Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes

Peter Bürgisser

Cole Franks
Ankit Garg
Rafael Oliveira
Michael Walter
Avi Wigderson
• Study algorithmic questions about the action of groups, such as the group of invertible matrices, on vector spaces.

• **Primary goal:** provide a unified framework for optimizing the ℓ_2 norm and its gradient over group orbits.

• Generalize familiar first and second order methods to work in the non-Euclidean geometry of the group.
1. Definitions and examples of group actions
2. Problem statements and results
3. The algorithms
4. Open questions
Group actions
Group actions

- **Group** such as

 \[G = \text{GL}(n) = \{\text{invertible } n \times n \text{ matrices}\} \]

 or \(G = \text{diagonal matrices} \), or \(G = \text{GL}(n) \times \text{GL}(n) \)

- **Action** on vector space \(V(= \mathbb{C}^m) \):

 homomorphism \(G \to \text{GL}(V) \) (\(m \times m \) invertible matrices),

- \(g \) acting on \(v \) written

 \[g \cdot v. \]

Conjugation

\[G = \text{GL}(n), \ V = \text{Mat}(n), \]

\[g \cdot A = gAg^{-1} \]
More examples

Operator scaling: \(G = \text{GL}(n) \times \text{GL}(n), \ V = \text{Mat}(n)^k \) by

\[
(g, h) \cdot (A_1, \ldots, A_k) = gA_1h^T, \ldots, gA_kh^T.
\]

Tensor scaling: \(G = \text{GL}(n)^3, \ V = (\mathbb{C}^n)^{\otimes 3} \)

\[
(g_1, g_2, g_3) \cdot |\phi\rangle = g_1 \otimes g_2 \otimes g_3 |\phi\rangle
\]
Norm optimization

Given a vector \(\mathbf{v} \in V \), compute

\[
\inf_{g \in G} \| g \cdot \mathbf{v} \|.
\]

Many surprising applications!

- **Combinatorics**: approximating the permanent [LSW98]
- **Functional analysis**: Brascamp-Lieb inequalities [CCT05]
- **Machine learning**: radial isotropic position [MH13]
- **Polynomial identity testing**: noncommutative identity testing [GGOW16]
- **Quantum information**: one body quantum marginal problem [BFGGOW18]
- **Computational invariant theory**: null cone problem
Example: perfect matchings and matrix scaling

Let

\[G = \{ \text{pairs of diagonal matrices with } \det 1 \} \]

act on matrices \(A \) by \((X, Y) \cdot A = XAY\).

Ancient theorem

1. \(H \) has a perfect matching \(\iff \)
2. \[\inf_{(X,Y) \in G} \|XA_H Y\|_F > 0 \] \(\iff \)
3. exist \(X, Y \) diagonal with \(B = XA_H Y \) doubly stochastic*:

\[
\text{diag } BB^T = I, \text{diag } B^T B = I.
\]

Why? \[\nabla \|XAY\|_F = (\text{diag } AA^T - I, \text{diag } A^T A - I)! \] “row and column sums”
Noncommutative analogue of ancient theorem

Analogue of row and column sums: gradient of (log) norm.
For historical reasons, called moment map, written

\[\mu(v) := \nabla_X \log \| e^X \cdot v \|. \]

Matrix scaling: \(\mu(A) = \frac{1}{\|A\|^2_F} (\text{diag } AA^T - I, \text{diag } A^T A - I) \)

Conjugation: \(\mu(A) = \frac{1}{\|A\|^2_F} (AA^T - A^T A) \)

Ancient theorem

| 1. \(\inf_{(X,Y) \in G} \| XA_H Y \|_F > 0 \) | 2. \(A_H \) has (approx) doubly stochastic scalings | 3. \(H \) has perfect matching |

Kempf-Ness/Hilbert Mumford

| 1. \(\inf_{g \in G} \| g \cdot v \| > 0 \) | 2. \(\inf_{g \in G} \| \mu(g \cdot v) \| = 0 \) | 3. \(\exists \) homogeneous invariant polynomial nonzero on \(v \). |
Problem statements and results
Back to the problems

Set \(F(g) = \log \| g \cdot v \| \), and set \(\text{OPT} := \inf_{g \in G} F(g) \).

Norm optimization

Given \(v \), produce \(g^* \) with \(F(g^*) \leq \text{OPT} + \varepsilon \) or determine that \(\text{OPT} = -\infty \).

\(\text{poly}(\log(1/\varepsilon)) \) algorithm for special case; [AGLOW '17], algebraic algorithms for decision version [DM '19, IQS '17].

While we want to approximately optimize \(F \), often the easier task of solving \(\nabla F = \mu \approx 0 \) is still quite useful.

Scaling

Given \(v \) and \(\varepsilon > 0 \), produce \(g \) with \(\| \mu(g \cdot v) \| < \varepsilon \) or conclude that \(\text{OPT} = -\infty \).

\(\text{poly}(1/\varepsilon) \) time for operators [GGOW16], tensors [BFGGOW18]
The commutative case: Polynomial optimization

Suppose p is a Laurent polynomial p with nonnegative coefficients.

Ancient theorem

$$\inf_{x_i > 0} p(x) > 0 \iff 0 \in \text{conv}(\Omega),$$

$\Omega \subset \mathbb{Z}^n$, set of exponents in polynomial.

Easy to optimize, but what about with **oracle access** to $p, \nabla p$?

Weight margin Γ; Weight norm N

Γ : The closest the convex hull of a subset of Ω can come to the origin without containing it.

N : Maximum ℓ_2 norm of element of Ω.

[SV17:] can optimize in $\text{poly}(1/\Gamma, N, \log(1/\varepsilon))$. with oracle access.
Contributions

Before our work, ad hoc range of algebraic/optimization algorithms.

New work implies all others, + new efficient algorithms

First order algorithm [BFGOWW 19]

Given oracle access to μ, outputs g with $\|\mu(g \cdot v)\| \leq \varepsilon$ in time $\text{poly}(N, \text{OPT}, 1/\varepsilon)$ or concludes that $\text{OPT} = -\infty$.

Second order algorithm [BFGOWW 19]

Given oracle access to μ, Hessian, outputs g with $\log \|g \cdot v\| \leq \text{OPT} + \varepsilon$ in time $\text{poly}(1/\Gamma, N, \text{OPT}, \log(1/\varepsilon))$ or concludes that $\text{OPT} = -\infty$.

$|\text{OPT}| \leq \text{poly}$ for reasonable input models.

Size of $1/\Gamma$ explains previous hard/easy cases:

$\leq n^{3/2}$ for operator scaling, conjugation, $\geq 2^{n/3}$ for tensor scaling.
Algorithms
Set $F(g) = \log \|g \cdot v\|$.

$F(e^X)$ not convex in Hermitian X!

but $F(e^{tX})$ is convex in t, i.e. $F(e^X)$ convex along lines!

Geodesics:
analogues of lines in a non-Euclidean space. In G they are of the form

$$e^{tx}g$$ for X hermitian

Then F geodesically convex: convex along geodesics.
Geodesic gradient descent for scaling

Follow steepest geodesic at each step: steepest is

\[\nabla_X F(e^X g) = \mu(g \cdot v) \].

moment map = geodesic gradient!

Algorithm

Initially \(g = I \), step size \(\eta \).

For \(i = 1 \ldots T \),

- Set \(H = \mu(g \cdot v) \)
- \(g \leftarrow e^{-\eta H} g \).
We want to show that at some iteration, the geodesic gradient $\mu(g \cdot v)$ is small.

F is N-smooth

Second derivative bounded along geodesics:

$$\partial_t^2 F(e^{tX} g) \leq N$$

for unit norm X

Standard analysis carries over!

Theorem

Take $\eta = 1/N$, and $T \geq \frac{2N}{\varepsilon^2} |OPT|$, then at some step $\|\mu(g \cdot v)\| \leq \varepsilon$.
Trust region method: consider

\[Q(X) \text{ second order approx for } F(e^Xg). \]

Algorithm

Set \(g = I \). For \(i = 1 \ldots T \),

- Choose Hermitian \(H \) to minimize \(Q(H) \) subject to \(||H||_F \leq \eta \).
- Set \(g \leftarrow e^H g \).
Say F satisfies **diameter bound** D if

$$\inf_{\|X\|_F \leq D} F(e^X) \leq \text{OPT} + \varepsilon.$$

Standard; [AGLOW17, CMTV17]

F can be regularized such that the algorithm takes $\text{poly}(\log(1/\varepsilon), D, \text{OPT})$ time.

Diameter bounds

Diameter bounded for large weight margin! $D \leq \text{poly}(1/\Gamma)$.
Moment polytopes

An analogue of \((r, c)\)-scaling; ask that \(\mu\) take prescribed values.

\(\mu\) takes value in Hermitian matrices, but...

Surprising and beautiful theorem [Bri87, NM84]

Eigenvalues of \(\mu(g \cdot v)\) range over a convex polytope \(\Delta(v)\)!

\(\Delta(v)\) can have exponentially many facets and vertices; examples include polymatroids, matching polytopes, permutahedra.

Weak moment polytope membership

Given \(v\), Decide if \(p \in \Delta\) or \(p\) at least \(\varepsilon\)-far from \(\Delta(v)\).

Our work gives a \(\text{poly}(1/\varepsilon)\) time algorithm for weak membership. To put decision problem in \(P\), need \(\text{poly}(\log(1/\varepsilon))\)!
Open problems

Very easy optimization algorithms seem to carry over: alternating minimization, geodesic gradient descent, trust regions.

What about the more powerful algorithms?

- Geodesic ellipsoid method? There is one [R18], but oracle calls take forever.
- Geodesic interior point methods?

Solve norm minimization in $\text{poly}(\log(1/\varepsilon))$ time?
Thanks!