Lecture 9

Plan: 1) Finish polyhedra
2) Preview applications.

Polyhedra Cont.

Recall: Nonredundant = Facets.

- Inequality \(a_i^T x \leq b_i \) is redundant if \(P \) unchanged when it's removed.

- \(I^- := \{ i : \forall x \in P, a_i^T x = b_i \} \) "equalities"

- \(\subset \) \(P \) \(a_i^T x < b_i \)
I_\prec := \{ x \in \mathbb{R}^n : y_i \prec x \mid i \in I \prec \}

"real inequalities"

e.g.

\[P = \left\{ x : \begin{array}{l}
x_1 + x_2 \leq 1 \\
-x_1 \leq 0 \\
-x_2 \leq 0 \\
x_3 \leq 0 \\
-x_3 \leq 0
\end{array} \right\} \]

THEN:

Not facet \implies \text{redundant.}

\[\text{face } a_i^T x = b_i \text{ for } i \in I_\prec \text{ not facet} \]

\[\implies a_i^T x \leq b_i \text{ is redundant.} \]

(need \(i \in I_\prec \), e.g. \(x_3 \geq 0, x_3 \leq 0 \) in example neither facets nor redundant)
Facet \Rightarrow non-redundant.

F is a facet of P, \Rightarrow

$\exists i \in I_\prec$ s.t. F from $a_i^T x = b_i$.

Take-home: in minimal description of P, need

- lin-indep set of equalities (I_E)
- one inequality per facet (I_\prec).

Proof We only prove \Rightarrow.

- Suppose $a_i^T x \leq b_i$ not redundant

 \Rightarrow
want to show correspondence face to face.

- We'll do this by showing
 \[\dim(F) \geq \dim(P) - 1 \]
 \& \ [\dim(F) \neq \dim(P)].

\[\dim(F) \geq \dim(P) - 1 \]

- \(x \Rightarrow \text{Is } \land \text{s.t.} \)

\[a_i^x > b_i \]

but \[a_i^x \leq b_j \ \forall j \neq i. \]

e.g. \(i = 4 \)
• Let F_i be face $a_i^T x = b_i$.
• $\forall x \in P$, line segment $x \rightarrow x_0$ has unique $x_0 \in F_i$.

$$\text{e.g. } i = 4$$

\Rightarrow any point $x \in P$ contained in $\text{aff}(F_i, x_0)$!

• $P \subseteq \text{aff}(F_i, x_0) \Rightarrow \dim(P) \leq \dim(F_i) + 1$.
Recall: Near vertex $= \text{Cone(polytope)}$

(N.Y.C. Theorem)
Let v_0 vertex of P from valid inequality $c^T x \leq m$. Let E be such that $c^T v' \leq m - 3$ for all other vertices v'.

Then

$$P_0 = \{ x \in P : c^T x = m - 3 \}$$

is a polytope & is bijection

$$\{ P_0 \text{'s dim k faces} \} \leftrightarrow \{ -1, 1, \ldots, k+1 \ \text{faces} \}$$
Corollary: Graph connected

Graph of vertices & edges of polyhedron P is always connected.

In particular: if $v^* \text{ max. } c^T x$ over P,

$\exists v_0 \rightarrow v^*$ path which doesn't decrease objective.
Proof of Corollary:

- Suppose \(u^* \) unique max of \(C^T X \) over \(P \).

- Enough to show that

 \(\forall \) vertices \(V_0 \neq P \),

 \(\exists \) edge to vertex \(v_1, w \) with

 \[C^T v_1 > C^T v_0. \]

 (by finiteness of # vertices).

![Diagram showing vertices and edges]
• Let P_0 be polytope from last theorem.

• Let \mathbf{x} be intersection of P_0 and segment joining V_0, V^*.
• note that \(c^T v_0 < c^T x \).
 (\(c^T y \) incr. along segment, \(v_0 \in P_0 \)).

• w.l.o.g. \(P_0 \) polytope,

 \[
P_0 = \text{conv} (\text{vertices of } P_0).
 \]

 \(\Rightarrow \exists \text{ vertex } w \text{ with } \\
 c^T v_0 < c^T x \leq c^T w \)
WHY? Simple but powerful principle:

\[x = \frac{1}{3} \sum_{v} \lambda v, \quad \sum_{v} \lambda v = 1 \]

where \(v \) are vertices of \(\text{Po} \)

\[\Rightarrow c^T x = \sum \lambda w c^T w \quad \text{"weighted average"} \]

\[\Rightarrow \text{some } c^T w \geq c^T x \]
by bijection of edge e with P_0.

e must be bounded (b/c c^{ty} increases along e, but objective bounded on P).
Thus ends at some vertex V_1,

$$c^T v_1 > c^T v_0 \quad \square.$$

Proof of N.V.C.

Recall: if vertex v_0 given by

then

$$c^T x = m,$$

$$P_o = \{x \in P : c^T x = m - \varepsilon \}$$

for small ε.
Assume rank $A = n$; else no vertices.

1. P_0 bounded.

Exercise: If Q unbounded polyhedron, $x \in Q$, then Q contains ray from x:
$\{ x + \alpha y : \alpha \geq 0 \}$.
Suppose P_0 unbounded, let $x_0 \in P_0$.

$\Rightarrow P_0$ contains ray $[x_0 + ay : a \geq 0]$ for some y.
- as $P_0 \leq x_0 + c^+$, $y \in c^+$.

- Use ray to construct another minimizer ν contradicting uniqueness.

- By closedness:
 $\{V_0 + \alpha y : \alpha \geq 0\}$.
but $c^T x$ constant along it.

2. The bijection:

$$\text{face } F \rightarrow V_0 \text{ of } P$$

$$F_0 := \{x : c^T x = m \}$

$$= F \cap P_0.$$

α: **Onto:** Every face F_0 of P_0 can be written this way for some F of P.

Note: The image contains a diagram with a cube labeled P, a face F, and a vertex V_0. The bijection is illustrated by arrows connecting F to V_0. The equation $F_0 := \{x : c^T x = m \}$ defines a face F_0 in terms of the quantity $c^T x$. The diagram also indicates that F_0 is the intersection of F with P_0. The text states that every face F_0 of P_0 can be written in this way for some face F of P. This is labeled as **Onto** in the diagram.
• Let F_0 nonempty face of P_0.

$$F_0 = \begin{cases} a_i^T x = b_i & i \in I \\ c^T x = m - \epsilon \\ a_j^T x \leq b_j & j \not\in I \end{cases}$$

Let

$$F_0 = \begin{cases} a_i^T x = b_i & i \in I \\ a_j^T x \leq b_j & j \not\in I \end{cases}$$

(remove middle equality)

• F_0 is a face by faces them, so just need to show $v_0 \in F_0$.

Recall that v_0 was only vertex v with $c^Tv \geq m-\epsilon$.

But $c^T \ast$ bounded above on F implies \Rightarrow reaches max $\geq m-\epsilon$ at vertex v of F; thus $v = v_0$.

6) Dimensions (will also imply one-to-one).

Want to show $\dim F_0 = \dim F - 1$.
• **Enough to show**

\[F \subseteq \text{aff}(F_0 \cup \{v_0\}). \]

\[\implies \dim F_0 \geq \dim F - 1. \]

(dim \(F_0 \leq \dim F - 1 \) bc \(F_0 = F_0 \) plane, \(F_0 \neq F \)).

Cases:

1. \(c^T x \leq m - \epsilon \),
2. \(c^T x > m - \epsilon \).

1. If \(c^T x \leq m - \epsilon \), segment \(x \to v_0 \) clearly hits \(F_0 \), thus \(x \in \text{aff}(F_0 \cup \{v_0\}) \).
Else, \(x \) is in polyhedron
\[
F' = F \cap \{ x \mid c^T x \geq m - \epsilon \}
\]
- \(F' \) is bounded (for same reason as \(P_0 \)).

\[\Rightarrow \] \(F' \) convex hull of its vertices.

- Vertices of \(F' \) are all either
 a) on \(c^T x = m - \epsilon \) or
b) equal to V_0.

(b/c they are vertices v of F satisfying $c^T v \geq m-\varepsilon$, V_0 only such vertex).

\[\Rightarrow F' \subseteq \text{conv}(F_0 \cup \{V_0\}). \]

\[\subseteq \text{aff}(F_0 \cup \{V_0\}). \]