢) for any r, ¢
OPERATORSCALING(X, p1, p2): The d = 2 case of TENSORSCALING
e [Gurvits '04]: simple poly(1/¢) algorithm when p; = p; =1

e [GGOW'17]: decision problem p; =p, =1

o [AGLOW"18]: polylog(1/¢) for p1 = p, =1

e [ '18]: randomized poly(1/¢) for any p1, p;

One body quantum marginal problem:

o [BCMW"17]: decision problem is in NP N coNP
TENSORSCALING(X, p1, ..., pg):

e [BGOWW'17]: poly(1/€) for p; = 1/n,;

e [BFGOWW'17]: (this work:) randomized poly(1/¢) for any px, ..., P4

14



Theorem (BFGOWW "18)

There is a randomized poly({X) + (p),1/¢)-time algorithm for
TENSORSCALING(X, p,e) with success probability 1/2.

The algorithm requires

O<dn2< >+<>\>+Iogdn>

&

iterations, each dominated by computing a Cholesky decomposition
of some n; x n; matrix.

15



Implications for decision problem

Convention: p = A/k for A integral and k = EAF)

Theorem (BFGOWW "18)

If for all i,
lspec(ph) — PV 1y < exp(—O(ny + - - + ng) log kmax ),

then p € A(G - X).



Implications for decision problem

Convention: p = A/k for A integral and k = EAF)

Theorem (BFGOWW "18)
If for all i,

lspec(ph) — PV 1y < exp(—O(ny + - - + ng) log kmax ),
then p € A(G - X).

Unfortunately, doesn’t result in poly time algorithm! Need
poly(log(1/¢)).
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Vague algorithm

Algorithm
Input: X, p with integer coordinates, e.
Output: ¥ = g - X st. ||spec(p{’) — p@ |1 < &, or OUTSIDE POLYTOPE

- Choose go with i.i.d integer coordinates in [K], set

=go - X/l|go - X||.
- Repeat T times:
- If done, output V.
- Else, scale in single factor to FIX the worst marginal of V.

( )
- Output OUTSIDE POLYTOPE

Theorem
For T > poly((X) + (p), n,1/¢), this is algorithm succeeds with
probability at least 1/2.
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Scaling Il

g =(g1,1,...,1) scales the flattening:

= (g o Y)1;‘,\... = — Y. —
: =01 :
- (g * Y)nr;.:“. - - an;\»“. -
In particular,
— Yoo, — — Y. — J
/»S.)y =01 : 91 : = Qw(ynﬂ
- Xn.‘ - Xﬂ']*



Fixing a marginal

Easy to fix it" marginal: choose g; such that g;p(i)gf = diag(p").

V2
Y
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Fixing a marginal

Easy to fix it" marginal: choose g; such that g,ps,")gf = diag(p").
WARNING: not every choice works. Correct way:

g; = 1/ diag(p") L,

L lower triangular Cholesky factor LTL = p; .

Remark:
It is maintained that g - Y is a unit vector the entire time.

19
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Proof outline

- The randomization step: Success = nonvanishing of a potential
function on gg - X
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Proof outline

- The randomization step: Success = nonvanishing of a potential
function on gg - X

If potential function nonvanishing, is in fact bounded below by

poly((X) + (p))

- The triangular scaling steps: the potential function decreases
by Q(£?) each step provided marginals are e-far from targets

20



Description of the potential functions

First define a modified determinant.
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If b is a lower triangular matrix and « a sequence of real numbers,
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m
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Description of the potential functions

First define a modified determinant.

Definition

If b is a lower triangular matrix and « a sequence of real numbers,
define

m

Xa( ):H ?"

Throughout the iterations, keep track of the following function:

gy
fox(9) = log 1, T

wherexm(g)::fﬁiqxpm(gﬂ-

21



Triangular scaling steps

Lemma ( )
Let g(t) be the scaling in the t'" step. If for some |,

H — diag(p ))HTr>€’

then fpv(g(t + 1)) < fp¥(9(t)) — Q(e?).
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Triangular scaling steps

Lemma ( )
Let g(t) be the scaling in the t'" step. If for some |,

H — diag( ())HTr>€’

then fpv(g(t + 1)) < fp¥(9(t)) — Q(e?).

Let
B:={g : g; lower triangular }.
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Triangular scaling steps

Lemma ( )
Let g(t) be the scaling in the t'" step. If for some |,

H — diag( ())HTr>€’

then foy(9(t +1)) < for(9(1)) — Q).
Let
B:={g : g; lower triangular }.

s ifinfgepfp,v(b) = —C, then the number of iterations is at
most

0(C/e?).

22



Why does f decrease at all?

Consider

To(9(t+1)) = fpr(9(1))
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Why does f decrease at all?

Consider

Tpx(9(t+1)) = fp.v(9(D))
At each step, ||g(t) - X|| is 1, so this is

—log [xp(g(t + 1)1 + log Ixp(g(1)) I

Recall that only the i factor changed was multiplied by

V/diag(pM)L, so the above is
n; ) )
~>"p"log (Pf') !L//!2> :
j=1

However, 7|15~ < [IL7"||e = Tr o)y, =1, 50 the above s
—D(p?V]]q) < 0.

for some (subnormalized) distribution g. 23



Randomization step: highest weights
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Randomization step: highest weights

A polynomial Pon C"M ® --- ® C"4 is a highest weight™ of weight X if

P(g - X) = xa(9)P(X)

forall g € B. That is, p is a common eigenvector of the action of the
lower triangular matrices on the polynomials.
**Really this is a lowest weight of —\

24



Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight X satisfying
P(Y) :< ||P||||Y||* for all Y. Then

T, [PMP
fox(g) > E|Og Pl

25



Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight X satisfying
P(Y) :< ||P||||Y||* for all Y. Then

T PYP
> — .
fp,Y(Q) e I? |Og ||PH2
Proof.
lg - VII** P(g- V)’ [PO)I®
Rfp.v(g) = log > log = log
p(9) IXA(9)? IPI21xa(9)1? IIPI1?
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Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight X satisfying
P(Y) :< ||P||||Y||* for all Y. Then

T PYP
> — .
fp,Y(Q) e I? |Og ||PH2
Proof.
lg - VII** P(g- V)’ [PO)I®
Rfp.v(g) = log > log = log
p(9) IXA(9)? IPI21xa(9)1? IIPI1?

O]

Thus, highest weights that do not vanish on Y give us lower bounds!

25



Nonzero highest weight after randomization

Theorem ( )

p € A(X)NQ if and only if some there is some integer ¢ such that
A = Ip is integral and some highest weight Py does not vanish on
G-X
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Nonzero highest weight after randomization

Theorem ( )
p € A(X)NQ if and only if some there is some integer ¢ such that

A = Ip is integral and some highest weight Py does not vanish on
G-X
Further, , If £p is integral we may take

k = (¢d max n;)(@maxn);
Thus in randomization step we may take K = 2(¢d max n;){™x") to
obtain a nonvanishing highest weight with probability 1/2.
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Nonvanishing highest weights bounded highest weights

Lemma ( )
The space of highest weights of weight A are spanned by
polynomials with integer coefficients and ||P|| < n*.

Suppose the largest entry of gg - X is M.
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Nonvanishing highest weights bounded highest weights

Lemma ( )
The space of highest weights of weight A are spanned by
polynomials with integer coefficients and ||P|| < n*.

Suppose the largest entry of gg - X is M.

Corollary
If a highest weight of XA doesn’t vanish on gq - X, then
infges fp,v(g) > —2logn — log ||go ~XH2 > —3logn — logM
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Nonvanishing highest weights bounded highest weights

Lemma ( )
The space of highest weights of weight A are spanned by
polynomials with integer coefficients and ||P|| < n*.

Suppose the largest entry of gg - X is M.

Corollary
If a highest weight of XA doesn’t vanish on gq - X, then
infges fp,v(g) > —2logn — log ||go ~XH2 > —3logn — logM

Corollary
The algorithm runs in
O((log n + log M) /e?) = O(d max n;((X) + (p) + log d max n;)/e?) steps

27



Open problems




Open problems

- Obtain poly log(1/¢) run time!

- Solve the optimization problem for other group actions (in
progress).

- Develop separation oracles for moment polytopes.

28



Thank you!



Moment polytopes




General framework

Suppose G acts linearly on a vector space V and the inner product
(—,—) is invariant under the unitaries K = U(nq) x --- x U(ng).
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General framework

Suppose G acts linearly on a vector space V and the inner product
(—,—) is invariant under the unitaries K = U(nq) x --- x U(ng).
Definition

The map s : V— Hermp, x - -- x Hermp, given by

: X' Vazo log ||e* - X||

is known as the for the action of G on V.

29



Moment polytope

Define

A(X) = {(spec(um(Y)), - spec(u@ (V) Y e ﬂ} .
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Moment polytope

Define
A(X) = {(spec(um(Y)), . spec(u@ (V) 1 Y e T} .

Amazingly, A(X) is not only a polytope but encodes the rep. theory
of polynomials on G - X!
G acts on a polynomial p on Vby g - p(x) = p(g~" - X).

Theorem ( )

AX)NQ = {A/R: Vs CRp(G-X)}

30
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