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Abstract

Given a collection C of curves in the plane, its string graph is defined as the graph with vertex
set C, in which two curves in C are adjacent if and only if they intersect. Given a partially ordered
set (P, <), its incomparability graph is the graph with vertex set P , in which two elements of P are
adjacent if and only if they are incomparable.

It is known that every incomparability graph is a string graph. For “dense” string graphs, we
establish a partial converse of this statement. We prove that for every ε > 0 there exists δ > 0 with
the property that if C is a collection of curves whose string graph has at least ε|C|2 edges, then
one can select a subcurve γ′ of each γ ∈ C such that the string graph of the collection {γ′ : γ ∈ C}
has at least δ|C|2 edges and is an incomparability graph. We also discuss applications of this result
to extremal problems for string graphs and edge intersection patterns in topological graphs.

1 Introduction

The intersection graph of a collection C of sets has vertex set C and two sets in C are adjacent if and
only if they have nonempty intersection. A curve is a subset of the plane which is homeomorphic to
the interval [0, 1]. A string graph is an intersection graph of a collection of curves. It is straightforward
to show the intersection graph of any collection of arcwise connected sets in the plane is a string graph.

String graphs have been intensely studied both for practical applications and theoretical interest.
Benzer [4] was the first to introduce these graphs in 1959, while exploring the topology of genetic
structures. In 1966, interested in electrical networks realizable by printed circuits, Sinden [41] con-
sidered the same constructs at Bell Labs. He showed that not every graph is a string graph but all
planar graphs are. He also raised the question whether there exists any algorithm for recognizing
string graphs.

In 1976, reporting on Sinden’s work, Graham [20] introduced string graphs to the mathematics
community. Later that year, Ehrlich, Even, and Tarjan [8] proved that computing the chromatic
number of a string graph is NP-hard. A decade later, Kratochv́ıl, Goljan, and Kučera [28] wrote
a tract devoted to string graphs. They showed that every string graph can be realized by a family
of polygonal arcs with a finite number of intersections. Kratochv́ıl [27] proved that the recognition
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of string graphs is NP-hard. Kratochv́ıl and Matouŝek [29] constructed string graphs on n vertices
that require at least 2cn intersection points in any realization, where c is a positive constant. They
conjectured that every string graph on n vertices can be realized with at most 2cnk

intersection points,
for some constants c and k.

Sinden’s question remained a challenging open problem for 35 years, until the conjecture of Kra-
tochv́ıl and Matouŝek was confirmed independently in [36] and [40], implying that the string graph
problem is decidable. A short time later, Schaefer, Sedgewick, and Štefankovič [39] proved that recog-
nizing string graphs is NP-complete. Despite these results, understanding the structure of string graphs
has remained a wide open problem.

Given a partially ordered set (poset, for short) (P, <), its incomparability graph is the graph with
vertex set P , in which two elements are adjacent if and only if they are incomparable. Unlike string
graphs, incomparability graphs are fairly well understood. In 1950, Dilworth [7] proved that every
incomparability graph is a perfect graph, so the chromatic number of an incomparability graph is
equal to its clique number (the analogous result for comparability graphs was earlier proved by Erdős
and Szekeres [10]). In 1967, Gallai [16] gave a characterization of incomparability graphs in terms of
minimal forbidden induced subgraphs. It is known that incomparability graphs can be recognized in
polynomial time [17].

In 1983, Golumbic, Rotem, and Urrutia [18] and Lovász [33] proved that every incomparability
graph is a string graph (see Proposition 2.1). There are many string graphs, such as odd cycles
of length at least five, which are not incomparability graphs. In fact, the number of string graphs
on n vertices is 2(3/4+o(1))(n

2) [38], while the number of incomparability graphs on n vertices is only
2(1/2+o(1))(n

2) [23]. Nevertheless, as the main result of this paper demonstrates, most string graphs
contain huge subgraphs that are incomparability graphs.

Theorem 1.1 For every ε > 0 there exists δ > 0 with the property that if C is a collection of curves
whose string graph has at least ε|C|2 edges, then one can select a subcurve γ′ of each γ ∈ C such that
the string graph of the collection {γ′ : γ ∈ C} has at least δ|C|2 edges and is an incomparability graph.

It follows from our proof that δ can be chosen to be a polynomial in ε, that is, we can choose
δ = εc for an appropriate absolute constant c.

We say that a graph with n vertices is dense if, for some ε > 0, its number of edges is at least εn2.
Our theorem immediately implies that every dense string graph contains a dense spanning subgraph
(with a different ε) which is an incomparability graph.

Theorem 1.1 cannot be strengthened to say that every dense string graph contains a dense induced
subgraph with a linear number of vertices that is an incomparability graph. Indeed, a construction of
Kynćl [30] (improving on earlier constructions [31] and [22]) shows that there is a dense intersection

graph of n segments in the plane whose largest clique or independent set is of size O(n
log 8

log 169 ). Since
incomparability graphs are perfect graphs, then there are dense string graphs on n vertices whose
largest induced subgraph which is an incomparability graph has O(n2 log 8

log 169 ) vertices, where 2 log 8
log 169 <

.811.
A bi-clique is a complete bipartite graph whose two parts are of equal size. It follows from a

result of Kővári, Sós, and Turán [25] that every graph on n vertices or its complement contains a (not
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necessarily induced) subgraph which is a bi-clique with log n− log log n vertices in each of its parts.1

Considering a random graph on n vertices, we obtain that this bound is tight apart from a constant
factor. Fox [11] proved that every incomparability graph or its complement contains a bi-clique whose
parts are of size n

4 log n , and that this bound is also tight up to a constant factor. This result was
applied by Fox, Pach, and Cs. Tóth [14] to show that for every ε > 0 there exists δ > 0 such that
every incomparability graph with n vertices and εn2 edges contains a bi-clique of size δn/ log n. Here
δ can be taken to be a polynomial in ε. We have the following immediate corollary of Theorem 1.1
and this result.

Corollary 1.2 For every ε > 0, there exists δ > 0 such that every string graph with n vertices and at
least εn2 edges contains a bi-clique with parts of size δn/ log n.

In this corollary, δ again can be taken to be a polynomial in ε. In other words, every collection C of
n curves in the plane with at least εn2 intersecting pairs has two subcollections A and B each of size
at least δn/ log n such that every curve in A intersects every curve in B. By the construction in [11],
the dependence on n in Corollary 1.2 is tight.

Pach and G. Tóth [37] conjectured that for every collection C of n curves in the plane, any pair of
which intersect in at most k points, the intersection (string) graph of C or its complement contains a
bi-clique of size ckn, where ck > 0 depends only on k. This conjecture was proved by Fox, Pach, and
Cs. Tóth [13]. The main ingredient of the proof was a variant of Corollary 1.2 for intersection graphs
of curves with a bounded number of intersection points per pair. A similar result for intersection
graphs of convex sets was established in [14].

The importance of arrangements of curves and Theorem 1.1 in particular is exhibited in its appli-
cations to graph drawing problems. A topological graph is a graph drawn in the plane with vertices
as points and edges as curves connecting corresponding endpoints. The well known Crossing Lemma
discovered by Ajtai, Chvatal, Newborn, and Szemerédi [3] and independently by Leighton [32] says
that every topological graph with n vertices and m ≥ 4n edges has Ω

(
m3/n2

)
pairs of crossing edges.

By induction, this is equivalent to the statement that every topological graph with n vertices and
m ≥ 3n edges has an edge that intersects Ω

(
m2/n2

)
other edges. An `-grid in a topological graph

is a pair of disjoint edge subsets E1, E2 such that every edge in E1 crosses every edge in E2. Is the
following strengthening of the Crossing Lemma true: every topological graph with n vertices and
m ≥ 3n edges contains an `-grid with ` = Ω

(
m2/n2

)
? With Cs. Tóth in [15], we show that the

answer is yes if we assume that every pair of curves in the topological graph intersect in at most a
fixed constant number of points, but no in general. Indeed, we construct a drawing of the complete
bipartite graph Kn,n, which does not contain an `-grid with ` ≥ cn2/ log n, where c is an absolute
constant. This counterexample cannot be substantially improved: using Corollary 1.2 together with a
result of Kolman and Matoušek [24] relating the bisection width and the pairwise crossing number of
a graph, we prove in [15] that every topological graph with n vertices and m ≥ 3n edges contains an
`-grid with ` = Ω

(
m2/n2

logc m/n

)
. It was proved in [34] that for each positive integer ` there is a constant c`

1Throughout this paper, for the sake of simplicity, we systematically omit floor and ceiling signs whenever they are

not crucial. All logarithms are base 2.
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such that every topological graph with n vertices and at least c`n edges contains an `-grid. Their proof
gives that we may take c` = 16 · 244`

`, which is double-exponential in `, while the above mentioned
result shows that we may take c` =

√
` logc ` for some absolute constant c, which is best possible up

to the polylogarithmic factor. With Ackerman and Suk in [2], we show using Corollary 1.2 that every
topological graph with n vertices and no `-grid with distinct vertices has at most c`n log∗ n edges,
where c` = `O(log log `) and log∗ is the iterated logarithm function.

It is a general question in geometric graph theory to investigate how much one can relax planarity
while still ensuring that the graph is sparse? To formalize this question we need the following definition.
A topological graph is k-quasi-planar if no k edges pairwise intersect. A well known conjecture states
that every k-quasi-planar topological graph on n vertices has at most ckn edges for some constant ck

depending only on k. This conjecture is only known for k ≤ 4. The case k = 2 follows easily from
Euler’s polyhedral formula, the case k = 3 was proved by Pach, Radoičić, and G. Tóth [35], and the
case k = 4 was proved by Ackerman [1]. The best known upper bound on the number of edges of a
k-quasi-planar topological graph on n vertices is by Ackerman, who gave an upper bound of the form
ckn(log n)4k−16 for k ≥ 4. In another paper [12], we again use Corollary 1.2 together with the result of
Kolman and Matoušek [24] to obtain a new upper bound on the number of edges in a k-quasi-planar
topological graph. We show that every k-quasi-planar topological graph on n vertices has at most
n(log n)c log k edges, where c is an absolute constant. In particular for each ε > 0 there is δ > 0 and n0

such that every topological graph on n ≥ n0 vertices and at least n1+ε edges has nδ/ log log n pairwise
crossing edges. This is a significant improvement on the previous bound of δ log n/ log log n.

To make our paper self-contained, in the next section we present the (few lines long) proof of
the fact discovered by Golumbic, Rotem, and Urrutia [18] and Lovász [33] that every incomparability
graph is a string graph. In Section 3, we establish a simple lemma showing that every dense graph has
a cubic number of triangles K3 or a quartic number of induced claws K1,3. In the proof of Theorem 1.1,
we will distinguish between the case that the string graph of the collection of curves has few triangles
and the case in which it has many triangles. These two proofs will be presented in Sections 5 and 7,
respectively.

In Section 4, we introduce some important notions: we define “grounded”, “double-grounded”,
“strongly double-grounded”, and “split” families of curves. For instance, roughly speaking, a family C

is called grounded if there is a special curve, a so-called “ground” curve γ, with the property that all
elements of C have an endpoint on γ, but otherwise they are disjoint from it. (The other definitions
will be similar.) We show that the intersection graphs of split families of curves are incomparability
graphs (Lemma 4.2). This elementary fact plays an important role in our arguments. The proof of
Theorem 1.1 in the case where the string graph has many triangles is reduced in Section 7 to proving
Theorem 1.1 in the special case where the collection of curves is grounded. This special case is settled
in Section 6.

In most parts of this paper, we assume for simplicity that all families of curves we consider are in
“general position”, i.e., no point belongs to three curves of the family. In Section 8, we outline how to
get rid of this assumption. Finally, Section 9 includes a brief discussion of a variant of Theorem 1.1
when each pair of curves in the collection intersect in at most a fixed constant number of points. For
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the clarity of the presentation, we do not make any serious attempt to optimize the absolute constants
appearing in our statements and proofs.

2 Incomparability graphs as string graphs

We use the notation [n] = {1, . . . , n}. A linear extension of a poset (P,≺) on n elements is a one-to-one
map π : P → [n] such that if y ≺ z, then π(y) < π(z). The intersection of a set Π of one-to-one maps
from a set P on n elements to [n] is the poset (P,≺) such that y ≺ z if and only if π(y) < π(z) for
every π ∈ Π and for all y, z ∈ P . It is straightforward to show that every poset is the intersection
of its linear extensions. The dimension of a poset is the minimum number of linear extensions whose
intersection is that poset. An old result of Hiraguchi [21] states that every poset on n ≥ 4 elements
has dimension at most n/2. See the book [42] by Trotter for more on the dimension theory for posets.

If f1, . . . , fn : [0, 1] → R are continuous functions, we can define a partial order ≺ on these
functions by fi ≺ fj if fi(x) < fj(x) for all x ∈ [0, 1]. The following proposition implies that every
partially ordered set can be represented in this way. In particular, it implies that the a graph is
an incomparability graph if and only if it is the intersection graph of a collection of curves given by
continuous functions defined on [0, 1].

Proposition 2.1 ([18], [33]) For each partial order ≺ on [n], there is a family of continuous functions
f1, . . . , fn : [0, 1] → R such that i ≺ j if and only if fi(x) < fj(x) for each x ∈ [0, 1].

Proof. Let ([n],≺) be a poset with dimension d, and let Π = {π1, . . . , πd} denote a set of d linear
extensions whose intersection is the poset. Assign to each πk a distinct point xk of the interval [0, 1],
so that

0 = x1 < x2 < . . . < xd = 1.

For each i (1 ≤ i ≤ n), define a continuous, piecewise linear function fi(x), as follows. For any
k (1 ≤ k ≤ d), set fi(xk) = πk(i), and let fi(x) change linearly over the interval [xk, xk+1] for k < m.

Obviously, whenever i ≺ j for some i 6= j, we have that πk(i) < πk(j) for every k, and hence
fi(x) < fj(x) for all x ∈ [0, 1]. On the other hand, if i and j are incomparable with respect to the
ordering ≺, we find that there are indices k and k′ (1 ≤ k 6= k′ ≤ m) such that fi(xk) < fj(xk)
and fi(xk′) > fj(xk′), therefore, by continuity, the curves of fi and fj must cross at least once in the
interval (xk, xk′). This completes the proof. 2

For an illustration of the proof of Proposition 2.1, see Figure 1.
The proof of Proposition 2.1, together with Hiraguchi’s theorem mentioned in the first paragraph

of this section, implies that every incomparability graph with n vertices is the intersection graph of
a collection of curves given by continuous functions defined on the interval [0, 1] such that every pair
intersect in at most n/2 − 1 points. Every bi-clique is the incomparability graph of a 2-dimensional
poset and is the intersection graph of a collection of segments (intersecting in at most one point per
pair).
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π1 π2 π3 π4

Figure 1: (a) depicts the Hasse diagram of a poset on 8 elements. In (b), four linear extensions are
exhibited, each from greatest element down to smallest element, whose intersection is the poset in (a).
In (c) and (d), we represent each element of the poset by a piecewise linear function defined on [0, 1].

On the other hand, according to a result of Kratochv́ıl and Matoušek [29], there are string graphs
with n vertices that require an exponential number of intersection points in any of their realizations.
Consequently, the “geometric complexity” of a string graph may be much larger than the complexity
of the canonical substructures whose existence is guaranteed by Theorem 1.1 and Corollary 1.2.

3 Triangles and Claws

The clique multiplicity ks(G) is the number of cliques of size s in graph G. The Ramsey multiplicity
ks(n) = min{ks(G) + ks(Ḡ) : |G| = n} is the minimum number of cliques or independent sets of size
s over all graphs G on n vertices. The exact value of k3(n) was determined by Goodman [19]:

k3(n) =





n(n−2)(n−4)
24 if n is even

n(n−1)(n−5)
24 if n ≡ 1 (mod 4)

(n+1)(n−3)(n−4)
24 if n ≡ 3 (mod 4)

Note that k3(n) is asymptotic to n3/24 and we will use the estimate k3(n) ≥ n3/32 for n ≥ 24. See
the paper [6] by Conlon for more details on ks(n) with s > 3.

For any two subsets of vertices, A,B ⊆ V (G), let e(A,B) denote the number of edges of G with
one endpoint in A and the other in B. A claw is a graph with four vertices and three edges, having a
vertex, the root, which is adjacent to the remaining three vertices.
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Lemma 3.1 Let G be a graph, and let A and B be (not necessarily disjoint) subsets of V (G) with
e(A,B) ≥ εn2 and ε ≥ 48/n. Then B contains at least 2−9ε3n3 triangles or there are at least 2−9ε3n4

induced claws whose root is in A and whose three other vertices are in B.

Proof. Delete all vertices from A that are adjacent to at most εn/2 vertices in B, and let A′ be
the resulting subset of vertices. Since e(A \ A′, B) ≤ (εn/2)|A \ A′| ≤ εn2/2, then there are at least
εn2 − εn2/2 = εn2/2 edges with one vertex in A′ and the other vertex in B.

For a ∈ A′, let N(a) denote the subset of vertices in B adjacent to a, so |N(a)| ≥ εn/2 ≥ 24. By
Goodman’s theorem, N(a) contains at least |N(a)|3/64 triangles or at least |N(a)|3/64 independent
sets of size three. In the latter case, N(a) and hence B contains at least |N(a)|3/64 ≥ (εn/2)3/64 =
2−9ε3n3 triangles, and we are done. So we may suppose that there are at least |N(a)|3/64 independent
sets of size 3 in N(a) for each a ∈ A′. Hence, the number of induced claws whose root is in A and
whose other three vertices are in B is at least

∑

a∈A′
|N(a)|3/64 ≥ |A′|

(∑

a∈A′
|N(a)|/|A′|

)3

/64 =
e(A,B′)3

64|A′|2 ≥ (εn2/2)3

64|A′|2 ≥ 2−9ε3n4,

where the first inequality is by Jensen’s inequality for the convex function f(x) = x3 and the last
inequality follows from |A′| ≤ n. 2

The complete bipartite graph Ka,b on a+b vertices has parts of size a and b with all edges between
them. In particular, K1,3 is the claw. The above lemma can be easily extended to show that for
any fixed a, b, s, every dense graph on n vertices contains Ω(ns) copies of the complete graph Ks or
Ω(na+b) induced copies of the complete bipartite graph Ka,b.

4 Special string graphs that are incomparability graphs

The purpose of this section is to develop notation and terminology necessary for the proof of Theorem
1.1 and to prove a simple lemma showing that the intersection graphs of rather special collections of
curves are incomparability graphs.

Throughout this paper, unless it is stated otherwise, we always assume that the curves we consider
are in general position, i.e., that no point belongs to three of them. After completing the proof of
Theorem 1.1 for collections of curves in general position, in Section 8 we discuss how our arguments
can be modified to deal with the degenerate cases.

Recall that a curve γ is a subset of the plane homeomorphic to the unit interval [0, 1]. That is, a
curve γ is the image of a homeomorphism f from [0, 1] to a subset of the plane R2. We associate the
function f with the curve γ. In particular, each curve comes with an orientation from the starting
point f(0) to the final point f(1). The points f(0) and f(1) are endpoints of γ. The other points of γ

are interior points of γ. For distinct points f(a), f(b) of γ, f(a) comes before f(b) along γ if a < b,
and otherwise f(a) comes after f(b) along γ. A subcurve of a curve γ is the image of the function f

restricted to a subinterval [a, b] of [0, 1]. In particular, a subcurve is a curve if a < b, it consists of a
single point if a = b, and it is the empty set if a > b.
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Figure 2: In (a), a grounded collection of curves. In (b), a double-grounded collection of curves with
separator γ. In (c), a strongly double-grounded collection of curves. In (d), a split collection of curves
with middle point p.

A collection C of curves in the plane is said to be grounded if there is a curve α such that every
member γ of C has precisely one endpoint on α and the rest of γ is disjoint from α (see Figure 2(a)).
The curve α is called a ground for C. Since we consider curves in general position, in a grounded
collection C, no point of the ground can belong to two elements of C.

A collection C of curves is double-grounded if there are disjoint curves α, α′ such that every member
of C has one endpoint on α, the other endpoint on α′, and the rest of the curve is disjoint from α∪α′.
A collection C of curves is double-grounded with a separator if there is a curve γ such that C ∪ {γ} is
double-grounded and every curve in C is disjoint from γ (see Figure 2(b)). We then call γ a separator
for C. A collection C of curves is strongly double-grounded if there is an ordered pair (α, α′) of curves
with no interior point in common such that one of the endpoints of α′ lies on α, and every member of
C has one endpoint on α, the other on α′, and the rest of it is disjoint from α ∪ α′ (see Figure 2(c)).
Finally, we call a collection C of curves split if there is a curve α and a point p in the interior of α

such that every member γ in C has one endpoint before p along α, the other endpoint after p along
α, the interior of γ is disjoint from α, and the ends of curves on C all lie on the same side of α (see
Figure 2(d)). In this case we say that α splits C and call p a middle point for C.

By tracing along the exterior of α ∪ α′ ∪ γ of a double grounded collection with grounds α, α′ and
separator γ, we see that every double-grounded collection of curves with a separator is split. Similarly,
by tracing along the two grounds of a strongly double-grounded collection of curves, we see that every
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strongly double-grounded collection of curves is split. One can easily check the other cases of the
following simple proposition.

Proposition 4.1 A collection of curves is double-grounded with a separator if and only if it is strongly
double-grounded if and only if it is split.

We are implicitly assuming that the collection of curves are in general position. The above proposi-
tion fails to hold if this assumption is not made, as there could be a pair of curves in the collection which
share an endpoint on different sides of a ground, which would make it impossible for the collection of
curves to be split. This technical issue is discussed in detail in Section 8.

For any pair of intersecting (oriented) curves (α, β), let p(α, β) denote the first point along α that
belongs to β. (The existence of such a point follows from the fact that β is a closed set and α is
homeomorphic to the unit interval.) Furthermore, let α(β) denote the subcurve of α with the same
starting point as α and with final point p(α, β).

We finish this section with the following lemma followed by a useful remark.

Lemma 4.2 The intersection graph of every split collection S of curves is an incomparability graph.

Proof. Let α be a ground for S with middle point p. We can label the curves in S according to
the order of their endpoints along α, as {γ1, . . . , γn}, starting at the middle point p and increasing
label in the direction toward the starting point, so the curve γi has label i. See Figure 2(d). Define
a binary relation ≺ on S, as follows. Let γi ≺ γj if and only if γi is disjoint from γj and i < j. For
each curve γj , there is a closed Jordan curve βj which consists of γj together with the subcurve of α

whose endpoints are the endpoints of γj . By the Jordan curve theorem, if i < j < k, curve i is disjoint
from curve j and curve j is disjoint from curve k, then the interior of curve i lies in the interior of
the Jordan region bounded by βj and the interior of curve k lies in the exterior of the Jordan region
bounded by βj , so curve i is disjoint from curve k. Thus, ≺ is a partial order and the intersection
graph of S is an incomparability graph. 2

By Proposition 4.1 and Lemma 4.2, the intersection graphs of double-grounded collections of curves
with a separator and strongly double-grounded collections of curves are incomparability graphs.

The join of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph union G1 ∪G2 together with
all edges between V1 and V2. It is easy to check the following useful remark.

Remark: The join of two incomparability graphs is an incomparability graph. Similarly, the disjoint
union of two incomparability graphs is an incomparability graph. In particular, an incomparability
graph with added isolated vertices is also an incomparability graph, so a graph with just one edge is
an incomparability graph.

In the proof of Theorem 1.1, we are allowed to take the empty subcurve for some of the curves
in C, and as long as the the intersection graph of the nonempty subcurves is a dense incomparability
graph, we are done, as the empty subcurves are isolated vertices in the intersection graph. So if C is a
collection of curves in the plane whose intersection graph is sparse but has at least one edge, then we
will take C ′ to be the collection of subcurves of the elements of C consisting of a pair of intersecting
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α

β1 β2
β3

Figure 3: A very nice quadruple (α, β1, β2, β3). If β = β3 and β′ = β1, then the subcurve α′ is the
bold subcurve of α.

curves in C and the empty subcurve for each of the remaining elements. The intersection graph of C ′,
consisting of a single edge and |C| − 2 isolated vertices, is clearly an incomparability graph.

5 String graphs with few triangles

The aim of this section is to prove Theorem 1.1 for every (nondegenerate) collection C of curves whose
string graph has few triangles (see Theorem 5.4). This is the first half of the proof of Theorem 1.1.
We start with three useful lemmas.

Lemma 5.1 Let A,B be collections of curves such that there are q ordered quadruples (α, β1, β2, β3) ∈
A×B ×B ×B such that β1, β2, β3 are pairwise disjoint and α intersects β1, β2, and β3. Then there
are disjoint curves β, β′ ∈ B, a subcollection B′ ⊂ B such that every curve in B′ is disjoint from β

and β′, and a double-grounded collection A′ of subcurves of curves of A with grounds β, β′ such that
there are more than q

6|B|2 intersecting pairs of curves in A′ ×B′.

Proof. Pick an ordered pair (β, β′) of distinct curves of B at random. Note that there are |B|(|B|−1)
such ordered pairs. Let N(β) denote the set of curves in A that intersect β. For each curve α ∈ N(β),
α(β) is the subcurve of α that has the same starting point as α and ends at p(α, β), the first point of
β along α. Let N = {α(β) : α ∈ N(β)}.

For each curve α(β) ∈ N that intersects β′, let α′ denote the subcurve of α(β) with the same final
point p(α, β) as α(β) and whose starting point is the last intersection point of β′ with α(β) along
α(β). Let A′ = {α′ : α(β) ∈ N}.

Call a quadruple Q = (α, β1, β2, β3) ∈ A × B × B × B nice if β1, β2, β3 are pairwise disjoint
and α intersects β1, β2, and β3. By symmetry, if Q = (α, β1, β2, β3) is nice, then for any of the six
permutations π of 1, 2, 3, the quadruple Qπ = (α, βπ(1), βπ(2), βπ(3)) is also nice. Call a nice quadruple
(α, β1, β2, β3) very nice if it also satisfies the following two properties:

1. the point p(α, β3) comes after the points p(α, β1) and p(α, β2) along α, and

2. along α the last point of β2 before p(α, β3) comes after the last point of β1 before p(α, β3).

10



α′

α
β

β′

Figure 4: Curves α, α′, β, β′ are in bold. Disjoint curves {α, α′} are grounded with grounds β, β′. A
collection A′ of double-grounded curves (thin) with grounds β, β′ such that every curve in A′ is disjoint
from α and from α′. A collection B′ of double-grounded curves (medium thickness) with grounds α, α′

such that every curve in A′ is disjoint from β and from β′.

See Fig. 3 for an example of a very nice quadruple. It is easy to see that for each nice quadruple Q,
exactly one of the six quadruples Qπ is very nice. For each very nice quadruple Q = (α, β1, β2, β3), let
EQ denote the event that β = β3 and β′ = β1. The probability of EQ is clearly 1

|B|(|B|−1) .
By linearity of expectation, the expected number of events EQ that hold is

q/6
|B|(|B| − 1)

>
q

6|B|2 .

Therefore, there exists a pair (β, β′) of curves in B such that for more than q
6|B|2 very nice quadruples

Q, the event EQ holds. Pick such a pair (β, β′). The collection A′ is double-grounded with grounds β

and β′. Let B′ denote the set of curves in B that intersect neither β nor β′. Note that for each very
nice Q for which EQ holds, the subcurve α′ of the curve α is in A′ and intersects the curve β2 ∈ B′.
Hence, there are more than q

6|B|2 intersecting pairs in A′ ×B′. 2

The last lemma is crucial for the proof of the following statement.

Lemma 5.2 Let A be a double-grounded collection of at most n curves with grounds β, β′, and let B

be a collection of at most n curves disjoint from β, β′ such that the number of intersecting pairs in
A×B is at least εn2 with ε ≥ 48/n, and the number of pairwise intersecting triples in A is less than
2−9ε3n3. Then we can find disjoint curves α, α′ ∈ A and a double-grounded collection B′ of subcurves
of curves in B with grounds α, α′ such that the subcollection A′ consisting of all curves in A that are
disjoint from α and α′ has the property that the the number of intersecting pairs of curves in A′ ×B′

is at least 2−9ε3n4/|A|2. See Fig. 4.

Proof. Since there are less than 2−9ε3n3 triangles in the intersection graph of A, then by Lemma
3.1 we have that there are at least 2−9ε3n4 induced claws in the intersection graph of A ∪ B with
root in B and the other three vertices in A. Applying Lemma 5.1 with A and B switched, there are

11



disjoint curves α, α′ ∈ A, a subcollection A′ ⊂ A such that every curve in A′ is disjoint from α, α′,
and a double-grounded collection B′ of subcurves of curves of B with grounds α, α′ such that there
are more than 2−9ε3n4/|A|2 intersecting pairs in A′ ×B′. 2

We need one more lemma before we prove Theorem 1.1 in the case that the intersection graph of
the collection of curves has few triangles.

Lemma 5.3 Let A∪{α, α′} be a double-grounded collection of curves with grounds β, β′, and let B be
a double-grounded collection of curves with grounds α, α′ such that every curve in A is disjoint from
α and α′, and every curve in B is disjoint from β and β′. Then A ∪ B is the disjoint union of two
collections of split curves such that every curve in the first split collection is disjoint from every curve
in the second split collection.

Proof. By the Jordan curve theorem, α ∪ α′ ∪ β ∪ β′ partitions the plane into two regions, an inside
region I and an outside region O. Each curve in A ∪B either lies entirely in the closure Ī of I or the
closure Ō of O. A curve γ in A∪B that lies entirely in Ī is an inside curve, otherwise γ is an outside
curve. Since our curves are in general position, every outside curve is disjoint from every inside curve.
By tracing along the outside, we see that the collection of outside curves is split. Similarly tracing
along the inside, we see that the collection of inside curves is split. 2

We next establish Theorem 1.1 for collections of curves whose intersection graphs have few triangles.

Theorem 5.4 Let C be a collection of curves such that the intersection graph of C has at least εn2

edges and fewer than 2−36ε9n3 triangles. Then for each γ ∈ C, there is a subcurve γ′ of γ such that
the intersection graph of the collection {γ′ : γ ∈ C} is an incomparability graph with at least 2−45ε9n2

edges.

Proof. By the remark at the end of Section 4, we may assume that 2−45ε9n2 > 1, so that ε > 25n−2/9.
By Lemma 3.1, since there are fewer than 2−9εn3 triangles in the intersection graph of C, letting

A = B = C, there are at least q = 6 · 2−9ε3n4 ordered quadruples (α, β1, β2, β3) ∈ A × B × B × B

such that β1, β2, β3 are pairwise disjoint and α intersects β1, β2, and β3. By Lemma 5.1, there are
disjoint curves β, β′ ∈ B, a subcollection B′ ⊂ B, and a double-grounded collection A′ of subcurves
of curves of A with grounds β, β′ such that every curve in B′ is disjoint from β, β′ and the number of
intersecting pairs in A′ ×B′ is larger than q

6|B|2 ≥ 2−9ε3n2. Let ε1 = 2−9ε3, so

ε1 > 2−9
(
25n−2/9

)3
> 26n−2/3 > 48/n.

Since there are fewer than 2−36ε9n3 = 2−9ε3
1n

3 triangles in the intersection graph of C (and hence
in the intersection graph of A′) and ε1 > 48/n, by Lemma 5.2, there are disjoint curves α, α′ ∈ A′,
and a double-grounded collection B′′ of subcurves of curves in B′ with grounds α, α′ such that the
subcollection A′′ of all curves in A′ that are disjoint from α and α′ has the property that the number of
intersecting pairs of curves in A′′×B′′ is at least ε2n

2, for ε2 = 2−9ε3
1n

4/|A′|2 ≥ 2−36ε9n2. By Lemma
5.3, the collection A′′ ∪B′′, which has at least 2−36ε9n2 edges in its intersection graph, is the disjoint

12



union of two split collections such that every curve in the first split collection is disjoint from every
curve in the second split collection. Since the intersection graph of every split collection of curves is
an incomparability graph (Proposition 4.2), and the disjoint union of two incomparability graphs is
an incomparability graph as remarked at the end of Section 4, then the intersection graph of A′′ ∪B′′

is an incomparability graph. This completes the proof. 2

6 Grounded collections of curves

The aim of this section is to prove Theorem 1.1 for (nondegenerate) grounded collections of curves (see
Theorem 6.6). This is an important step toward the proof of Theorem 1.1 in the general case, which
will be presented in the next section. We first collect several useful lemmas for families of grounded
curves.

In the previous section we proved Theorem 1.1 in the case when the string graph has few triangles.
To prove Theorem 1.1 in the case when the string graph has many triangles, we have to classify the
different ways how three curves can pairwise intersect. We start with a simple observation.

Proposition 6.1 Let T = {α1, α2, α3} be a set of three pairwise intersecting curves. There is a
permutation γ1, γ2, γ3 of α1, α2, α3 such that p(γ3, γ1) comes before p(γ3, γ2) along γ3 and p(γ1, γ2)
comes before p(γ1, γ3) along γ1. In particular, if γ is a subcurve of γ3 with the same starting point as
γ3 and whose final point is at least p(γ3, γ1) and before p(γ3, γ2) along γ3, then γ intersects γ1 and is
disjoint from γ2, and γ2 intersects γ1(γ). We call such a curve γ3 nice for the triple T .

Proof. We may suppose by symmetry that p(α3, α1) comes before p(α3, α2) along α3.
Case 1: p(α1, α2) comes before p(α1, α3) along α1. Then we may let γi = αi for i = 1, 2, 3 and the
lemma follows. Indeed, in this case γ1(γ3) intersects γ2, and if γ is a subcurve of γ3, then γ1(γ3) is a
subcurve of γ1(γ) and so γ1(γ) intersects γ2.

Thus, we may assume that we are in the following case.
Case 2: p(α1, α3) comes before p(α1, α2) along α1. This case has two subcases.
Case 2a: Point p(α2, α1) comes before p(α2, α3) along α2. Letting γ3 = α2, γ2 = α3, and γ1 = α1, as
in Case 1, the proposition follows.
Case 2b: Point p(α2, α3) comes before p(α2, α1) along α2. Letting γ3 = α2, γ2 = α1, and γ1 = α3, as
in Case 1, the proposition follows. 2

Proposition 6.1 is needed for the proof of the next lemma.

Lemma 6.2 If C is a collection of at most n curves with at least εn3 triples of pairwise intersecting
members, then there is a subcurve γ′ of a curve γ ∈ C with the same starting point as γ and disjoint
subcollections A and B of C such that each curve in A intersects γ′, no curve in B intersects γ′, and
the following holds. Letting A′ denote the set of curves α(γ′) with α ∈ A, γ′ is a ground for each curve
in A′ and there are more than ε2

2 n2 pairs in A′ ×B that intersect.
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p(α1, α2)

p(α1, α3)p(α3, α1) p(α3, α2)

α3

α2

α1

Figure 5: Three curves α1, α2, α3 that pairwise intersect such that p(α3, α1) comes before p(α3, α2) along α3

and p(α1, α2) comes before p(α1, α3) along α1. Letting γi = αi for i = 1, 2, 3, and γ be the bold subcurve of γ3

whose final point lies between p(α3, α1) and p(α3, α2), we have that γ intersects γ1 and is disjoint from γ2, and
the subcurve γ1(γ) of γ1 intersects γ2.

Proof. By Lemma 6.1, in each triple of curves that pairwise intersect, there is a curve that is nice
for that triple. By averaging, there is a curve γ ∈ C that is nice for at least εn3/|C| ≥ εn2 triples. A
triple T of curves is helpful if γ ∈ T , the curves in T pairwise intersect, and γ is nice for T . So the
number of helpful triples is at least εn2. Let αi denote the ith curve that intersects γ along γ, breaking
ties arbitrarily. The number of quadruples {αi, αk, αj , γ} with i ≤ k < j and T = {αi, αj , γ} a helpful
triple is the sum of j− i over all helpful triples T = {αi, αj , γ}. Let f(d) denote the number of helpful
triples T = {αi, αj , γ} with d = j − i. The number of helpful triples is

∑
d f(d), which is at least εn2.

We also have f(d) ≤ n for each d. Hence, the number of quadruples {αi, αk, αj , γ} with i ≤ k < j

and T = {αi, αj , γ} a helpful triple is
∑

d df(d) ≥ n
(
1 + 2 + · · ·+ εn2

n

)
> ε2n3

2 . By averaging, there

is a value of k such that there are more than ε2n3/2
n = ε2

2 n2 helpful triples T = {αi, αj , γ} such that
p(γ, αi) is at most p(γ, αk) along γ and p(γ, αk) comes before p(γ, αj) along γ. Let γ′ denote the
subcurve of γ with the same starting point as γ and final point p(γ, αk). Let A be those curves αh

that intersect γ with h ≤ k. Let B be those curves αh that intersect γ with h > k. By construction,
every curve in A intersects γ′ and no curve in B intersects γ′. Also, γ′ is a ground for A′, and more
than ε2

2 n2 pairs of curves in A′ ×B intersect. 2

We apply the last lemma to a grounded collection of curves, in the second case of the next lemma.

Lemma 6.3 Let C be a grounded collection of at most n curves with ground γ, for which there are
εn2 pairs of curves in C that intersect with ε ≥ 1/n. There is a subcurve α′ of a curve α ∈ C with
the same starting point on γ as α, a subcollection A of C, a strongly double-grounded collection A′ of
subcurves of A with grounds (γ, α′), and a subcollection B ⊂ C of curves disjoint from α′ such that
there are at least ε4

72n2 pairs of curves in A′ ×B that intersect.
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Proof. We may assume that the starting point of each curve in C is its endpoint on γ. Let X denote
the set of ordered triples (γ1, γ2, γ3) of distinct curves in C with γ3 intersecting γ1 and γ2 and p(γ3, γ1)
coming before p(γ3, γ2) along γ3. For each curve γ3 ∈ C, let C(γ3) denote the collection of curves in
C that intersect γ3. So

∑
γ3∈C |C(γ3)| = 2εn2. By convexity of the function f(x) = x2, we have

|X| =
∑

γ3∈C

(|C(γ3)|
2

)
=

1
2

∑

γ3∈C

|C(γ3)|2 − |C(γ3)| = −εn2 +
1
2

∑

γ3∈C

|C(γ3)|2

≥ −εn2 +
|C|
2


 ∑

γ3∈C

|C(γ3)|/|C|



2

= −εn2 +
1

2|C|(2εn2)2 ≥ ε2n3.

Let X1 denote the collection of ordered triples (γ1, γ2, γ3) in X for which γ2 is disjoint from γ1,
and let X2 = X \ X1. The proof splits into two cases depending on which of the sets X1 and X2 is
larger.

Case 1: |X1| ≥ |X2|. In this case we have |X1| ≥ |X|/2 ≥ ε2

2 n3. By averaging, there is a curve α

that is the second coordinate for at least |X1|/|C| ≥ ε2

2 n2 triples in X1. Let A denote the collection
of those curves in C that intersect α, and let A′ be the collection of curves κ(α) with κ ∈ A. So A′

is strongly double grounded with grounds (γ, α). Let B be the subcollection of curves in C that are
disjoint from α. Each triple (β, α, κ) ∈ X1 with second coordinate α satisfies κ ∈ A, β ∈ B, and κ(α)
intersects β. Hence, there are at least ε2

2 n2 pairs in A′ ×B that intersect.

Case 2: |X2| > |X1|. In this case we have |X2| > |X|/2 ≥ ε2

2 n3. So there are at least ε2

6 n3 unordered
triples of pairwise intersecting curves in C. By Lemma 6.2, there is a subcurve α′ of a curve α ∈ C

with the same starting point as α (which is on γ) and there are disjoint subcollections A and B of
C for which each curve in A intersects α′ and no curve in B intersects α′, and letting A′ denote the
set of curves κ(α′) with κ ∈ A, the collection A′ is strongly double-grounded with grounds (γ, α′) and
there are at least (ε2

6 )2n2/2 = ε4

72n2 pairs in A′ ×B that intersect. 2

Lemma 6.4 Let A be a strongly double-grounded collection of at most n curves with grounds (γ, α).
Let B be a grounded collection of at most n curves also with ground γ such that every curve in B is
disjoint from α. If the number of pairs in A that intersect is at most ε2

8 n2 and the number of pairs of
curves in A×B that intersect is εn2 with ε ≥ 2/n, then there is a curve κ ∈ A satisfying the following
property. Letting A′ denote the set of curves in A that are disjoint from κ, and letting B′ denote the
set of subcurves β(κ) for which β ∈ B intersects κ, B′ is strongly double-grounded with grounds (γ, κ)
and there are at least ε2

8 n2 pairs of curves in A′ ×B′ that intersect.

Proof. Let X denote the set of ordered triples (β, α1, α2) ∈ B × A × A with α1 and α2 disjoint, β

intersecting α1 and α2, and p(β, α1) coming before p(β, α2) along the curve β. For each curve β ∈ B,
let A(β) denote the collection of curves in A that intersect β. So

∑
β∈B |A(β)| = εn2. Since there are

fewer than ε2

8 n2 pairs of curves in A that intersect, then for a given β, there are at least
(|A(β)|

2

)− ε2

8 n2

ordered triples (β, α1, α2) ∈ B×A×A with α1 and α2 disjoint, β intersecting α1 and α2, and p(β, α1)
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coming before p(β, α2) along the curve β. By convexity of the function f(x) = x2, we have

∑

β∈B

(|A(β)|
2

)
= −ε

2
n2+

1
2

∑

β∈B

|A(β)|2 ≥ −ε

2
n2+

|B|
2


∑

β∈B

|A(β)|/|B|



2

= −ε

2
n2+

1
2|B|

(
εn2

)2 ≥ ε2

4
n3.

Hence,

|X| ≥ ε2

4
n3 − |B|ε

2

8
n2 ≥ ε2

8
n3.

So there is a curve κ that is the second member in at least ε2

8 n3/|A| ≥ ε2

8 n2 ordered triples in X. It
follows that A′ ×B′ has at least ε2

8 n2 intersecting pairs. 2

The next lemma is very similar to Lemma 5.3.

Lemma 6.5 Suppose A ∪ {κ} is a strongly double-grounded collection of curves with grounds (γ, α)
and κ is disjoint from every curve in A. Suppose B is a strongly double-grounded collection of curves
with grounds (γ, κ). Then A∪B is the disjoint union of two collections of split curves such that every
curve in the first split collection is disjoint from every curve in the second split collection.

Proof. By the Jordan curve theorem, γ∪α∪κ partitions the plane into two regions, an inside region
I and an outside region O. Each curve in A∪B either lies entirely in the closure Ī of I or the closure
Ō of O. A curve β in A ∪B that lies entirely in Ī is an inside curve, otherwise β is an outside curve.
Since our curves are in general position, every outside curve is disjoint from every inside curve. By
tracing along the outside, we see that the collection of outside curves is split. Similarly tracing along
the inside, we see that the collection of inside curves is split. 2

Putting together the last three lemmas, we obtain the main result of this section, according to
which Theorem 1.1 is true for grounded collections.

Theorem 6.6 Suppose C is a grounded collection of at most n curves whose intersection graph has
at least εn2 edges. Then for each γ ∈ C, there is a subcurve γ′ of γ such that the intersection graph
of the collection {γ′ : γ ∈ C} is an incomparability graph with at least 2−16ε8n2 edges.

Proof. By the remark at the end of Section 4, we may assume that 2−16ε8n2 > 1 and hence
ε > 4n−1/4.

Let ψ be a ground for C. By Lemma 6.3, we can find a curve α ∈ C that has a subcurve α′

with the same starting point on C as α, a subcollection A of C, a strongly double-grounded collection
A′ of subcurves of A with grounds (ψ, α′), and a subcollection B ⊂ C consisting of curves disjoint
from α′ such that there are at least ε1n

2 intersecting pairs in A′ × B, where ε1 = ε4

72 . Note that

ε1 > (4n−1/4)4

72 = 32
9n > 2

n .
The intersection graph of A′ is split by Proposition 4.1. Therefore, we may assume that the

intersection graph of A′ has fewer than 2−16ε8n2 <
ε2
1
8 edges, otherwise we are done. By Lemma 6.4,

there is a curve κ ∈ A′ for which the following holds. Let A′′ denote the family of all curves in A′ that
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are disjoint from κ, and let B′′ denote the family of subcurves β(κ) with β ∈ B′ intersecting κ. The
family B′′ is strongly double-grounded with grounds (ψ, κ), and there are at least ε2n

2 pairs of curves

in A′′ × B′′ that intersect, where ε2 = ε2
1
8 = 1

8

(
ε4

72

)2
> 2−16ε8. Lemma 6.5 implies that A′′ ∪ B′′ is

the disjoint union of two split collections such that every curve in the first split collection is disjoint
from every curve in the second split collection. Since the intersection graph of every split collection
of curves is an incomparability graph (Proposition 4.2), and the disjoint union of two incomparability
graphs is an incomparability graph as remarked at the end of Section 4, then the intersection graph
of A′′ ∪B′′ is an incomparability graph. This completes the proof. 2

7 Proof of Theorem 1.1 for nondegenerate collections

In this section, after proving an auxiliary lemma, we prove Theorem 1.1 for nondegenerate collections of
curves whose intersection graph has many triangles (Theorem 7.2). Recall that in Section 5 we proved
Theorem 1.1 for nondegenerate collections of curves whose intersection graph have few triangles. At
the end of this section, we put these two results together to establish a quantitative version of Theorem
1.1 for nondegenerate collections of curves (Theorem 7.3). In the next section, we discuss how the
proof can be modified to handle degenerate collections of curves.

Lemma 7.1 Let n be a positive integer and ε ≥ 4
n . Let A be a grounded collection of at most n curves

with ground γ. Let B be a collection of at most n curves that are disjoint from γ such that there are
εn2 pairs of intersecting curves in A×B. Then the number of intersecting pairs of curves in A is at
least ε2

4 n2, or we can find a subcollection A′ ⊂ A and a collection B′ of subcurves of curves of B such
that A′ ∪B′ is grounded and there are at least ε2

8 n2 intersecting pairs of curves in A′ ×B′.

Proof. For each curve β ∈ B, let d(β) be the number of curves in A that intersect β, so that we have∑
β∈B d(β) = εn2. Let βi denote the ith curve in A that intersects β along β. The number of pairs

of curves (βi, βj) in A that intersect β with i < j is
(
d(β)

2

)
. Call a triple (βi, βj , β) ∈ A× A× B with

i < j great if βi is disjoint from βj .
We may assume that the number of intersecting pairs of curves in A is less than ε2

4 n2, so the
number of great triples is at least

∑

β∈B

(
d(β)

2

)
− ε2

4
n2 = −|B|ε

2

4
n2 +

1
2

∑

β∈B

d(β)2 − d(β) ≥ −ε2

4
n3 − ε

2
n2 +

1
2
|B|(

∑

β∈B

d(β)/|B|)2

= −ε2

4
n3 − ε

2
n2 +

1
2|B|(εn

2)2 ≥ ε2

8
n3.

Here we used the convexity of the function f(x) = x2.
Hence, there is a curve α ∈ A that is represented at least ε2

8 n3/|A| ≥ ε2

8 n2 times as the second
member of a great triple. Let B′ denote the collection of subcurves β(α) with β ∈ B intersecting α.
Let A′ denote the collection of curves in A that are disjoint from α. By construction, there are at least
ε2

8 n2 intersecting pairs of curves in A′ ×B′. Tracing around γ ∪ α, we see that A′ ∪B′ is a grounded
collection of curves with at least ε2

8 n2 intersecting pairs. 2
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Theorem 7.2 Let C be a collection of curves in the plane such that the intersection graph of C has
at least εn3 triangles. Then for each γ ∈ C, there is a subcurve γ′ of γ such that the intersection graph
of the collection {γ′ : γ ∈ C} is an incomparability graph with at least 2−56ε32n2 edges.

Proof. By the remark at the end of Section 4, we may assume that 2−56ε32n2 > 1 and hence
ε > 27/4n−1/16.

By Lemma 6.2, there is a subcurve κ′ of a curve κ ∈ C with the same starting point as κ and
disjoint subcollections A and B of C such that each curve in A intersects κ′, no curve in B intersects
κ′, and the following holds. Letting A′ denote the set of curves α(κ′) with α ∈ A, the collection A′

is grounded with ground κ′ and there are at least ε1n
2 pairs in A′ ×B that intersect, where ε1 = ε2

2 .
Note that ε1 = ε2

2 > 4/n.

By Lemma 7.1, there are ε2
1
4 n2 intersecting pairs of curves in A′, or there is a subcollection A′′ of A′

and a collection B′′ of subcurves of curves of B′ such that A′′ ∪B′′ is grounded and has at least ε2
1
8 n2

intersecting pairs of curves. In either case, we have a grounded collection of subcurves with at least
ε2
1
8 n2 intersecting pairs of curves. By Theorem 6.6, for each curve γ in this grounded collection, there is
a subcurve γ′ of γ such that the intersection graph of the collection {γ′ : γ ∈ C} is an incomparability
graph with at least

2−16(ε2
1/8)8n2 = 2−40ε16

1 n2 = 2−40(ε2/2)16n2 = 2−56ε32n2

edges. 2

We can now establish Theorem 1.1 for nondegenerate collections of curves.

Theorem 7.3 Let C be a collection of curves such that the intersection graph of C has εn2 edges.
Then for each γ ∈ C, there is a subcurve γ′ of γ such that the intersection graph of the collection
{γ′ : γ ∈ C} is an incomparability graph with at least 2−1212ε288n2 edges.

Proof. The proof splits into two cases depending on the number of triangles in the intersection graph
of C. If the intersection graph of C has fewer than 2−36ε9n3 triangles, then we are done by Theorem
5.4. If the intersection graph of C has at least 2−36ε9n3 triangles, then we are done by Theorem 7.2,
noting that 2−56

(
2−36ε9

)32 − 2−1212ε288. 2

8 Proof of Theorem 1.1 for degenerate collections

So far we have made the assumption that the curves we consider are in general position, i.e., no point
belongs to three or more curves. As we have indicated before, this assumption is not essential for
the proof of Theorem 1.1, and it was made only for the clarity of the presentation. In this section,
we discuss how the proof can be modified to handle collections of curves that are not necessarily in
general position.

For any curve γ and any interior point p of γ, every sufficiently small neighborhood of p is parti-
tioned into two regions by γ. If α is a curve that contains p as an endpoint and is otherwise disjoint

18



γ

α

α′

α′

α

Figure 6: (a) Left curve α and right curve α′ of ground γ at two-sided point p. (b) A degenerate
collection of five curves with two-sided point p that is strongly double-grounded with grounds (α,α′)
whose intersection graph is a cycle with five vertices, which is not an incomparability graph.

from γ, α is either a left curve of γ at p or a right curve of γ at p, depending on which side of γ the
curve α intersects. See Fig. 6(a). For a grounded collection C of curves with ground γ, an interior
point p of γ is called two-sided with respect to C if there are α, α′ ∈ C such that α is a left curve of p

and α′ is a right curve of p.
We now discuss how to prove Theorem 1.1 in the case where the collection of curves is not neces-

sarily in general position. Let C be a collection of n curves with εn2 intersecting pairs. If there is a
point p in the plane which belongs to at least δ1n members of C, where δ1 = εc and c is a sufficiently
large constant, then we may simply take the set consisting of the point p as the subcurve for each curve
containing p and the empty set as the subcurve for each curve not containing p. In this special case,
the intersection graph of these subcurves consists of a clique with a quadratic number of edges and
the remaining vertices are isolated. It is easy to see that this intersection graph is an incomparability
graph. Therefore, we may assume that no point p belongs to at least δ1n members of C. With this
assumption, only one minor issue arises when trying to use the same argument as in the case where
the curves were in general position. The problem is that Proposition 4.1, which says that a collection
of curves is double-grounded with a separator if and only if it is strongly double-grounded if and only
if it is split, does not hold in this case.

While the intersection graph of every split collection of curves is an incomparability graph, the
intersection graph of a degenerate, strongly-double grounded collection of curves is not necessarily
an incomparability graph. Indeed, Figure 6(b) gives an example of such a collection of curves whose
intersection graph is the cycle on five vertices, which is not an incomparability graph. Proposition
4.1 is not true if we allow for there to be a point p of one of the two grounds which is two-sided with
respect to the collection of curves which is either strongly-double grounded or double-grounded with a
separator. If we try to repeat the argument as we did for non-degenerate collections, as we trace along
the union of the two grounds of a strongly double grounded collection or a double-grounded collection
with a separator to make a curve α which verifies the collection is split, the curve α will have to touch
the two-sided point p twice, so that α is not a simple curve. The same problem arises in Lemmas 5.3
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and 6.5, when claiming that there are no intersecting pairs of curves between the two split collections
(the inside collection and the outside collection) of curves.

To handle these issues, we can use essentially the same proof of Theorem 1.1 as we did for collections
of curves in general position, except that whenever we obtain a grounded collection of curves, we have
to use the following lemma to find a grounded subcollection of curves with no two-sided points and
we can still retain a constant fraction of the intersecting pairs.

Lemma 8.1 Let A be a grounded collection of at most n curves with ground α, and let B be a (possibly
empty) collection of curves disjoint from α such that A× (A ∪B) has m intersecting unordered pairs
of distinct curves and no point of α is contained in more than m/n elements of A. Then there exists a
subcollection A′ ⊂ A such that no interior point of α is two-sided with respect to A′ and at least m/8
unordered pairs of distinct curves in A′ × (A′ ∪B) intersect.

Proof. By convexity and by the fact that no point of α is contained in more than m/n elements of
A, we obtain that the number of pairs of distinct curves in A that share an endpoint on α is at most(
m/n

2

)
n2/m < m/2. Thus, there are at least m/2 unordered pairs of distinct curves in A × (A ∪ B)

that intersect and do not share an endpoint on α. For each interior point p of α that is two-sided
with respect to A, either we keep all left curves of p in A or all right curves of p in A, each with equal
probability. All other curves we keep. The curves in A we keep make up A′. For each pair of distinct
curves in A that do not share an endpoint on α, the probability that they are both kept in A′ is at
least 1/4. Also, the probability that a pair of curves in A × B is in A′ × B is at least 1/2. Hence,
by linearity of expectation, there is a choice of A′ for which the number of unordered pairs of distinct
curves in A′ × (A′ ∪B) that intersect is at least 1

4m/2 = m/8. 2

9 Concluding remarks

In this paper we established Theorem 1.1, demonstrating a surprisingly close relationship between
string graphs and incomparability graphs. In this final section, we discuss a variant of Theorem 1.1,
the proof of which can be obtained by a straightforward modification of the original argument and is
therefore left to the reader.

A collection of curves is k-intersecting if each pair of curves in the collection intersect in at most k

points and every crossing is proper. The x-monotone crossing dimension xcr-dim(P ) of a poset P is
the minimum k such that there is a realization of P as a k-intersecting collection of curves of functions
defined on the interval [0, 1] (as in Section 2). The crossing dimension cr-dim(P ) of a poset P is the
minimum k such that there is a realization of P as a k-intersecting collection of curves such that each
curve in P lies in the closed vertical strip [0, 1] × R, has one endpoint on the line x = 0, the other
endpoint on the line x = 1, and the rest of the curve lies in the open vertical strip (0, 1) × R. By
definition, we have cr-dim(P ) ≤ xcr-dim(P ) for every poset P .

It follows from the proof of Proposition 2.1 that xcr-dim(P ) ≤ dim(P ) − 1. It is easy to show
that cr-dim(P ) = xcr-dim(P ) = dim(P )− 1 if dim(P ) = 1 or 2. However, the standard example (see
[18]) demonstrates for n ≥ 3 that there is a poset on 2n elements with dimension n and x-monotone
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crossing dimension only 2. The proof of Theorem 1.1 can easily be modified to prove the following
theorem.

Theorem 9.1 For every ε > 0 there exists δ > 0 with the following property. If C is a k-intersecting
collection of curves whose string graph has at least ε|C|2 edges, then one can select a subcurve γ′ of
each γ ∈ C such that the string graph of the collection {γ′ : γ ∈ C} has at least δ|C|2 edges and is an
incomparability graph with crossing dimension at most k.

It follows that every dense string graph of a k-intersecting collection of curves has a dense spanning
subgraph (with a different ε), which is an incomparability graph with crossing dimension at most k.

Since cr-dim(P ) = 1 if and only if dim(P ) = 2, we have the following corollary. A 1-intersecting
collection of curves is commonly known as an an arrangement of pseudosegments.

Corollary 9.2 For every ε > 0 there exists δ > 0 with the following property. If C is a collection of
pseudosegments whose string graph has at least ε|C|2 edges, then one can select a subcurve γ′ of each
γ ∈ C such that the string graph of the collection {γ′ : γ ∈ C} has at least δ|C|2 edges and is the
incomparability graph of a 2-dimensional poset.

By the proof of Proposition 2.1, the incomparability graph of a 2-dimensional poset is the intersec-
tion graph of a collection of segments that have one endpoint on the line x = 0 and the other endpoint
on the line x = 1. Hence, for every collection of pseudosegments whose intersection graph is dense, we
can pick a subcurve of each pseudosegment such that the intersection graph of the resulting collection
of subcurves is a dense intersection graph of segments.
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[34] J. Pach, R. Pinchasi, M. Sharir, and G. Tóth, Topological graphs with no large grids, Graphs and
Combinatorics 21 (2005), 355–364.
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[36] J. Pach and G. Tóth, Recognizing string graphs is decidable, Discrete Comput. Geom. 28 (2002),
593–606.
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[40] M. Schaefer and D. Štefankovič, Decidability of string graphs, J. Comput. System Sci. 68 (2004),
319–334.

[41] F.W. Sinden, Topology of thin film RC-circuits, Bell System Technological Journal (1966), 1639-
1662.

[42] W. T. Trotter, Combinatorics and Partially Ordered Sets. Dimension Theory, Johns Hopkins
Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1992.

23


