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Overview

• Simple classical algorithm for tensor scaling
• Important example of moment polytope problem
• Analysis solves nonconvex optimization problem arising in GIT
• Many interesting consequences of faster algorithms

1



Overview

• Simple classical algorithm for tensor scaling
• Important example of moment polytope problem
• Analysis solves nonconvex optimization problem arising in GIT
• Many interesting consequences of faster algorithms

1



Overview

• Simple classical algorithm for tensor scaling
• Important example of moment polytope problem
• Analysis solves nonconvex optimization problem arising in GIT
• Many interesting consequences of faster algorithms

1



Overview

• Simple classical algorithm for tensor scaling
• Important example of moment polytope problem
• Analysis solves nonconvex optimization problem arising in GIT
• Many interesting consequences of faster algorithms

1



Outline

• Problem statement and history
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Problem statement and history



Quantum marginal problems

Space of d-tensors, denoted Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnd :
d-dimensional complex arrays of dimensions n1, . . . ,nd; entries

xi1,...,id ∈ C

for ij ∈ [nj]. Let n = n1 . . .nd.

e.g. n1 = n2 = n3 = 2:

X =

x111 x112

x211 x212

x121 x122

x221 x222 3
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Marginals of a tensor

• Let X be a d-tensor
• Consider jth slice in ith direction:

X∗ ∗ · · · ∗ ∗︸ ︷︷ ︸
i−1

j∗ ∗ · · · ∗ ∗︸ ︷︷ ︸
d−i

it is a (d− 1)-tensor.
• The ith marginal ρ(i)X is the ni × ni Gram matrix of the slices in the
ith direction.
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Example: n1 = n2 = n3 = 2

X =

0.5 0.5

0 0.5

0 0

0 0.5

X1∗∗ =
[

0.5 0.5
0 0

]

X2∗∗ =
[

0 0.5
0 0.5

]

ρ
(1)
X :=

[
− X1∗∗ −
− X2∗∗ −

][
− X1∗∗ −
− X2∗∗ −

]†
 =

[
0.5 0.25
0.25 0.5

]

Note: Tr ρ(i)X = ∥X∥2!
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Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X,
ρ
(1)
X , ρ

(2)
X , ρ

(3)
X are the mixed states of their respective qubits.

X

ρ
(3)
X

ρ
(1)
X

ρ
(2)
X

One body quantum marginal problem, d = 3:
Can PSD matrices A,B, C arise as the marginals of some tensor X?

Fact: the answer depends only on spec(A), spec(B), spec(C). 6
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Convenient notation

If X ⊂ Cn0 ⊗ · · · ⊗ Cnd is a set of d+ 1-tensors, let

∆(X) =
{(

spec(ρ
(1)
Y )/∥Y∥2, . . . , spec(ρ(d)Y )/∥Y∥2

)
: Y ∈ X

}
∆(X) is all the tuples of spectra of marginals of elements of X,
normalized to have trace one.
Quantum marginal problem, restatement:
Input: p = (p1,p2,p3) list of sequences of nonnegative reals
Output: Whether p ∈ ∆(Cn0=1 ⊗ Cn1 ⊗ · · · ⊗ Cnd).
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More generally:

Given a tensor X, can we locally change basis to obtain specific
marginals?
We consider a d+ 1 tensor X ∈ Cn0 ⊗ Cn1 ⊗ · · · ⊗ Cnd , and let
G := GLn1 × · · · × GLnd .

g · X := (In0 ⊗ g1 ⊗ g2 ⊗ · · · ⊗ gd)X.

G · X denotes the orbit of X, and G · X the orbit closure.

Question: TENSORSCALING(X,p)

Input: p = (p1, . . . ,pd),
X a tensor in Cn0 ⊗ Cn1 ⊗ · · · ⊗ Cnd

Output: whether p ∈ ∆(G · X).
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Example

E.g. if g =

[
2 0
0 1

]
then

(g⊗I⊗I)

x111 x112

x211 x212

x121 x122

x221 x222

=

2x111 2x112

1x211 1x212

2x121 2x122

1x221 1x222

9



Moment polytopes

Amazing fact:
∆(Cn0 ⊗ · · · ⊗ Cnd) and ∆(G · X) are convex polytopes!

More generally: Holds if X is a variety and G · X ⊂ X. Then ∆(X) is
called the moment polytope for the action of G on X.
The groups can also be more general.
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Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)
Input: A, nonnegative matrix
Output: Whether ∃D1,D2 ≻ 0 diagonal with D1AD2 doubly stochastic.

Let A =

[
a b
c d

]
be a nonnegative matrix, and let

p1 = p2 = (1, 1) and X =

0
√
b 0 0

√
a 0 0 0

0 0 0
√
d

0 0
√
c 0

Fact: MATRIXSCALING(A) ⇐⇒ TENSORSCALING(X,p)
11
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Applications of tensor scaling

Matrix scaling:
• deterministically approximating permanent
Operator scaling: (The d = 2 case of tensor scaling)
• noncommutative rational identity testing
• Forster’s radial isotropic position
• computing the Brascamp-Lieb constant in analysis
• Horn’s problem on eigenvalues of sums of matrices
One body quantum marginal problem: (Tensor scaling for random X)
• equivalence under SLOCC to locally maximally mixed state
• The Kronecker polytope in representation theory
Tensor scaling:
• null-cone: do all SLn1 × . . . SLnd-invariant polynomials vanish on X?
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Approximate tensor scaling: TENSORSCALING(X,p, ε)
Input: Tensor X, tuple p, ε > 0
Output: If either output g such that for all i ∈ [d]

∥ spec(ρ(i)g·X)− pi∥1 ≤ ε,

or correctly output that p ̸∈ ∆(G · X).

13



History of approxmate scaling algorithms

MATRIXSCALING(A, r, c):
• [Sinkhorn ’64]: simple poly(1/ε) algorithm when r = c = 1
• [Linial, Samorodnitsky, Wigderson ’98]: poly log(1/ε) for any r, c
OPERATORSCALING(X,p1,p2): The d = 2 case of TENSORSCALING
• [Gurvits ’04]: simple poly(1/ε) algorithm when p1 = p2 = 1
• [GGOW’17]: decision problem p1 = p2 = 1
• [AGLOW’18]: poly log(1/ε) for p1 = p2 = 1
• [_’18]: randomized poly(1/ε) for any p1,p2
One body quantum marginal problem:
• [BCMW’17]: decision problem is in NP ∩ coNP
TENSORSCALING(X,p1, . . . ,pd):
• [BGOWW’17]: poly(1/ε) for pi = 1/ni
• [BFGOWW’17]: (this work:) randomized poly(1/ε) for any p1, . . . ,pd
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Our result

Theorem (BFGOWW ’18)
There is a randomized poly(⟨X⟩+ ⟨p⟩, 1/ε)-time algorithm for
TENSORSCALING(X,p, ε) with success probability 1/2.

The algorithm requires

O
(
dn2 ⟨X⟩+ ⟨λ⟩+ log dn

ε

)
iterations, each dominated by computing a Cholesky decomposition
of some ni × ni matrix.

15



Implications for decision problem

Convention: p = λ/k for λ integral and k =
∑

λ
(1)
j

Theorem (BFGOWW ’18)
If for all i,

∥ spec(ρ(i)g·X)− p(i)∥1 ≤ exp(−O(n1 + · · ·+ nd) log kmaxni),

then p ∈ ∆(G · X).

Unfortunately, doesn’t result in poly time algorithm! Need
poly(log(1/ε)).
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Algorithm



Vague algorithm

Algorithm
Input: X,p with integer coordinates, ε.
Output: Y = g · X s.t. ∥ spec(ρ(i)Y )− p(i)∥1 ≤ ε, or OUTSIDE POLYTOPE

• Choose g0 with i.i.d integer coordinates in [K], set
Y = g0 · X/∥g0 · X∥.

• Repeat T times:
• If done, output Y.
• Else, scale in single factor to FIX the worst marginal of Y.
(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Theorem
For T ≥ poly(⟨X⟩+ ⟨p⟩,n, 1/ε), this is algorithm succeeds with
probability at least 1/2.

17
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Scaling II

g = (g1, I, . . . , I) scales the flattening: − (g · Y)1∗··· −
...

− (g · Y)n1∗··· −

 = g1

 − Y1∗··· −
...

− Xn1∗··· −


In particular,

ρ
(1)
g·Y = g1

 − Y1∗··· −
...

− Xn1∗··· −


g1

 − Y1∗··· −
...

− Xn1∗··· −




†

= g1ρ(1)Y g†1

18



Scaling II

g = (g1, I, . . . , I) scales the flattening: − (g · Y)1∗··· −
...

− (g · Y)n1∗··· −

 = g1

 − Y1∗··· −
...

− Xn1∗··· −


In particular,

ρ
(1)
g·Y = g1

 − Y1∗··· −
...

− Xn1∗··· −


g1

 − Y1∗··· −
...

− Xn1∗··· −




†

= g1ρ(1)Y g†1

18



Scaling II

g = (g1, I, . . . , I) scales the flattening: − (g · Y)1∗··· −
...

− (g · Y)n1∗··· −

 = g1

 − Y1∗··· −
...

− Xn1∗··· −


In particular,

ρ
(1)
g·Y = g1

 − Y1∗··· −
...

− Xn1∗··· −


g1

 − Y1∗··· −
...

− Xn1∗··· −




†

= g1ρ(1)Y g†1

18



Fixing a marginal

Easy to fix ith marginal: choose gi such that giρ
(i)
Y g

†
i = diag(p(i)).

WARNING: not every choice works. Correct way:

gi =
√

diag(p(i)) L,

L lower triangular Cholesky factor L†L = ρ−1
Y .

Remark:
It is maintained that g · Y is a unit vector the entire time.
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Analysis



Proof outline

• The randomization step: Success = nonvanishing of a potential
function on g0 · X
If potential function nonvanishing, is in fact bounded below by

poly(⟨X⟩+ ⟨p⟩)

• The triangular scaling steps: the potential function decreases
by Ω(ε2) each step provided marginals are ε-far from targets
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Description of the potential functions

First define a modified determinant.
Definition
If b is a lower triangular matrix and α a sequence of real numbers,
define

χα(b) =
m∏
i=1

bαiii .

Throughout the iterations, keep track of the following function:

fp,Y(g) := log
∥g · Y∥2
|χp(g)|2

where χp(g) =
∏d
i=1 χp(i)(gi).
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Triangular scaling steps

Lemma (Change in potential function)
Let g(t) be the scaling in the tth step. If for some i,∥∥∥ρ(i)g(t)·Y − diag(p(i)↑ )

∥∥∥
Tr
> ε,

then fp,Y(g(t+ 1)) ≤ fp,Y(g(t))− Ω(ε2).

Let
B := {g : gi lower triangular }.

Corollary: if infg∈B fp,Y(b) = −C, then the number of iterations is at
most

O(C/ε2).
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Why does f decrease at all?

Consider
fp,Y(g(t+ 1))− fp,Y(g(t))

At each step, ∥g(t) · X∥ is 1, so this is

− log |χp(g(t+ 1))|2 + log |χp(g(t))|2

Recall that only the ith factor changed was multiplied by√
diag(p(i))L, so the above is

−
ni∑
j=1

p(i)j log
(
p(i)j |Ljj|2

)
.

However,
∑

j |Ljj|−2 ≤ ∥L−1∥F = Tr ρ
(i)
g(t)·Y = 1, so the above is

−DKL(p(i)||q) < 0.

for some (subnormalized) distribution q. 23
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Randomization step: highest weights

A polynomial P on Cn1 ⊗ · · · ⊗ Cnd is a highest weight∗∗ of weight λ if

P(g · X) = χλ(g)P(X)

for all g ∈ B. That is, p is a common eigenvector of the action of the
lower triangular matrices on the polynomials.
∗∗Really this is a lowest weight of −λ

24
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Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight λ satisfying
P(Y) :≤ ∥P∥∥Y∥k for all Y. Then

fp,Y(g) ≥
1
k log

|P(Y)|2
∥P∥2 .

Proof.

kfp,Y(g) = log
∥g · Y∥2k
|χλ(g)|2

≥ log
|P(g · Y)|2

∥P∥2|χλ(g)|2
= log

|P(X)|2
∥P∥2

Thus, highest weights that do not vanish on Y give us lower bounds!
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Nonzero highest weight aǕter randomization

Theorem (Ness-Mumford ’84, Brion ’87)
p ∈ ∆(X) ∩Q if and only if some there is some integer ℓ such that
λ = ℓp is integral and some highest weight Pλ does not vanish on
G · X.

Further, (Derksen ’01), if ℓp is integral we may take
k = (ℓdmaxni)(dmax n2i );

Thus in randomization step we may take K = 2(ℓdmaxni)(dmax n2i ) to
obtain a nonvanishing highest weight with probability 1/2.
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Nonvanishing highest weights =⇒ bounded highest weights

Lemma (BFGOWW’18)
The space of highest weights of weight λ are spanned by
polynomials with integer coefficients and ∥P∥ ≤ nk.

Suppose the largest entry of g0 · X is M.

Corollary
If a highest weight of λ doesn’t vanish on g0 · X, then
infg∈B fp,Y(g) ≥ −2 log n− log ∥g0 · X∥2 ≥ −3 log n− logM

Corollary
The algorithm runs in
O((log n+ logM)/ε2) = O(dmaxni(⟨X⟩+ ⟨p⟩+ log dmaxni)/ε2) steps
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Open problems



Open problems

• Obtain poly log(1/ε) run time!
• Solve the optimization problem for other group actions (in
progress).

• Develop separation oracles for moment polytopes.

28



Thank you!

28



Moment polytopes



General framework

Suppose G acts linearly on a vector space V and the inner product
⟨−,−⟩ is invariant under the unitaries K = U(n1)× · · · × U(nd).
Definition
The map µ : V→ Hermn1 × · · · × Hermnd given by

µ : X 7→ ∇A=0 log ∥eA · X∥

is known as the moment map for the action of G on V.
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Moment polytope

Define

∆(X) =
{
(spec(µ(1)(Y)), . . . , spec(µ(d)(Y)) : Y ∈ G · X

}
.

Amazingly, ∆(X) is not only a polytope but encodes the rep. theory
of polynomials on G · X!
G acts on a polynomial p on V by g · p(x) = p(g−1 · x).

Theorem (Mumford ’84, Brion ’87)

∆(X) ∩Q = {λ/k : VG,λ ⊂ Rk(G · X)}
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