Lecture 22

Plan: 1) Finish matroid union
2) Ellipsoid

Ellipsoid Algorithm

- General purpose convex opt. alg.
- Poly time in many situations, e.g., linear programming
 (not necessarily strongly polynomial).
For \(\max \{c^T x : A x \leq b \} \) can solve in \(\mathcal{O}(\langle A \rangle \langle b \rangle) \leq \log |a_{ij}|, 3 \log |b| \) if \(a_{ij}, b \in \mathbb{R} \).
- Slow for LP in practice.
- Contrast of Simplex which is fast in practice but not provably poly.

- May consequences for complexity of combinatorial opt problems.

- There is also interior point methods (Karmarkar '84) that solve LP in poly time, & fast in practice, but not as versatile for theory.
Consequences

Given convex set \(P \subseteq \mathbb{R}^n \), (e.g. a polyhedron), consider two problems:

- **Separation (SEP):**

 Given \(y \in \mathbb{R}^n \), decide if \(y \in P \), if not return separately hyperplane \(i.e. c \in \mathbb{R}^n \) s.t. \(c^T y > \max \{ c^T x : x \in P \} \).
Optimization (OPT)

Given vector $c \in \mathbb{R}^n$, find x maximizing $c^T x$ on P.

Examples

- **Linear programming:**

 $P = \{ x : A x \leq b \}$

 How to solve SEP?

 $P = \{ x : a_i^T x \leq b_i \}$, so just check for each i if $a_i^T x \leq b_i$;
 if not for some i, output $a_i^T x \leq b_i$ as separating hyperplane.
efficient if A is part of the input.

\[\text{OPT for } P = \{ x : Ax \leq b \} \]

is just LP.

\[\text{max } c^T x \]
subject to \(Ax \leq b \)

(SEP easy, OPT seems hard.)

Matroid polytope:
$M = (E, I)$ matroid,

$P = \text{conv}(\{1_I : 1 \leq I \leq 3\})$

matroid polytope

we know a face characterization.

Thus

$P = \{x \in \mathbb{R}^E : x(S) \leq 1_I(S) \forall S \in E$

$x \geq 0 \forall e \in E\}.$

However, exponentially many constraints!

Even if we can compute
rank function \(r_M \), SEP not obviously efficient!

- OPT for \(P \) is just greedy algorithm for the matroid.
 \(\text{OPT} = \max \text{ cost indep set} \).
 (\text{OPT easy, SEP seems hard.})

- Matroid intersection polytope:
 \(\text{OPT} \text{?? SEP??} \)
- Amazing Result:

 Ellipsoid method & consequences in combo, opt.

Theorem (Grötschel, Lovász, Schrijver '81) For a family P of convex bodies,

\[\text{SEP for } P \text{ is poly-time solvable } \iff \text{OPT for } P \text{ is poly-time solvable.} \]

Proof idea:

Ellipsoid algorithm: can solve OPT using calls to SEP.
Reduces to \(\equiv \) using "polar" \(P^* \) of \(P \); we won't cover.

- Actually, if \(P \) is "nondegenerate" enough, don't need \(SEP \), just need membership (MEM).

\textbf{MEM!} decide if \(x \in P \).

\textbf{Thm (GLS '88):} Given ball of radius \(E \) contained in \(P \), ball of radius \(R \) containing \(P \), (and a MEM oracle to \(P \)) can solve \(SEP \) with

\[
poly (\log (\frac{1}{\epsilon}), \log (R), n) \]

Book

\textit{last time I didn't say} if not given the \(E \)-ball, might never hit \(P \)!
Calls to \textsc{mem}.
Actually, is about approximate versions of \textsc{sep} & \textsc{mem}.

\textbf{Proof:} not covered. \textsc{sep}.

\underline{OPT vs. feasibility}

\begin{itemize}
\item First we solve simpler problem:
\end{itemize}

\underline{\textsc{feas} (feasibility)} Given \textsc{sep} oracle for \textsc{p} find some $x \in \textsc{p}$ or decide $\textsc{p} = \emptyset$.

\textsc{feas} tells you if \textsc{p} empty or not.

\item OPT reduces to \textsc{feas}:

\underline{binary search}:

\[\max \{ c^T x : x \in \textsc{p} \} \geq L \text{ if} \]
Given a-priori bound
\[-C \leq L \leq C\]
Binary search to find \(\max L : P_L \neq \emptyset\).
Find $\mathcal{P} \cap \mathcal{P}_A$ using FEAS alg.

2) test for L_1 between L_0/C.

- Optimize to ϵ-precision in $\log\left(\frac{2C}{\epsilon}\right)$ calls to FEAS.

- For LP, can solve exact OPT with $C/\epsilon \leq$ exponential in bitsize of A, b.

(details later.)
(finally!)

The Algorithm

- Solves FEAS in time $\text{poly} \left(\log \left(\frac{1}{\varepsilon} \right), \log R, n \right)$ assuming given ball $B(x_0, R)$ of radius R containing P, and either P contains ball of radius ε or $P = \emptyset$.

- ε, R dependence not a big deal:
 (& actually necessary).
 For LP with $P = \{ x : Ax \leq b \}$, ε, R can be assumed exponential in bitsize of A, b.

\square or $P = \emptyset$.

P
using some tricks (we'll see these tricks for a special case.)

Algorithm idea:

- Set $E = E_0$, ellipsoid guaranteed to contain P.
 (e.g. E_0 = outer ball $B(0, R)$.)

- **While** $e \notin P$:
 (if so, just return e & done)
D get separating hyperplane

\[c^T x \leq d \] (valid for \(P \) but not \(\text{fore} \)).

(actually, assume \(d = c^T e \).

by translating the hyperplane).

From \(\text{SEP oracle} \).

\(E \cap \{ x : c^T x \leq c^T e \} \)
Let E' "smaller ellipse" containing $E \cap \{x : c^T x \leq c^T e^3\}$.

$E'
\cap \{x : c^T x \leq c^T e^3\}$

(Can take E' to be minimum volume ellipsoid containing $E \cap \{x : c^T x \leq c^T e^3\}$, can find E' efficiently!)
0 Set $E \leftarrow E'$.

Runtime:

- Volume Lemma:
 \[
 \text{vol}(E') \leq \frac{1}{2^{(n+1)^2}} \text{vol}(E).
 \]

- As E always contains P, alg. must terminate in
 \[
 \leq 2(n+1) \log \left(\frac{\text{vol}(E_0)}{\text{vol}(P)} \right)
 \]
 iterations.

(Cif P contains ball of radius E, contain ball of radius R, \leq 2(n+1) \log \left(\frac{R}{E} \right)$)
If after $2(n+1)n\log(n \log(R/E))$ iterations the algorithm hasn't terminated, output $P=E$.

Proof of lemma

Bounding R,E. How to compute E. Issues