Lecture 24

Plan:
1) Ellipsoid for LP
2) If time, examples.

Ellipsoid for LP

- Even for feasibility of $P = \{x : Ax \leq b\}$, are issues!
- Finding starting ellipse, E.
- Bounding volume of P can be handled in general, but
- To avoid numerical details, study important special case: (important for combo. opt.)

Assume $P = \text{conv}(X)$ for $X \in \mathbb{F}_2^m$, & $\dim P = n$.

E.g.

\[P = \text{conv} \{ 1 \mathbf{m} : \mathbf{m} \text{ matching in } \mathbb{F}_2^3 \} \subseteq \mathbb{R}^E \]

- Can handle $\dim P < n$ by eliminating variables if $\text{aff}(P)$ known, tricky if not!
Given \(c \in \mathbb{R}^n \), want to compute
\[\text{OPT} = \max \{ c^T x : x \in P \} \]
in polynomial time given
separation oracle for \(P \).

CSP oracle tells us \(x \in P \) or gives
separating hyperplane \(a^T x \leq b \).

What's polynomial time
here?

- **Input-size:**
 - Assume \(c \in \mathbb{Q}^n \)
 - \(\mathbb{Q}^n \) \(bc \) must store on machine
 - \(\mathbb{Z}^n \) by clearing denominators.
Assume each entry satisfies \(10^{c_i} \leq M \in \mathbb{N} \);
need \(\lceil \log_{10} M \rceil \) digits to write each \(c_i \)
(i.e. \(\lceil \log_2 M \rceil \) bits)

\(\Rightarrow \) total input size \(\leq n \lceil \log_{2} M \rceil \).

- Thus will take polynomial time to mean \(\text{poly}(n, \ln M) \)
 \#steps / calls to SEP oracle.
Implement the binary search.

- How long do we need to do binary search?
 - Know $OPT \in \mathbb{R}$
 - Know $|OPT| \leq n M$

\[10n^3 (\log M)^2 \checkmark \]

\[2^n \log M \times \]

\[nM^2 \times \]
Thus can exactly solve for \(\text{OPT} \) using binary search; need only check \(L = k + \frac{1}{2}, k \in \mathbb{Z}, 1 \leq k < n \).

Each time we check "is \(\text{OPT} \geq L \)?" we check

Example: Suppose \(Mn = 4 \), \(\text{OPT} = 2 \), just need to check the blue points.

Know \(L_2 \leq \text{OPT} \leq L_3 \), \(\text{OPT} \in \mathbb{Z} \) \(\Rightarrow \) \(\text{OPT} = 2 \).
If only one query were of the form $y = f(x)$ in step k, only one dot...
• How many steps?

\[\leq \log_2 |2Mn| \]

(\# points to check halved at each step.)

• At each step, need to test if \(L < \text{opt} \), i.e. if \(P_L := \{ x \in P : c^T x \geq L \} \) is nonempty.

• For this, use ellipsoid.
Runtime of ellipsoid calls

- Recall: to test feasibility with ellipsoid, must know
 - starting ellipsoid $E_0 \supseteq P_c$
 - volume lower bound $\text{vol} P_c \geq \delta$
 for all $P_c \neq \emptyset$.

- To test:
 - run ellipsoid for

 $2(n+1) \ln \frac{\text{vol} E_0}{\delta}$

 steps. (or until find $x \in P_c$).
\[\text{if haven't found } \mathbf{x} \in \mathcal{P}_L, \text{ output that } \mathcal{P}_L = \emptyset. \]

- Thus we just need lower bound \(\delta \) on \(\text{vol} \mathcal{P}_L \)
 & upper bound on \(\text{vol} \mathcal{E}_0 \)
 \[\log(\frac{1}{\delta}), \log \text{vol} \mathcal{E}_0 \leq \text{poly}(n, \log M). \]

Bounding starting ellipsoid

- Simple: \(\mathcal{P} \subseteq [0, 1]^n \)
 \[\Rightarrow \mathcal{P}_L \subseteq [0, 1]^n \]
 \[\Rightarrow \text{any } \mathcal{E}_0 \supseteq [0, 1]^n \text{ is ok.} \]
• Can use $E_0 = \text{ball centered at } \left(\frac{1}{2}, \ldots, \frac{1}{2}\right) \text{ radius } \frac{1}{2} \sqrt{n}$.

E_0 goes through all points of $\frac{1}{2} \sqrt{n}$.

e.g. for $n = 2$,

\[
\text{Vol } E_0 = \left(\frac{\sqrt{n}}{2}\right)^n \cdot \text{vol (unit ball)}
\]

because $\text{unit ball } \subseteq [-1, 1]^n \subseteq (\frac{\sqrt{n}}{2})^n 2^n = n^{\frac{n}{2}}$.

$\Rightarrow \ln \text{ vol } E_0 \leq \frac{n}{2} \ln n$.
Bounding Vol PL

- Need to show $PL = \mathcal{P} \Rightarrow \text{vol } PL \geq \delta$

 where $\log(\frac{1}{\delta}) = \text{poly}(n,M)$.

- Since $PL \neq \mathcal{P}$, contains some optimal w.r.t. $u_0 \in \mathcal{F}_0,1,\mathcal{U}$ of \mathcal{P}

$$c^Tu_0 = \text{OPT}$$

* e.g. $n = 3$
• One way (there are many): Find a simplex in "corner" of \(P_n \).

• Simplex in \(\mathbb{R}^n \) is convex hull of \(n+1 \) affinely independent points.

 e.g.

 • triangle in \(\mathbb{R}^2 \)
 • tetrahedron in \(\mathbb{R}^3 \)

 easy to compute volumes of simplices.
- We've assumed \(P \) is full-dimensional.

\[\Rightarrow \exists v_1, \ldots, v_n \in \{0, 1\}^n \text{ vertices of } P \text{ s.t. } \text{conv}\{v_0, \ldots, v_n\} \text{ is full-dimensional.} \]

e.g. \(n = 3 \)
\(\cdot v_1, \ldots, v_n \) might not be in \(P_L \), but we can “truncating” \(\text{conv}[v_0, \ldots, v_n] \):

\[
\omega_i = \begin{cases}
v_i & \text{if } c^Tv_i \geq L \\
v_0 + \alpha(v_i - v_0) & \text{else}
\end{cases}
\]

for some small \(\alpha > 0 \).

\[\text{e.g. } n = 3\]

For some \(\alpha \),

\[
C := \text{conv}(v_0, \omega_1, \ldots, \omega_n) \subseteq P_L
\]
• Can take $\alpha = \frac{1}{2 Mn}$, because then

$$c^T w_i = c^T v_o + \alpha c^T (v_i - v_o)$$

$$= \text{OPT} + \alpha c^T (v_i - v_o)$$

$$\geq \text{OPT} - \alpha Mn$$

$$\leq v_i - v_o \in \mathbb{E} \cup \mathbb{P} \cup \mathbb{S},$$

where $L \leq |v_i - v_o| \leq Mn$.

Thus,

$$L \geq (c^T \frac{1}{2}) - \frac{1}{2} \geq L.$$

$$\Rightarrow w_i \in P_L.$$

• Now $\text{vol } P_L \geq \text{vol } C,$
\[\mathcal{C} := \text{conv}\{v_0, w_1, \ldots, w_n\}. \]

- Simplex \(\mathcal{C} \) = "corner" of parallelepiped \(Q \) with sides \(\alpha(v_1 - v_0), \ldots, \alpha(v_n - v_0) \).
- $\text{vol } C = \frac{1}{n!} \cdot \text{vol } (Q)$.

Exercise: wlog $Q = [0,1]^n$

$C = \{x \in Q : \exists x_i \leq 1\}$.

- $\text{vol } Q = \alpha^n \cdot \text{vol } Q'$,
$Q' := \text{parallelepiped w/ sides}$

$(v_1 - v_0), \ldots, (v_n - v_0)$

- $\det Q' \geq 1$, because sides are lin. indep \& they are in \mathbb{R}^n

$\det Q' = \left| \det \begin{pmatrix} v_1 - v_0 & \cdots & v_n - v_0 \end{pmatrix} \right| \\
\geq 1$

- So together:
\[\forall \theta \ P_L \geq \frac{1}{n!} \alpha^n \cdot 1 = \frac{1}{n!} \left(\frac{1}{2nM} \right)^n \]

\[\geq \frac{1}{n^n (2nM)^n} = \frac{1}{(2n^2M)^n} \]

Thus we may take

\[\delta = \frac{1}{(2nM)^n} \]

\[\log \frac{1}{8} = n \log (2nM) \checkmark \]

Overall Runtime
• \# steps of ellipsoid
\[\leq 2(n+1) \ln \frac{\text{Vol } E_0}{\delta} \]
\[\leq 2(n+1) \left[\ln \left(n^{\frac{M}{2}} \right) + \ln \left(2n^2 M \right) \right] \]
\[= 2(n+1) \left[\frac{M}{2} \ln(n) + n \ln(2n^2 M) \right] \]
\[= O(n^2 \left(\ln n + \ln M \right)) \].

• \# steps of binary search
\[\leq \log_2 (2nM) \]
\[= O(\ln(n) + \log(M)) \]

• Overall:
$O(n^2(\ln n + \ln M)^2)$

= \text{poly}(n, \ln M) \text{ SEP calls.}

To summarize...

\textbf{Theorem}: Given a separation oracle for $P = \text{conw}(X), X \subseteq \{0,1\}^n$, s.t. $\dim P = n$, can max cx over P (& hence X) in polynomial time

$\text{in } O(n^2(\ln n + \ln M)^2) \text{ calls}$
to SEP oracle.

- **Side Remark:** is not strongly polynomial; # iterations depends on c (albeit polynomially).

 we could have covered P = \{x : Ax \leq b\} ellipsoid can opt in poly time.

- **Éva Tardos '86:** can solve LP's \(\max \{c^T x : Ax \leq b\} \) in time \(\text{poly}(\text{input size of } A) \) arithmetic \((+,-,/)\) cost 1 unit.

 (or just poly calls to SEPoracle).

 i.e. indep of c, b!

 still uses ellipsoid.
Thus if \(A \in \{-1, 0, 1\}^{m \times n} \),
can solve LP in strongly polynomial time.
but not known for general \(A \)!

Example: Matroid Intersection

- Given \(M_1 = (E_1, I_1) \), \(M_2 = (E_1, I_2) \),
cost \(c: E \to \mathbb{R} \). How to find costliest common independent set?

 \[
 \text{i.e. max } c(S) = \sum_{e \in S} c(e) \quad \forall S \subseteq I_1 \cap I_2
 \]

- Equivalently, maximize \(c^T x \) over
 matroid intersection polytope

 \[
 P_{M_1 \cap M_2} = \text{conv} \{ 1_S : S \subseteq \emptyset \}\]

\}
But how to get a separation oracle?? Exponential # constraints!

- Recall: $P_{m_1 \cap m_2} = P_{m_1} \cap P_{m_2}$ matroid polytope
- SEP oracle for P_{m_1}, P_{m_2} \Rightarrow SEP oracle for $P_{m_1 \cap m_2}$ (check both P_{m_1}, P_{m_2}.)

- But we only have efficient OPT algorithms for P_{m_1}, P_{m_2}, not SEP!

- From GLS '81: efficient OPT algo. \Rightarrow efficient SEP algorithm!
• Thus \exists \text{ efficient SEP algos. for } P_{M_1}, P_{M_2}, \Rightarrow

\exists \text{ efficient SEP } P_{M_1}, P_{M_2}, \\
\Rightarrow \text{ ellipsoid can optimize in polytime.}

\textbf{Example: nonbip. matching}

• Given \(G, \) cost \(c: E \rightarrow \mathbb{R}, \)
find max cost matching \(M. \)

• Equivalently, optimize \(\max x \)
over matching polytope

\[P = \text{conv}\{1_M : M \text{ matching in } G^3\}. \]

• \textbf{Recall:} Matching polytope given by
\[P = \{ x \in \mathbb{R}^E : \sum_{e \in E(N)} x_e \leq 1 \quad \forall v \in V. \}
\]

- P is full-dimensional
 - Exercise.
- However, separation oracle nontrivial! (Exp. constraints again!)
- Can implement using min-T-odd cut algorithm (Padberg-Rao).
Matching polytope SEP oracle:

- Check degree constraints; if violated, return corresponding inequality.

- Next check odd set constraints.

How?

- For X satisfying degree constraints, need to decide if
 $$\exists x_e \leq |S| - 1$$
 $$e \in E(S)$$

As $S \subseteq V$, $|S|$ odd, & if not produce violated S. .
Assume WLOG \(|V|\) even (else add isolated vertex).

For \(v \in V\), define

\[
S_v = 1 - \sum_{e \in \delta(v)} x_e
\]

Observe: Given \(S \subseteq V\),

\[
\sum_{v \in S} x_v + \sum_{e \in E(S)} x_e = |S| - 2 \sum_{e \in E(S)} x_e - 2 \sum_{e \in E(S)} x_e
\]

Thus,

\[
|S| - 2 \sum_{e \in E(S)} x_e - 2 \sum_{e \in E(S)} x_e = \sum_{v \in S} x_v + \sum_{e \in E(S)} x_e
\]

In a bipartite graph, \(x_e = 0\) for all \(e \in E(S)\) double counted.
Thus odd set constr. holds for S

\[\sum_{v \in S} x_e \geq 1 \]

Define new graph H with vertex set $V + \text{new vert. } \omega$
edge set $E + \text{all edges } \omega \leftrightarrow V$

Define edge weights

\[u_e = \begin{cases}
 x_e & \text{if } e \in E \\
 s_v & \text{if } e = (v, \omega).
\end{cases} \]
For a cut \(S \) in \(H \), may assume \(w \notin S \) by taking complements.

A cut \(S \subseteq V \) in \(H \) has value

\[
\sum_{u \in u \in S} x_e + \sum_{v \in S'} x_e \geq 1
\]

A odd \(S \subseteq V \) \(\iff \)

\[
\text{min } V-\text{odd cut in } H \text{ has value } \geq 1.
\]

Recall: min T-odd cut is to find min cut \(S \) subject to \(|S \cap T| \) odd.
\[\text{We have seen how to compute min T-odd cut; do so for } T = \mathcal{V} \text{ in } H.\]

\[\text{if } \exists \text{ v-odd cut } S \text{ for } H\]

\[\text{w/ value } < 1, \]

\[\text{S is violated; return } S\]

\[\text{if not, } x \in P. \quad \square\]