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Abstract

We investigate decompositions of a graph into a small number of low diameter subgraphs. Let
P (n, ε, d) be the smallest k such that every graph G = (V, E) on n vertices has an edge partition
E = E0 ∪ E1 ∪ . . . ∪ Ek such that |E0| ≤ εn2 and for all 1 ≤ i ≤ k the diameter of the subgraph
spanned by Ei is at most d. Using Szemerédi’s regularity lemma, Polcyn and Ruciński showed
that P (n, ε, 4) is bounded above by a constant depending only ε. This shows that every dense
graph can be partitioned into a small number of “small worlds” provided that few edges can be
ignored. Improving on their result, we determine P (n, ε, d) within an absolute constant factor,
showing that P (n, ε, 2) = Θ(n) is unbounded for ε < 1/4, P (n, ε, 3) = Θ(1/ε2) for ε > n−1/2 and
P (n, ε, 4) = Θ(1/ε) for ε > n−1. We also prove that if G has large minimum degree, all the edges of
G can be covered by a small number of low diameter subgraphs. Finally, we extend some of these
results to hypergraphs, improving earlier work of Polcyn, Rödl, Ruciński, and Szemerédi.

1 Introduction

The distance between two vertices of a graph is the length of the shortest path between them. The
diameter diam(G) of a connected graph G = (V,E) is the maximum distance between any pair of
vertices of the graph. If G is not connected, diam(G) = ∞. For an edge subset E′ ⊂ E, the diameter
of E′ is the diameter of the subgraph of G with edge set E′, whose vertex set consists of all the vertices
of G which belong to at least one edge of E′.

Extremal problems on the diameter of graphs have a long history and were first investigated by Erdős
and Rényi [5] and Erdős, Rényi, and Sós [6], who studied the minimum number of edges in an n-vertex
graph with diameter at most d. Another line of research concerning the change of diameter if edges
of the graph are added or deleted was initiated by Chung and Garey [2] (see also, e.g., [3, 1]). In this
paper, we investigate decompositions of a graph into a small number of subgraphs of low diameter. A
motivation for such decompositions comes from distributed computing. We are given a set of processors
(vertices) with communication channels (edges) between pairs of processors. A fundamental problem
when designing algorithms on such systems is determining how much coordination must be done
between the processors and accomplishing this coordination as efficiently as possible. The simplest
approach is to centralize the network by appointing one processor to coordinate the actions of the
network. This approach often simplifies the problem and leads to distributed algorithms based on
known serial algorithms. However, if the network has large diameter, such rigid centralization can
degrade system performance due to delays in communication. One solution to this problem is to
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partition the network into regions of low diameter. This approach was used for example by Linial and
Saks [9] who showed that every graph on n vertices can be vertex partitioned into O(log n) induced
subgraphs whose connected components have diameter O(log n).

In this paper we will consider another variant of the low diameter decomposition problem, which
was also studied by several researchers. In this problem the goal is to partition nearly all the edges
of a graph into a small number of low diameter subgraphs. More precisely we study the following
parameter.

Definition 1 Let P (n, ε, d) be the smallest ` such that every graph G = (V,E) on n vertices has an
edge partition E = E0 ∪ E1 ∪ . . . ∪ E` such that |E0| ≤ εn2 and the diameter of Ei is at most d for
1 ≤ i ≤ `.

Polcyn and Ruciński [12] recently showed that every dense graph can be partitioned into a small
number of “small worlds” provided that a small fraction of the edges can be ignored. Specifically, they
proved that P (n, ε, 4) is bounded by a constant depending only on ε. Their proof relies on Szemerédi’s
regularity lemma and consequently gives an enormous upper bound on P (n, ε, 4) as a function of ε,
i.e., it shows that P (n, ε, 4) can be bounded from above by a tower of 2s of height polynomial in 1/ε.
One of our main results determines P (n, ε, d) up to a constant factor. It improves on the result of
Polcyn and Ruciński both on the diameter bound and on the number of parts.

Theorem 1 (a) For ε < 1/4 bounded away from 1/4, we have P (n, ε, 2) = Θ(n).
(b) For ε ≥ n−1/2, we have P (n, ε, 3) = Θ(1/ε2).
(c) For ε ≥ n−1, we have P (n, ε, 4) = Θ(1/ε).

There is a sharp transition in the behavior of the function P (n, ε, 2) at ε = 1/4, namely P (n, 1/4, 2)=
1. Note also that P (n, ε, 1) is the minimum number of edge-disjoint cliques needed to cover all but
εn2 edges in any graph on n vertices. This parameter is not so interesting to study as for ε not too
large, P (n, ε, 1) is quadratic in n by considering the complete bipartite graph with parts of equal size.

Extremal problems on the diameter of graphs with large minimum degree have also been studied.
For example, Erdős et al. [4], answering a question of Gallai, determine up to an additive constant
the largest possible diameter of a connected graph with a given number n of vertices and minimum
degree δ. The answer is within an additive constant of 3n

δ+1 . For graphs with large minimum degree,
we can show that all edges of such graphs can be covered by a small number of low diameter subgraphs
(which are not necessarily edge-disjoint).

Definition 2 Let Q(n, ε, d) be the minimum ` such that the edges of any graph G = (V, E) on n

vertices with minimum degree at least εn can be covered by ` sets E = E1 ∪ . . . ∪ E` such that the
diameter of each Ei is at most d.

We prove the following two results, in which we use the properties of Kneser graphs to establish
lower bounds.

Theorem 2 (a) For fixed 0 < ε ≤ 2−8, both Q(n, ε, 3) and Q(n, ε, 4) have order of magnitude Θ(log n).
(b) Q(n, ε, 5) = Θ(1/ε2) and Q(n, ε, 6) = Θ(1/ε).
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Note that any graph on n vertices of minimum degree more than n
2 − 1 has diameter at most 2,

since non-adjacent vertices must have a common neighbor. In sharp contrast with Theorem 2(a), this
shows that Q(n, 1/2, 2) = 1.

An analogous problem for hypergraphs was first investigated by Polcyn, Rödl, Ruciński, and Sze-
merédi [11]. A hypergraph G = (V,E) is k-uniform if each edge has exactly k vertices. A (tight) path
of length ` in a k-uniform hypergraph G = (V, E) is a subhypergraph consisting of ` + k − 1 vertices
v1, . . . , v`+k−1 and ` edges, such that for each i ≤ `, (vi, vi+1, . . . , vi+k−1) is an edge of G. The vertices
v1 and v`+k−1 are the endpoints of the path. The distance between two vertices v, w in a hypergraph
is the length of the shortest path whose endpoints are v and w. The diameter diam(G) of G is the
maximum distance between any two vertices of G.

Definition 3 Let Pk(n, ε, d) be the smallest ` such that every k-uniform hypergraph G = (V,E) on n

vertices has an edge partition E = E0 ∪ E1 ∪ . . . ∪ Ek such that |E0| ≤ εnk and the diameter of Ei is
at most d for 1 ≤ i ≤ k.

Polcyn et al. [11] showed that P3(n, ε, 12) is bounded above by a constant C3(ε) depending only on
ε. Their proof uses the hypergraph regularity lemma, and gives an Ackermann-type upper bound on
C3(ε). Here we improve the diameter bound from 12 to 3, which is best possible, generalize it to any
uniformity k, and further show that this function is polynomial in ε−1. The proof uses similar counting
arguments as done in the graph case.

Theorem 3 We have Pk(n, ε, 3) = O
(
ε2−2k

)
.

In the other direction, we show that Pk(n, ε, 3) ≥ ckε
−k for ε À n−1/2, which we think is tight.

We study P (n, ε, d) in the next section, where we consider the cases d = 2, 3, 4 in three separate
subsections. In Section 3, we study edge partitions of graphs of large minimum degree into a small
number of low diameter subgraphs. In Section 4, we prove bounds on Pk(n, ε, d). The last section of the
paper contains some concluding remarks and open questions. Throughout the paper, we systematically
omit floor and ceiling signs whenever they are not crucial for the sake of clarity of presentation. We
also do not make any serious attempt to optimize absolute constants in our statements and proofs.
All logarithms in this paper are in base 2.

2 Proof of Theorems 1

In this section, we prove bounds on P (n, ε, d). We consider the cases d = 2, 3, 4 in separate subsections.

2.1 Decomposing a graph into diameter 2 subgraphs

In this subsection we prove Theorem 1(a), which states that if ε < 1/4 is bounded away from 1/4, then
P (n, ε, 2) = Θ(n). The proofs for both the upper bound and for the lower bound are quite simple.
We first show the upper bound. Let G be a graph with n vertices. Note that a star has diameter 2.
Letting Ei be those edges that contain the ith vertex of G, we have P (n, 0, 2) ≤ n.

To prove the lower bound we use the following simple fact. If G is a bipartite graph, then any
subgraph of G which is not complete has diameter at least 3. We show next that if G is a random
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bipartite graph of edge density bounded away from 1, then almost surely every complete bipartite
subgraph of G has O(n) edges. The random bipartite graph G(n, n, p) is the probability space of labeled
bipartite graphs with n vertices in each class, where each of the n2 edges appears independently with
probability p. The term almost surely means with probability tending to 1 as n tends to infinity.

Lemma 1 Fix 0 < p < 1 and let q = 1 − p. Almost surely, all complete bipartite subgraphs of the
random bipartite graph G = G(n, n, p) have at most 2n/q edges.

Proof: Let A and B be the two vertex classes of G. The probability that there is S ⊂ A and T ⊂ B

that are complete to each other and have at least 2n/q edges between them is at most

p−2n/q22n = (1− q)−2n/q22n ≤ e−2n22n = o(1).

2

The Chernoff bound for the binomial distribution implies that the random graph G(n, n, p) almost
surely has pn2 + o(n2) edges. Let ε < 1/4, q = 1

4 − ε and p = 3
4 + ε. By considering G(n/2, n/2, p), we

have that there is a bipartite graph G on n vertices with at least (p−o(1))n2/4 =
(
ε+ 3q

4 −o(1)
)
n2 edges

and such that every diameter 2 subgraph of G has at most 2n/q edges. To cover
(3q

4 −o(1)
)
n2 > qn2/2

edges of G by diameter 2 subgraphs, we need to use at least qn2/2
2n/q = q2n/4 subgraphs. Hence

P (n, ε, 2) ≥ q2n/4 = (1−4ε)2

64 n for n sufficiently large. This completes the proof of Theorem 1(a). 2

We conclude this subsection by showing that a sharp transition for P (n, ε, 2) occurs at ε = 1/4.
Namely, P (n, 1/4, 2) = 1. If a graph G has a vertex which is adjacent to less than half of the other
vertices, delete it. Continue deleting vertices until all vertices in the remaining induced subgraph G1

are adjacent to at least half of the other vertices of G1. Graph G1 has diameter at most 2 by the
discussion after Theorem 2. Let G0 be the subgraph whose edges are those containing a deleted vertex.
Then G0 has at most 1

2

(
n
2

)
< n2/4 = εn2 edges and therefore P (n, 1/4, 2) = 1.

2.2 Decomposing a graph into diameter 3 subgraphs

Studying P (n, ε, d) appears to be most interesting in the case d = 3. In this subsection, we prove
Theorem 1(b), which establishes P (n, ε, 3) = Θ(1/ε2) for ε ≥ n−1/2. We begin with a few simple
lemmas.

Lemma 2 If G is a graph with n vertices and m ≥ 12n edges, then G has at least m3

16n2 paths of length
three.

Proof: Delete from G vertices of degree at most m
2n one by one. The resulting induced subgraph G′

has at least m− n m
2n = m/2 edges, and has minimum degree at least m

2n . For each edge e = (u, v) of
G′, u and v each have at least m

2n neighbors, so the number of paths of length three with middle edge e

is at least ( m
2n − 1)( m

2n − 2) ≥ m2

8n2 as there are at least m
2n − 1 possible choices for the first vertex of the

path, and, given the first three vertices of the path, at least m
2n − 2 remaining possible last vertices for

the path. Counting over all m/2 possible middle edges, we obtain that the number of paths of length
three in G′ (and hence in G) is at least m

2
m2

8n2 = m3

16n2 . 2

The next definition demonstrates how to construct a subgraph of diameter at most 3 from a graph
and a pair of its vertices.
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Definition 4 For a graph G and vertices v and w of distance at most d, let Gd(v, w) be the induced
subgraph of G consisting of all vertices of G that lie on a walk from v to w of length at most d.

Lemma 3 The graph Gd(v, w) has diameter at most d.

Proof: Let a and b be vertices of Gd(v, w). So a is on a walk from v to w of length at most d, and b

is on a walk from v to w of length at most d. These two walks give rise to two walks from a to b such
that the sum of the lengths of these two walks is at most 2d. Hence, there is a path from a to b of
length at most d. This shows that Gd(v, w) has diameter at most d. 2

Lemma 4 If a graph G has n vertices and m ≥ 12n edges, then it contains an induced subgraph H

with at least m3

32n4 edges that has diameter at most 3.

Proof: By Lemma 2, G has at least m3

16n2 paths of length three. By averaging, there is a pair u, v of
vertices of G such that the number of paths of length three with terminal vertices u and v is at least
m3

16n4 . By Lemma 3, G3(u, v) has diameter at most 3 and in every paths of length three from u to v,
the middle edge is an edge of G3(u, v). Moreover, each edge in G3(u, v) is the middle edge of at most
two paths from u to v, hence G3(u, v) has at least m2

32n4 edges. 2

We now prove a quantitative version of the upper bound on P (n, ε, 3) in Theorem 1(b).

Theorem 4 Every graph G on n vertices can be edge partitioned E = E0 ∪ E1 ∪ . . . ∪ Ek such that
|E0| ≤ εn2, k ≤ 50ε−2, and for 1 ≤ i ≤ k, the diameter of Ei is at most 3.

Proof: We repeatedly use Lemma 4 to pull out subgraphs of diameter at most 3 until the remaining
subgraph has at most εn2 edges. The remaining at most εn2 edges make up E0. If the current graph
has at least m/2 edges, then by the above lemma we can find a subgraph of diameter at most 3 with at
least (m/2)3

32n4 edges. Therefore, after pulling out s = (m−m/2)/ (m/2)3

32n4 = 128n4/m2 such subgraphs of
diameter at most 3, we remain with at most m/2 edges. Similarly, applying this process to a subgraph
with at most 2iεn2 edges we get a subgraph with at most 2i−1εn2 edges, after pulling out at most
128n4

(2iεn)2
= 27−2iε−2 subgraphs of diameter 3. Summing over all i ≥ 1, we obtain that altogether we pull

out at most
∑∞

i=1 27−2iε−2 = 27

3 ε−2 < 50ε−2 subgraphs. 2

Next we establish a lower bound on P (n, ε, 3), using the following two lemmas.

Lemma 5 Almost surely the subgraph of diameter at most 3 of the random bipartite graph G(n, n, p)
with p = 1

4
√

n
with the maximum number of edges has (1 + o(1))(2pn + p3n2) =

(
33
64 + o(1)

)√
n edges.

The neighborhood N(v) of a vertex v in a graph G is the set of vertices adjacent to v. To see that
there is almost surely a subgraph of diameter 3 of G(n, n, p) with (1 + o(1))(2pn + p3n2) edges, let a

and b be adjacent vertices in different vertex classes of G(n, n, p), and consider the induced subgraph
H with vertex set N(a) ∪ N(b), which has diameter at most 3. It follows from Chernoff’s bound
for the binomial distribution that almost surely all vertices of G(n, n, p) have degree (1 + o(1))pn.
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Hence, the number of edges containing a or b is (1 + o(1))2pn. Furthermore, given |N(a)| and |N(b)|,
the number of edges between N(a) \ {b} and N(b) \ {a} follows a binomial distribution, and another
application of Chernoff’s bound for the binomial distribution implies that the number of these edges
is (1 + o(1))p3n2. Hence H has (1 + o(1))(2pn + p3n2) edges. To prove Lemma 5, it thus suffices to
show that every diameter 3 subgraph has at most (1 + o(1))(2pn + p3n2) edges.

Since almost surely the number of edges of G(n, n, p), p = 1
4
√

n
is concentrated around it expected

value pn2, we have the following corollary. For all sufficiently large n, there is a bipartite graph on 2n
vertices with at least 1

5n3/2 edges in which any diameter at most 3 subgraph has at most 4
5n1/2 edges.

For a graph G, the blow-up G(r) denotes the graph formed by replacing each vertex vi of G by an
independent set Vi of size r, where vertices u ∈ Vi and w ∈ Vj are adjacent in G(r) if and only if vi

and vj are adjacent in G.

Lemma 6 If any subgraph of a graph G with diameter at most d has at most m edges, then any
subgraph of G(r) with diameter at most d has at most r2m edges.

Proof: Let H be a subgraph of G(r) of diameter at most d. Let H ′ be the induced subgraph of G

where vi is a vertex of H ′ if there is a vertex of H in Vi. It is clear from the definition of G(r) that
the diameter of H ′ is at most the diameter of H. Thus H ′ also has diameter at most d and so it has
at most m edges. Then H has at most r2m edges, since for every edge (vi, vj) of H ′ there are at most
r2 edges of H in Vi × Vj . 2

¿From Lemmas 5 and 6, we quickly deduce a lower bound on P (n, ε, 3). Of course, we are assuming
here that ε < 1/2 as otherwise εn2 ≥ (

n
2

)
and P (n, ε, 3) = 0 since we can let E0 consist of all edges of

the graph.

Theorem 5 We have P (n, ε, 3) ≥ cε−2 for some absolute constant c > 0.

Proof: Let t = (40ε)−2 and r = n
2t . By choosing an appropriate constant c we may suppose that ε

is sufficiently small and so t is sufficiently large. Therefore, by Lemma 5, there is a bipartite graph
G with 2t vertices, at least 1

5 t3/2 edges such that every diameter 3 subgraph of G has at most 4
5 t1/2

edges. The blow-up graph G(r) has n vertices, at least 1
5 t3/2r2 = 2εn2 edges, and Lemma 6 shows

that any subgraph of G(r) with diameter at most 3 has at most 4
5r2t1/2 = t−3/2n2/5 = 8(40)2ε3n2

edges. Thus P (n, ε, 3) ≥ εn2

8(40)2ε3n2 ≥ 1
8(40)2

ε−2, which completes the proof. 2

We next include a simple characterization of bipartite graphs of diameter at most 3.

Proposition 1 A bipartite graph G with at least three vertices has diameter at most 3 if and only if
each pair of vertices in the same vertex class have a common neighbor.

Proof: Let A and B be the vertex classes of bipartite G with |A| ≥ |B|. If a pair of vertices in the
same vertex class does not have a common neighbor, then the shortest path between them must be
even, have length at least four, and hence G has diameter at least four.

Conversely, suppose each pair of vertices in the same vertex class have a common neighbor. If two
vertices are in the same vertex class, then there is a path of length two between them. If a ∈ A and
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b ∈ B, then there is another vertex a′ ∈ A, and hence a and a′ have a neighbor b′ in B. If b′ = b, then
there is a path of length one between a and b. Otherwise, b′ and b have a common neighbor, so there
is a path between a and b of length at most three. This shows that the distance between any pair of
vertices of G is at most 3, i.e., G has diameter at most 3. 2

Notice that a bipartite graph with diameter less than 3 must be a complete bipartite graph, as if
there is a pair of vertices in different classes that are not adjacent, then the shortest path between
them is of odd length greater than 1, and so the diameter is at least 3. Hence a bipartite graph with
at least three vertices has diameter exactly three if and only if it is not a complete bipartite graph
and each pair of vertices in the same vertex class have a common neighbor.

Our goal for the rest of the subsection is to prove Lemma 5. We will assume that p = 1
4
√

n
, n is

sufficiently large, and let A and B denote the vertex sets of size n of G(n, n, p). We first need to collect
several basic lemmas about the edge distribution in G(n, n, p).

Lemma 7 G(n, n, p) almost surely has the following six properties.
(a) Every vertex has degree (1 + o(1))pn.
(b) Every pair of vertices have at most log n common neighbors.
(c) For every edge (a, b), there are (1 + o(1))(2pn + p3n2) edges between N(a) and N(b).
(d) For all a ∈ A and b ∈ B non-adjacent, there are (1 + o(1))p3n2 edges between N(a) and N(b).
(e) For all Y ⊂ B and X ⊂ A, there are at most |X|+ |Y |2 log n edges between X and Y .
(f) For all A′ ⊂ A and B′ ⊂ B, there are at most t = 6 max(|A′||B′|p, (|A′|+ |B′|) log n) edges between
A′ and B′.

Proof: (a) The degree of each of the 2n vertices of G(n, n, p) follows a binomial distribution. Cher-
noff’s bound for the binomial distribution implies that almost surely all of the degrees are concentrated
around their expected value, pn.

(b) The probability that a given pair of vertices in the same part have at least log n common neighbors
is at most

(
n

log n

)
p2 log n < nlog n(4

√
n)−2 log n = n−4. There are 2

(
n
2

)
< n2 pairs of vertices in the same

class of G(n, n, p), so the probability G(n, n, p) has a pair of vertices with log n common neighbors is
at most n−4n2 = n−2.

(c) By (a), almost surely, the degree of every vertex in G(n, n, p) is (1+o(1))pn. If a and b are adjacent,
given |N(a)| and |N(b)|, the number of edges between N(a) \ {b} and N(b) \ {a} follows a binomial
distribution. An application of Chernoff’s bound for the binomial distribution implies that a.s. for each
edge (a, b) the number of edges between N(a) and N(b) is |N(a)|+|N(b)|−1+(1+o(1))p|N(a)||N(b)| =
(1 + o(1))(2pn + p3n2).

(d) Similar to (c), an application of Chernoff’s bound for the binomial distribution implies that almost
surely for each pair a, b of non-adjacent vertices in different vertex classes, the number of edges between
N(a) and N(b) is (1 + o(1))p|N(a)||N(b)| = (1 + o(1))p3n2.

(e) Let x1, . . . , xk be the vertices of X with at least two neighbors in Y . Since every dY (xi) ≥ 2 and
(by (b)) each pair of vertices in Y has at most log n common neighbors, we have that

1
2

∑

i

dY (xi) ≤
∑

i

(
dY (xi)

2

)
≤

(|Y |
2

)
log n.
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This implies that the total number of edges between X and Y is at most |X| − k +
∑

i dY (xi) ≤
|X|+ |Y |2 log n.

(f) The result is trivial if A′ or B′ is empty, so we may assume they are nonempty. The number
of pairs A′ ⊂ A and B′ ⊂ B of size |A′| = a and |B′| = b is

(
n
a

)(
n
b

)
. For fixed A′ and B′ of

sizes a and b, respectively, the probability that there are at least t edges between them is at most

pt
(
ab
t

) ≤
(

abep
t

)t
≤ 2−t ≤ n−6(a+b). So the probability that there are such subsets A′ and B′ is at most

∑
a,b

(
n
a

)(
n
b

)
n−6(a+b) ≤ ∑

a,b na+bn−6(a+b) =
∑

a,b n−5(a+b) ≤ n2n−5 = n−3. 2

Let H be a subgraph of the bipartite graph G = G(n, n, p) of diameter at most 3, and X and Y

be its vertex sets with |X| ≥ |Y |. In particular, according to Proposition 1, each pair of vertices of
X have a common neighbor in Y , and each pair of vertices of Y have a common neighbor in X. We
suppose for contradiction that H has more than (1 + o(1))(2pn + p3n2) edges. Adding extra edges to
a graph on a given vertex set cannot increase the diameter of the graph, so we may suppose that H

is the induced subgraph of G with vertex sets X and Y . In graph H, let d1 ≥ d2 ≥ . . . ≥ d|Y | be the
degrees of the vertices of Y in decreasing order, and vi denote the vertex of degree di.

We first prove that H has few vertices.

Claim 1 Almost surely, every diameter 3 subgraph H of G(n, n, p) has at most 10n1/2 log n vertices.

Proof: Suppose for contradiction that H has at least x = 10n1/2 log n vertices. Since |X| ≥ |Y |,
we have |X| ≥ x/2 = 5n1/2 log n. Lemma 7(f) shows that almost surely there are at most t =
6max(|X||Y |p, (|X|+ |Y |) log n) ≤ 6|X|max (p|X|, 2 log n) edges between X and Y . Also, by Lemma
7(a), a.s. the maximum degree satisfies ∆ = (1 + o(1))np. Convexity of the function f(y) =

(
y
2

)
yields

|Y |∑

i=1

(
di

2

)
≤ t

∆

(
∆
2

)
= (1 + o(1))npt/2 ≤ 4np|X|max (p|X|, 2 log n) ,

which is an upper bound on the number of pairs of vertices of X that have a common neighbor in
Y . We have 4np|X| · p|X| < (|X|

2

)
and 4np|X| · 2 log n <

(|X|
2

)
. Hence, there are less than

(|X|
2

)
pairs

of vertices in X with a common neighbor in Y . So there is a pair of vertices in X with no common
neighbor in Y , contradicting H has diameter at most 3 and completing the proof. 2

Lemma 7(f) together with the previous claim imply that a.s. any subgraph of G(n, n, p) of diameter
3 with at least 2pn =

√
n/2 edges has at least 1

12

√
n

log n vertices and at most 10
√

n log n vertices.

Claim 2 Let ε = |X|−1/5. There is a vertex in Y that has at least (1− ε)|X| neighbors in X.

Proof: Since every pair of vertices of X have a common neighbor in Y we have
∑|Y |

i=1

(
di
2

) ≥ (|X|
2

)
,

where d1 ≥ d2 ≥ . . . ≥ d|Y | are the degrees of vertices of Y in X. Suppose for contradiction that
no vertex of Y that has at least (1 − ε)|X| neighbors in X. Let r = |X|1/3. By Lemma 7(e),∑r

i=1 di ≤ |X|+ r2 log n. In particular, convexity of the function f(x) =
(
x
2

)
demonstrates that

r∑

i=1

(
di

2

)
≤

(
(1− ε)|X|

2

)
+

(
ε|X|+ r2 log n

2

)
≤

(
(1− ε)|X|

2

)
+ ε2|X|2 ≤

(|X|
2

)
− ε|X|2/2.
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Since H and hence also X has at most 10
√

n log n vertices, we have that |X|2p ≤ 5
2 |X| log n. Thus, by

Lemma 7(f), there are at most 15|X| log n edges from Y to X. This implies that di ≤ dr ≤ 15|X| log n/r

for all i > r. Under these constraints, we have by convexity of the function f(x) =
(
x
2

)
that

∑

i>r

(
di

2

)
≤ r

(
15|X| log n/r

2

)
<

120
r
|X|2 log2 n = 120|X|5/3 log2 n ¿ 1

2
|X|9/5 =

1
2
ε|X|2.

This together with the above estimate shows that
∑|Y |

i=1

(
di
2

)
<

(|X|
2

)
, a contradiction. 2

Take ε as in Claim 2. Since there is a vertex in Y with at least (1− ε)|X| neighbors in X and every
vertex has degree (1 + o(1))pn, then |X| ≤ (1 + o(1))pn/(1− ε) = (1 + o(1))pn.

We next show that Y is also quite large if H has at least 2pn edges. By Claim 2, there is a vertex
v ∈ Y adjacent to at least (1−ε)|X| elements of X. By Lemma 7(b), every other vertex in Y besides v

has at most log n neighbors in N(v). Hence, there are at most |X|+ |Y | log n edges between N(v) and
Y . There are at most ε|X| vertices in X \N(v), so there are at most 6max(ε|X||Y |p, (ε|X|+ |Y |) log n)
edges between X \N(v) and Y . Hence the number of edges of H is at most

|X|+ |Y | log n + 6 max(ε|X||Y |p, (ε|X|+ |Y |) log n) ≤ (1 + o(1))pn + 7|Y | log n,

where we use |X| ≤ (1 + o(1))pn. If |Y | ≤ 1
30

√
n

log n , we get that there are less than 2pn edges in H, a

contradiction. To summarize, we have the following inequalities:
√

n
30 log n ≤ |Y | ≤ |X| ≤ (1 + o(1))pn.

Now that we have established that X and Y are of similar size, the proof of Claim 2 with X and Y

switched also gives us the following claim. The only estimate in the proof that needs to be checked
is that |X|2(log n)2/r ¿ ε|Y |2, and since |X| and |Y | are both of the form n1/2+o(1), r = |Y |1/3 and
ε = |Y |−1/5, this clearly holds.

Claim 3 Let ε = |Y |−1/5. There is a vertex in X that has at least (1− ε)|Y | neighbors in Y .

We now complete the proof of Lemma 5. Let y be a vertex in Y with at least (1− ε)|X| neighbors
in X and x be a vertex in X with at least (1 − ε)|Y | neighbors in Y , where ε = |Y |−1/5. Such
vertices x and y exist by Claims 2 and 3, since |Y | ≤ |X|. Let X1 be the set of neighbors of y in
X, and X2 = X \ X1. Let Y1 denote the set of neighbors of x in Y , and Y2 = Y \ Y1. By Lemma
7(c) if x and y are adjacent and Lemma 7(a) and (d) if x and y are not adjacent, there are at most
(1 + o(1))(2pn + p3n2) edges between X1 ∪ {x} and Y1 ∪ {y}. Since X1 consists of neighbors of y,
by Lemma 7(b), each vertex in Y2 \ {y} has at most log n neighbors in X1. Similarly, each vertex in
X2 \ {x} has at most log n neighbors in Y1. Lemma 7(f) implies that the number of edges between X2

and Y2 is at most

6max(|X2||Y2|p, (|X2|+ |Y2|) log n) ≤ 6max(ε|X|ε|Y |p, (ε|X|+ ε|Y |) log n) < 20ε|X| log n = o(n1/2).

Putting these inequalities altogether, the number of edges between X and Y , and hence the number
of edges of H, is at most

(1 + o(1))(2pn + p3n2) + |X2| log n + |Y2| log n + o(n1/2) = (1 + o(1))(2pn + p3n2),

where we use |X2| ≤ ε|X| = o(n1/2) and |Y2| ≤ ε|Y | = o(n1/2), which completes the proof. 2
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2.3 Decomposing a graph into diameter 4 subgraphs

In this subsection, we prove the last claim of Theorem 1, that P (n, ε, 4) = Θ(1/ε) for ε ≥ 1/n.

Definition 5 For a vertex v and graph G, let Nr(v) be those vertices of G which are within distance
at most r from vertex v and Gr(v) denote the induced subgraph of G with vertex set Nr(v).

The graph Gr(v) of course has radius at most r and hence diameter at most 2r. Note that Gr(v) =
G2r(v, v) (defined in the previous section) as any vertex at distance at most r from v is contained in
a walk from v to v of length at most 2r, and any walk from v to v of length at most 2r contains only
vertices of distance at most r from v.

To bound P (n, ε, 4) from above we use the following lemma, which is tight apart from the constant
factor as demonstrated by a disjoint union of cliques of equal size (see the proof of Lemma 9 below).

Lemma 8 If a graph G has n vertices and at least m ≥ 4n edges, then it has a subgraph with diameter
at most 4 and at least m2

8n2 edges.

Proof: Delete vertices one by one of degree at most m
2n . The resulting induced subgraph G′ has

at least m − n m
2n = m/2 edges and minimum degree at least m

2n . For any vertex v of G′, G′
2(v) has

diameter at most 4 and at least ( m
2n)2/2 ≥ m2

8n2 edges as v and its neighbors have degree at least m
2n . 2

We now prove a quantitative version of the upper bound on P (n, ε, 4) in Theorem 1(c).

Theorem 6 Every graph G on n vertices can be edge partitioned E = E0 ∪ E1 ∪ . . . ∪ E` such that
|E0| ≤ εn2, ` ≤ 16ε−1, and for 1 ≤ i ≤ `, the diameter of Ei is at most 4.

Proof: We repeatedly use Lemma 8 to pull out subgraphs of diameter at most 4 until the remaining
subgraph has at most εn2 edges. The remaining at most εn2 edges make up E0. If the current graph
has at least m/2 edges, then by the above lemma we can pull out a subgraph of diameter at most 4 with
at least (m/2)2/8n2 edges. Therefore, after pulling out s = (m −m/2)/ (m/2)2

8n2 = 16n2/m subgraphs
of diameter at most 4 from our graph, we remain with at most m/2 edges. Similarly, applying this
process to a graph with at most 2iεn2 edges we get a subgraph with at most 2i−1εn2 edges, after we
pull out at most 16n2

2iεn2 = 24−iε−1 subgraphs of diameter 4. Summing over all i ≥ 1, the total number
` of subgraphs of diameter at most 4 we pull out is at most

∑∞
i=1 24−iε−1 = 16ε−1. 2

The next lemma shows that Theorem 6 is tight apart from a constant factor.

Lemma 9 If 1
4n ≤ ε ≤ 1

16 , then P (n, ε, d) ≥ 1
16ε .

Proof: Let t = 1
8ε (note that t ≤ n/2) and let G be a graph consisting of n vertices partitioned into

t disjoint cliques each of size n/t. The graph G has t
(
n/t
2

)
edges. Any connected subgraph of G has(

n/t
2

)
edges. Hence, any partition E = E0 ∪ E1 ∪ . . . ∪ E` such that |E0| ≤ εn2 ≤ t

2

(
n/t
2

)
and each Ei

is connected for 1 ≤ i ≤ ` must have ` ≥ t/2 = 1
16ε . 2
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3 Covering graphs of large minimum degree

In this section, we prove results on the minimum number of subgraphs needed to cover all the edges of
a graph of large minimum degree by low diameter subgraphs. First we show, using a simple sampling
argument, that the edges of every graph with n vertices and minimum degree linear in n can be covered
by O(log n) subgraphs of diameter at most 3.

Theorem 7 Let G = (V, E) be a graph on n vertices with minimum degree at least εn. Then there is
a covering E = E1 ∪ . . . ∪ E` of the edge set of G such that ` = 2ε−2 log n and for 1 ≤ i ≤ `, Ei has
diameter at most 3.

Proof: Pick ` pairs (vi, wi) of not necessarily distinct vertices uniformly at random with repetition.
If there is a path of length at most 3 between vi and wi, let G3(vi, wi) be the induced subgraph of
G as in Definition 4 and Ei be the edge set of G3(vi, wi). By Lemma 3, G3(vi, wi) has diameter at
most 3. Let e = (v, w) be an edge of G. If vi ∈ {v} ∪ N(v) and wi ∈ {w} ∪ N(w), then G3(vi, wi)
contains e as there is a walk from vi to wi of length at most 3 containing e. So the probability
that a given edge e = (v, w) of G is in G3(vi, wi) is at least |N(v)|

n
|N(w)|

n ≥ ε2. Since we are picking
` = 2ε−2 log n pairs of vertices uniformly at random, the probability e is in none of these subgraphs
is at most (1− ε2)` < e−2 log n = n−2. Summing over all edges of G, the expected number of edges of
G that are not in any of the Ei is at most

(
n
2

)
n−2 < 1/2. Hence, there is a choice of E1, . . . , E`, each

having diameter at most 3, that together cover all edges of G. This completes the proof. 2

The family of all subsets of [n] = {1, . . . , n} of size k is denoted by
([n]

k

)
. The Kneser graph KG(n, k)

has vertex set
([n]

k

)
, where two sets of size k are adjacent if they are disjoint. A famous theorem

of Lovász [10], who proved Kneser’s conjecture using topological methods, states that the chromatic
number of KG(n, k) is n−2k+2 for n ≥ 2k ≥ 2. We use this property of Kneser graphs to construct a
graph demonstrating that the bound in Theorem 7 is tight up to a constant factor. This will complete
the proof of Theorem 2(a).

Theorem 8 For every sufficiently large N , there is a graph G on N vertices with minimum degree at
least 2−8N whose edges cannot be covered by 1

2 log2 N subgraphs of diameter at most 4.

We establish Theorem 8 using the following lemma.

Lemma 10 Let ak = 4
(
4k
k

)
. Then there is a graph Fk on ak vertices with minimum degree ak/16 such

that any covering of the edges of Fk by subgraphs of diameter at most 4 uses at least 2k +2 subgraphs.

To deduce Theorem 8 from Lemma 10, we let k be the largest positive integer such that ak ≤ N .
If ak is not exactly N , we can duplicate some vertices of Fk if necessary to get the desired graph G

with N vertices. Indeed, as N < ak+1 ≤ 10ak and ak = 4
(
4k
k

) ≤ 24k, we have that G has minimum
degree at least ak/16 ≥ 2−8N and the edges of G cannot be covered by less than 2k + 2 > 1

2 log2 N

subgraphs of diameter at most 4. It thus suffices to prove Lemma 10.

The incidence graph IG(n, k) is a bipartite graph with first vertex class
([n]

k

)
and second vertex class

[n], where i ∈ [n] is adjacent to S ⊂ ([n]
k

)
if i ∈ S. Every vertex in the first vertex class has k neighbors,

and every vertex in the second vertex class has
(
n−1
k−1

)
= k

n

(
n
k

)
neighbors. Two vertices S1, S2 ∈

([n]
k

)
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have a common neighbor in IG(n, k) if and only if they have nonempty intersection. So any coloring
of

([n]
k

)
such that any pair S1, S2 of the same color have a neighbor in common in IG(n, k) gives a

proper vertex coloring of KG(n, k). Since IG(n, k) is bipartite, the number of colors of any coloring
of

([n]
k

)
in which any pair S1, S2 of the same color have distance less than 4 in IG(n, k) is at least the

chromatic number of KG(n, k), which is n− 2k + 2.

Let H(n, k, t) denote the graph with first vertex class
([n]

k

)
and second vertex class [nt], where the

bipartite graph between
([n]

k

)
and {n(j − 1) + 1, . . . , nj} make a copy of IG(n, k) for 1 ≤ j ≤ t. By

construction, any coloring of
([n]

k

)
in which any pair S1, S2 of the same color have distance less than

4 in H(n, k, t) uses at least n − 2k + 2 colors. Let t = 1
4k

(
4k
k

)
and Hk = H(4k, k, t). The number of

vertices of Hk is ak/2, and every vertex has degree 1
4

(
4k
k

)
= ak/16. We have established the following

lemma.

Lemma 11 The bipartite graph Hk is ak/16-regular with ak/2 vertices, and every coloring of the first
vertex class of Hk such that every pair of vertices of the same color have distance less than 4 uses at
least 2k + 2 colors.

Let Fk be the graph consisting of two disjoint copies H1
k , H2

k of Hk with an edge between the two
copies S1 and S2 of S for each vertex S ∈ ([n]

k

)
in the first vertex class of Hk. Notice that Fk has

2|Hk| = ak vertices and has minimum degree ak/16. To complete the proof of Lemma 10 and hence
of Theorem 8, it suffices to show that in any covering E(Fk) = E1 ∪ . . . ∪ E` in which each Ei has
diameter at most 4, the number ` of subgraphs used is at least 2k +2. Given such an edge-covering of
Fk, define a coloring χ :

([n]
k

) −→ [`] as follows. Let χ(S) = i if i is the smallest positive integer such
that the edge between the two copies of S in Fk is in Ei.

The key observation is that if χ(S) = χ(T ) = i and the distance between S and T is at least four in
Hk, then the distance between S1 and T 2 is at least 5 in Fk, which contradicts that Ei has diameter
at most 4. Indeed, in any path from S1 to T 2, one of the edges between the two copies of Hk must
be used, as well as at least four edges inside copies of Hk. Thus this coloring satisfies conditions of
Lemma 11 and therefore χ uses at least ` ≥ 2k + 2 colors. This completes the proof of Lemma 10 and
of Theorem 8. 2

We next show how to cover all the edges of a graph of large minimum degree by a small number of
subgraphs each of diameter at most 5. Recall from Section 2.2 that Gd(v, w) is the induced subgraph
of G consisting of all vertices on a walk from v to w of length at most d. Lemma 3 states that Gd(v, w)
has diameter at most d. As in Section 2.3, Nr(v) denotes all the vertices of G within distance at most
r from v and Gr(v) is a induced subgraph of G with vertex set Nr(v).

Lemma 12 We have Q(n, ε, 5) < ε−2. That is, every graph G with n vertices and minimum degree at
least εn has an edge covering E = E1 ∪ . . . ∪E` with each Ei having diameter at most 5 and ` < ε−2.

Proof: Let {v1, . . . , vt} be a maximal set of vertices in G of distance more than 2 apart from each
other. By definition, every vertex of G has distance at most 2 from one of these vertices. It follows
that every edge of G has both its vertices in some N2(vi) or one vertex in a set N2(vi) and the other
vertex in a different set N2(vj). Note that in the latter case the edge lies in a walk of length at most
5 from vi to vj . For each pair vi, vj of distance at most 5, we will use the subgraph G5(vi, vj). Also,
we will use the subgraph G2(vi) for each i. The number ` of subgraphs we use is at most t +

(
t
2

) ≤ t2
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and every edge is in at least one of these diameter at most 5 subgraphs. Since N1(v1), . . . , N1(vt) are
disjoint sets of vertices, each of size at least 1 + εn, then t < ε−1 and hence ` < ε−2. 2

We now present a lower bound for Q(n, ε, 5).

Theorem 9 There are positive constants c and c′ such that Q(n, ε, 5) > cε−2 for ε > c′(log n)−1/3.

Let k be minimum positive integer such that d := n/ak ≤ 2−4ε−1 with ak = 4
(
4k
k

)
. The assumption

ε > c′(log n)−1/3 in Theorem 9 and the fact that ak grows exponentially in k implies that k ≥ d3 for
some appropriately chosen constant c′. Since ak+1 ≤ 10ak, we have d ≥ 10 · 2−4ε−1. We will construct
a graph G on n vertices with minimum degree at least εn such that any covering of the edges of G by
subgraphs of diameter at most 5 uses at least d2 ≥ 2−15ε−2 subgraphs, which implies Theorem 9.

Let Hk be the bipartite graph as defined before Lemma 11. By Lemma 11, Hk is ak/16-regular with
ak/2 vertices, and every coloring of the first vertex class of Hk such that every pair of vertices of the
same color have distance less than 4 uses at least 2k + 2 colors. Let F be the graph consisting of d

disjoint copies of Hk with no edges between them. The graph F is bipartite, and we call the union
of the d copies of the first vertex class of Hk the first vertex class of F , and the remaining vertices
the second vertex class of F . Let G be the graph consisting of two disjoint copies F1, F2 of F , with a
certain matching between the first vertex class of F1 and the first vertex class of F2, which we define
in the next paragraph.

Recall that the first vertex class of Hk is the vertex set of the Kneser graph KG(4k, k), and a
pair of vertices in the first vertex class of Hk have distance less than 4 if and only if they are not
adjacent in KG(4k, k). Let

([4k]
k

)
= U1 ∪ . . . ∪ Ud be a partition of the vertex set of the Kneser

graph KG(4k, k) into d sets such that for 1 ≤ i ≤ d the induced subgraph of KG(4k, k) with vertex
set Ui has chromatic number at least b2k/dc ≥ 2d2. Such a partition exists since for any partition
χ(KG(4k, k)) = p1 + · · ·+ pd of the chromatic number of a graph KG(4k, k) into nonnegative integers,
there is a partition U1 ∪ . . . ∪ Ud of the vertex set into subsets such that the induced subgraph of
KG(4k, k) with vertex set Ui has chromatic number pi. Indeed, we can take Ui to be the union of pi

color classes in a proper coloring of KG(4k, k) with χ(KG(4k, k)) colors. For j ∈ {1, 2}, 1 ≤ i ≤ d,
and S ⊂ [4k] with |S| = k, let Si,j be the copy of vertex S in the ith copy of Hk in Fj . Suppose
that S ∈ Ub, then the matching between the first vertex class of F1 and the first vertex class of F2 is
defined by Si,1 is adjacent to Si+b,2, where i + b is taken modulo d. We denote by Ai,j and Bi,j the
first vertex class and the second vertex class, respectively, of the ith copy of Hk in Fj .

By definition, graph G has 2d · ak/2 = dak = n vertices and minimum degree at least ak/16 ≥ εn.
Hence, Theorem 9 follows from the next lemma.

Lemma 13 Any edge covering of G by diameter at most 5 subgraphs uses at least d2 subgraphs.

Before proving Lemma 13, we first establish some properties of distances between vertices in G.

Claim 4 If v ∈ Ai,j and v′ ∈ Ai′,j with i 6= i′, then v and v′ have distance at least 4 in G.

Let v ∈ Ai,j and v′ ∈ Ai′,j be the closest pair of vertices in these two sets. To verify the claim, let
v = v1, v2, . . . , vt = v′ be a shortest path from v to v′. The vertex v2, being a neighbor of v, must
be in Bi,j or in the first vertex class of F3−j . If v2 ∈ Bi,j , then v3 ∈ Ai,j and we could instead start
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from v3 and get to v′ in a shorter path, a contradiction. Therefore, v2 is in the first vertex class of
F3−j . Similarly, we must have vt−1 is in the first vertex class of F3−j . We have v2 6= vt−1 since the
edge between v and v2 is one of the edges of the matching, and the edge between vt−1 and v′ is one
of the edges of the matching, which would otherwise imply that v2 is in two edges of a matching, a
contradiction. We have v3 6= v as otherwise we would get a shorter path from v to v′. This implies
that v3, being a neighbor of v2, lies in the second vertex class of F3−j . Hence t−1 ≥ 4 and the distance
between v and v′ is at least 4.

Claim 5 If v ∈ Bi,j and w ∈ Bi′,j with i 6= i′, then v and w have distance at least 6 in G.

Indeed, consider a shortest path from v to w. The second vertex of this path is in Ai,j as all the
neighbors of v lie in Ai,j , and the second to last vertex of this path is in Ai′,j as it is adjacent to w.
By Claim 4, any vertex in Ai,j has distance at least 4 from any vertex in Ai′,j , therefore it follows that
v and w have distance at least 6.

Proof of Lemma 13: Suppose for contradiction that there are r < d2 subgraphs G1, . . . , Gr of G

each of diameter at most 5 which cover the edges of G. It follows from Claim 5 that any diameter at
most 5 subgraph of G cannot contain a vertex in Bi,j and also a vertex in Bi′,j with i 6= i′. Hence,
for each h, 1 ≤ h ≤ r, there is at most one pair (i, i′) such that Gh contains both a vertex of Bi,1 and
a vertex of Bi′,2. Since r < d2, the pigeonhole principle implies that there is a pair (i, i′) such that
no Gh contains a vertex of Bi,1 together with a vertex of Bi′,2. Fix such a pair (i, i′). Let Vh denote
the collection of all sets S ∈ ([4k]

k

)
such that vertices Si,1 and Si′,2 form an edge of the matching that

belongs to Gh. By definition of such an edge, the set S is in Ui′−i, where the subscript is taken modulo
d. Recall that the induced subgraph of KG(4k, k) with vertex set Ui′−i has chromatic number at least
2d2. We use the following claim.

Claim 6 If S, S′ are vertices in the first vertex class of Hk, then the distance between Si,j and S′i,j in
G is the distance between S and S′ in Hk.

Indeed, Si,j and S′i,j belong to a copy of Hk in G, so their distance in G is at most the distance of
S and S′ in Hk. In the other direction, it is easy to see that any path in G from Si,j to S′i,j can be
projected onto a path which is not longer from S to S′ in Hk, which verifies Claim 6.

The next claim completes the proof of Lemma 13. Indeed, since G1, . . . , Gr cover the edges of G, we
must have Ui′−i = V1 ∪ . . . ∪ Vr. Claim 7 implies that each Vh forms an independent set in KG(4k, k)
and hence r ≥ 2d2.

Claim 7 Each pair of vertices in Vh have distance less than 4 in Hk, i.e., Vh forms an independent
set in KG(4k, k).

To prove Claim 7, suppose for contradiction that S, S′ ∈ Vh have distance at least 4 in Hk. Without
loss of generality, suppose Gh contains no vertex in Bi,1 (the other case in which Gh contains no vertex
in Bi′,2 can be treated similarly). We claim that the distance between Si,1 and S′i,1 in Gh is at least
6. Indeed, the only vertex adjacent to Si,1 in Gh is Si′,2 and the only vertex adjacent to S′i,1 in Gh is
S′i′,2. Since S and S′ have distance at least 4 in Hk, by Claim 6, Si′,2 and S′i′,2 have distance at least 4
in G and hence also in Gh. Therefore, Si,1 and Si′,2 have distance at least 6 in Gh, contradicting Gh

has diameter at most 5. 2
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We next show that Q(n, ε, 6) = Θ(ε−1) for ε ≥ 1/n. The lower bound follows by considering a
disjoint union of cliques, each with at least εn + 1 vertices. The upper bound also has a simple proof.

Lemma 14 Every graph G with n vertices and minimum degree at least εn has an edge covering
E = E1 ∪ . . . ∪ E` with each Ei having diameter at most 6 and ` < ε−1.

Proof: Let {v1, . . . , v`} be a maximal set of vertices in G of distance more than 2 apart from each
other. Then every vertex of G has distance at most 2 from one of these vertices and therefore every
edge of G has both of its endpoints within distance at most 3 from some vi. This implies that the `

subgraphs G3(v1), . . . , G3(v`) cover all the edges of G and each of them has diameter at most 6. Since
N1(v1), . . . , N1(v`) are disjoint sets of vertices of size at least 1 + εn, then ` < ε−1. 2

4 Decomposing hypergraphs into low diameter subgraphs

We start this section by showing how to decompose the edge set of a k-uniform hypergraph on n

vertices, apart from at most εnk edges, into a small number of subhypergraphs of diameter at most
3. This will establish an upper bound on Pk(n, ε, 3). We then present two constructions giving lower
bounds on Pk(n, ε, d).

Let Hk denote the following k-uniform hypergraph on 2k vertices with k + 2 edges. Its vertex set
consist of two disjoint k-sets V = {vi}k

i=1 and W = {wi}k
i=1. The sets V and W are edges of Hk. For

1 ≤ i ≤ k, vertex wi together with all vertices vj , j 6= i also form an edge of Hk.

Let G be a k-uniform hypergraph and let e = {v1, . . . , vk} be a fixed edge of G. Consider all the
vertices of G which are contained in some edge of G which intersects e in at least k − 1 vertices. Let
G(e) be the subhypergraph of G induced by this set. Since the intersection of e with itself has size k,
by definition, all the vertices of e are in G(e). Moreover e is an edge of G(e) as well.

Lemma 15 For each edge e of a k-uniform hypergraph G, the diameter of G(e) is at most 3.

Proof: Suppose a, b are distinct vertices of G(e). Then there are two indices 1 ≤ i, j ≤ k such that
{a} ∪ (e \ {vi}) and {b} ∪ (e \ {vj}) are both edges of G(e). If i = j, then the sequence a, followed by
all elements of e \ vi, followed by b is a path of length 2. If i 6= j, and a = vi or b = vj , then a and b

are in an edge of G(e). If i 6= j and neither a = vi nor b = vj , then the sequence with first element a,
followed by vj , followed by all vertices of e \ {vi, vj}, followed by vi and finally by b is a path of length
3. In any case, the distance from a to b, and hence the diameter of G(e), is at most 3. 2

The number of edges of G(e) is at least the number of copies of Hk in G for which the image of set
V is fixed as e. Indeed, if two disjoint edges e and f (together with some other edges of G) form a
copy of Hk with f being the image of W , then each vertex in f is in G(e), and so f is an edge of G(e).

The edge density of a k-uniform hypergraph is the fraction of subsets of vertices of size k which are
edges. Let K(t; k) denote the complete k-partite k-uniform hypergraph with parts of size t, whose
edges are all the k-sets which intersect every part in one vertex. This hypergraph has kt vertices and
tk edges. The following well known lemma is proved by a straightforward counting argument and
induction on the uniformity k (see [7]).
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Lemma 16 Fix positive integers k and t. If G is a k-uniform hypergraph with n vertices and edge
density ε with ε À n−t1−k

, then G contains Ω(εtknkt) labeled copies of K(t; k).

Let G be a k-uniform hypergraph with n vertices and edge density ε. Since Hk is a subhypergraph
of K(2; k), the above lemma implies that G contains Ω

(
ε2

k
n2k

)
labeled copies of K(2; k) and hence

of Hk. Therefore, there is an edge e for which G(e) contains at least Ω
(
ε2

k
n2k/ε

(
n
k

)
k!

)
= Ω

(
ε1−2k

nk
)

edges. By Lemma 15, this subhypergraph has diameter at most 3. Now, as we already did in the
previous sections, we can use the above fact to pull out from G subhypergraphs of diameter 3 with
many edges until there are at most εnk edges left. Using a very similar computation as in the proofs
of Theorems 4 and 6, we obtain Theorem 3 that Pk(n, ε, 3) = O(ε2−2k

) for ε À n−21−k
.

We next give a lower bound on Pk(n, ε, 3) which we conjecture is tight apart from the constant factor.

Theorem 10 We have Pk(n, ε, 3) ≥ ckε
−k for C ′

kn
−1/2 ≤ ε ≤ Ck, where ck, Ck and C ′

k are positive
constants depending only on k.

We prove this theorem by showing that there is a dense k-uniform hypergraph with no large subhy-
pergraph of diameter at most 3. More precisely, the next lemma shows that there is a hypergraph with
n vertices, at least 2εnk edges, and every subhypergraph of diameter at most 3 has at most c−1

k εk+1nk

edges. Hence Pk(n, ε, 3) ≥ (εnk)/(c−1
k εk+1nk) = ckε

−k.

Lemma 17 For each integer k ≥ 2, there are positive constants ck, Ck and C ′
k such that the following

holds. For all sufficiently large n and ε satisfying C ′
kn
−1/2 ≤ ε ≤ Ck, there is a hypergraph H on at

most n vertices with at least 2εnk edges such that every subhypergraph of H with diameter at most 3
has at most c−1

k εk+1nk edges.

Proof: The proof is by induction on k. We have already established the base case k = 2 of this lemma
in the proof of Theorem 5. Let Ck+1 = 2−k−3Ck and let ε ≤ Ck+1. Fix δ = 2k+3ε and N = n/2. Our
induction hypothesis implies that there is a k-uniform hypergraph G with N vertices and 2δNk edges
such that every diameter at most 3 subhypergraph of G has at most c−1

k δk+1Nk edges. So G has edge
density α = 2δNk/

(
N
k

) ≤ 4k!δ.

Let G1, . . . , Gt be t = 2
α random copies of G on the same vertex set [N ], where Gi is formed

by considering a random bijection of V (G) to [N ] picked independently of all the other Gj . The
probability that a given k-tuple contained in [N ] is an edge of at least one of these t copies of G is

1− (1− α)t ≥ 1− e−αt = 1− e−2 ≥ 1/2.

By linearity of expectation, the expected number of edges which are contained in at least one of the
t copies of G is at least 1

2

(
N
k

)
. So we may pick G1, . . . , Gt such that at least 1

2

(
N
k

)
of the k-tuples

contained in [N ] are in at least one of these t copies of G.

If an edge e is in multiple copies of G, arbitrarily delete it from all Gi that contain it except one. Let
G′

i be the resulting subhypergraph of Gi. Introduce new vertex sets V1, . . . , Vt, each of size N/t, and
define a (k+1)-uniform hypergraph H on [N ]∪V1∪ . . .∪Vt as follows. The edges are those (k+1)-sets
which for some i contain an edge of G′

i together with a vertex of Vi. The number of vertices of H is
2N = n and the number of edges is at least

(N/t)
1
2

(
N

k

)
=

αN

4

(
N

k

)
≥ 1

2
δNk+1 = 2εnk+1.
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Note that every edge of H has exactly one vertex in some Vi. Let H ′ be a diameter at most 3
subhypergraph of H. Since the G′

i have distinct edges, the vertex set of any strongly connected
subhypergraph of H, and hence of H ′, intersects at most one Vi. Therefore, there is an i such that
V (H ′) ⊂ Vi ∪ [N ] and E(H ′) ⊂ Vi × E(G′

i). Since each edge of H ′ has exactly one vertex in Vi, note
that if we delete from any tight path in H ′ all the vertices of Vi we obtain a tight path in G′

i. Therefore
the subhypergraph of G′

i whose edges are those which are subsets of edges of H ′ also has diameter at
most 3. Since G′

i is a subhypergraph of a copy of G, any diameter 3 subhypergraph of G′
i has at most

c−1
k δk+1Nk edges. Thus, using that n = 2N and 1/t = α/2 ≤ 2k!δ, we obtain that H ′ has at most

|Vi|c−1
k δk+1Nk = (N/t)c−1

k δk+1Nk ≤ 2k!c−1
k δk+2Nk+1 = 2k2+4k+6k!c−1

k εk+2nk+1

edges. Letting ck+1 = 2−k2−4k−6ck/k! completes the proof by induction. 2

Essentially the same proof gives the following lemma. The only difference is the base case k = 2 of
the induction is given by taking H to be a disjoint union of cliques of equal size. Call a k-uniform
hypergraph strongly connected if there is a tight path between any two vertices in the hypergraph, i.e.,
the diameter of the hypergraph is finite.

Lemma 18 For each integer k ≥ 2, there are constants ck, Ck and C ′
k such that the following holds.

For all sufficiently large n and ε satisfying C ′
kn
−1 ≤ ε ≤ Ck, there is a hypergraph H on n vertices

with 2εnk edges such that every strongly connected subhypergraph of H has at most c−1
k εknk edges.

The hypergraph H in the previous lemma demonstrates the following corollary.

Corollary 1 Pk(n, ε, d) ≥ ckε
1−k for C ′

kn
−1 ≤ ε ≤ Ck and any d.

5 Concluding remarks

In the previous section, we establish both upper and lower bounds on Pk(n, ε, d). We think the lower
bounds in Theorem 10 is best possible up to a constant factor, i.e., all but at most εnk edges of every
n-vertex k-uniform hypergraph can be partitioned into O(ε−k) subhypergraphs of diameter 3. We
also believe that Corollary 1 is tight and for each integer k ≥ 3 there is another integer d(k) such
that Pk(n, ε, d(k)) = O(ε1−k). Note that Theorem 1 shows that both our conjectures hold for graphs
(k = 2).

Improving our upper bound on Pk(n, ε, 3) would also be interesting. One possible way to do so is
to show that there are many copies of hypergraph Hk in every k-uniform hypergraph on n vertices
with edge density ε. This problem is closely related to the well know conjectures of Simonovits [14]
and Sidorenko [13], which suggest that for any bipartite graph H, the number of its copies in any
graph G on n vertices and edge density ε (ε > n−γ(H)) is asymptotically at least the same as in the
n-vertex random graph with the same edge density. So far it is known only in very special cases, i.e.,
for complete bipartite graphs, trees, even cycles (see [13]), and recently for cubes [8]. It is tempting
to conjecture that an analogous statement holds for k-uniform k-partite hypergraphs (k ≥ 3). A k-
uniform hypergraph is k-partite if there is a partition of the vertex set into k parts such that each edge
has exactly one vertex in every part. Simonovits-Sidorenko conjecture for hypergraphs would say that
for any k-partite k-uniform hypergraph H, the number of its copies in any k-uniform hypergraph on n
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vertices with edge density ε (ε > n−γ(H)) is asymptotically at least the same as in the random n-vertex
k-uniform hypergraph with edge density ε. It holds for complete k-partite k-uniform H (Lemma 16 is
essentially the case when all parts of H have equal size). However, as shown by Sidorenko [13], this is
false in general. Nevertheless, it is still an intriguing open problem to accurately estimate the minimum
number of copies of a fixed hypergraph H that have to appear in every k-uniform hypergraph on n

vertices with edge density ε.
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