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Abstract

Ramsey’s theorem, in the version of Erdős and Szekeres, states that every 2-coloring of the

edges of the complete graph on {1, 2, . . . , n} contains a monochromatic clique of order 1
2 log n. In

this paper, we consider two well-studied extensions of Ramsey’s theorem.

Improving a result of Rödl, we show that there is a constant c > 0 such that every 2-coloring of

the edges of the complete graph on {2, 3, ..., n} contains a monochromatic clique S for which the

sum of 1/ log i over all vertices i ∈ S is at least c log log log n. This is tight up to the constant factor

c and answers a question of Erdős from 1981.

Motivated by a problem in model theory, Väänänen asked whether for every k there is an n

such that the following holds. For every permutation π of 1, . . . , k−1, every 2-coloring of the edges

of the complete graph on {1, 2, . . . , n} contains a monochromatic clique a1 < . . . < ak with

aπ(1)+1 − aπ(1) > aπ(2)+1 − aπ(2) > . . . > aπ(k−1)+1 − aπ(k−1).

That is, not only do we want a monochromatic clique, but the differences between consecutive

vertices must satisfy a prescribed order. Alon and, independently, Erdős, Hajnal and Pach answered

this question affirmatively. Alon further conjectured that the true growth rate should be exponential

in k. We make progress towards this conjecture, obtaining an upper bound on n which is exponential

in a power of k. This improves a result of Shelah, who showed that n is at most double-exponential

in k.

1 Introduction

Ramsey theory refers to a large body of deep results in mathematics whose underlying philosophy

is captured succinctly by the statement that “Every large system contains a large well-organized

subsystem.” This subject is currently one of the most active areas of research within combinatorics,

overlapping substantially with number theory, geometry, analysis, logic and computer science (see

the book [13] for details). The cornerstone of this area is Ramsey’s theorem, which guarantees the

existence of Ramsey numbers.

The Ramsey number r(k) is the minimum n such that in every 2-coloring of the edges of the complete

graph Kn there is a monochromatic Kk. Ramsey’s theorem [16] states that r(k) exists for all k.
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Classical results of Erdős [5] and Erdős and Szekeres [10] give the quantitative bounds 2k/2 ≤ r(k) ≤ 22k

for k ≥ 2. Over the last sixty years, there have been several improvements on these bounds (see, for

example, [2]). However, despite efforts by various researchers, the constant factors in the above

exponents remain the same.

Given these difficulties, it is natural that the field has stretched in different directions. One of them is

to try to strengthen Ramsey’s theorem, asking that the monochromatic clique have some additional

structure. This allows us to test the limits of current methods and may also lead to the development

of new techniques which could be relevant to the original problem of estimating classical Ramsey

numbers. Furthermore, for some applications such additional structure is needed. In this paper, we

consider two such strengthenings, both of which have already been studied in some detail.

1.1 Ramsey’s theorem with skewed vertex distribution

In the early 1980s, Erdős, interested in the distribution of monochromatic cliques in edge-colorings,

considered the following variant of Ramsey’s theorem. For a finite set S of integers greater than one,

define its weight w(S) by

w(S) =
∑
s∈S

1

log s
.

For a red-blue edge-coloring c of the edges of the complete graph on [2, n] = {2, . . . , n}, let f(c) be

the maximum weight w(S) over all sets S ⊂ [2, n] which form a monochromatic clique in coloring

c. For each integer n ≥ 2, let f(n) be the minimum of f(c) over all red-blue edge-colorings c of the

edges of the complete graph on {2, . . . , n}. Note that a simple application of r(k) ≤ 22k only gives

f(n) ≥ logn
2 · 1

logn = 1
2 .

In his paper ‘On the combinatorial problems I would most like to see solved’, Erdős [6] conjectured

that f(n) tends to infinity and, furthermore, asked for an accurate estimate of f(n). Soon after,

Rödl [17] verified this conjecture, showing that f(n) = Ω( log log log logn
log log log log logn). In the other direction, by

considering a uniform random coloring of the edges, one can easily obtain that f(n) = O(log log n).

Rödl [17] improved the upper bound further to f(n) = O(log log log n). Nevertheless, there was still

an exponential gap between the bounds for f(n).

We next describe Rödl’s coloring. Cover the interval [2, n] by t = dlog logne intervals, where the ith

interval is [22i−1
, 22i). We first describe the coloring of the edges within each of these t intervals, and

then the coloring of the edges between these intervals. Using that the Ramsey number r(k) ≥ 2k/2, we

can edge-color the complete graph in the ith interval so that the maximum monochromatic clique in

this interval has order 2i+1. Also note that the logarithm of any element in the ith interval is at least

2i−1. Therefore, the maximum weight of any monochromatic clique in this interval is at most 4. It

follows again from the lower bound on r(k) that there is a red-blue edge-coloring of the complete graph

on t = dlog log ne vertices whose largest monochromatic clique is of order O(log t). Color the edges of

the complete bipartite graph between the ith and jth interval by the color of edge (i, j) in this coloring.

We get a red-blue edge-coloring of the complete graph on [2, n] such that any monochromatic clique

in this coloring has a non-empty intersection with at most O(log t) intervals. Since, as we explained
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above, every interval can contribute at most 4 to the weight of this clique, the total weight of any

monochromatic clique is O(log t) = O(log log log n).

In this paper, we prove that f(n) = Ω(log log log n), which, by the above construction of Rödl, is tight

up to a constant factor. This determines the growth rate of f(n) and answers Erdős’ question.

Theorem 1.1 For n sufficiently large, every 2-coloring of the edges of the complete graph on the

interval {2, . . . , n} contains a monochromatic clique with vertex set S such that∑
s∈S

1

log s
≥ 2−8 log log log n.

Hence, f(n) = Θ(log log log n).

Ramsey’s theorem continues to hold if we use more than 2 colors. We define the Ramsey number

r(k; q) to be the minimum n such that in every q-coloring of the edges of the complete graph Kn there

is a monochromatic Kk. The upper bound proof of Erdős and Szekeres [10] implies that r(k; q) ≤ qqk.
On the other hand, a simple product coloring shows that for q even, r(k; q) ≥ r(k; 2)q/2 ≥ 2kq/4.

Phrased differently, we see that any q-coloring of Kn contains a monochromatic clique of size cq log n

and that this is, up to the constant, best possible.

It therefore makes sense to consider the function fq(n), defined now as the minimum over all q-colorings

of the edges of the complete graph on {2, 3, . . . , n} of the maximum weight of a monochromatic clique.

However, as observed by Rödl, the analogue of Erdős’ conjecture for three colors instead of two does

not hold. Indeed, again cover the interval [2, n] by t = dlog log ne intervals, where the ith interval is

[22i−1
, 22i). The edges inside the intervals are colored red-blue as in the above construction and the

edges between the intervals are colored green. Then the maximum weight of any red or blue clique

is at most 4, since any such clique must lie completely within one of the intervals, and the maximum

weight of the green clique is at most
∑

i≥1 2−i+1 ≤ 2.

1.2 Ramsey’s theorem with fixed order type

We also consider another extension of Ramsey’s theorem. For a positive integer n, let [n] = {1, . . . , n}.
Motivated by an application in model theory, Jouko Väänänen asked whether, for any positive integers

k and q and any permutation π of [k−1], there is a positive integer R such that for any q-coloring of the

edges of the complete graph on vertex set [R] there is a monochromatic Kk with vertices a1 < . . . < ak
satisfying

aπ(1)+1 − aπ(1) > aπ(2)+1 − aπ(2) > . . . > aπ(k−1)+1 − aπ(k−1).

That is, we not only want a monochromatic Kk, but the differences between consecutive vertices

must satisfy a prescribed order. The least such positive integer R is denoted by Rπ(k; q), and we let

R(k; q) = maxπ Rπ(k; q), i.e., R(k; q) is the maximum of Rπ(k; q) over all permutations π of [k − 1].

Väänänen’s question was popularized by Joel Spencer. It was positively answered by Noga Alon and,

independently, by Erdős, Hajnal, and Pach [7]. Alon’s proof (see [15]) uses the Gallai-Witt theorem

and gives a weak bound on R(k; q). The proof by Erdős, Hajnal, and Pach uses a compactness
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argument and gives no bound on R(k; q). Later, Alon, Shelah and Stacey all independently found

proofs giving tower-type bounds for R(k; q).

A natural conjecture, made by Alon (see [18]), is that R(k; q) should grow exponentially in k. For

monotone sequences, this was confirmed by Alon and Spencer. A breakthrough on this problem was

obtained by Shelah [18], who proved the double-exponential upper bound R(k; q) ≤ 2(q(k+1)3)qk . Here,

we make further progress, showing that, for fixed q, R(k; q) grows as a single exponential in a power

of k.

Theorem 1.2 For any positive integers k and q and any permutation π of [k − 1], every q-coloring

of the edges of the complete graph on vertex set [R] with R = 2k
20q

contains a monochromatic Kk with

vertices a1 < . . . < ak satisfying

aπ(1)+1 − aπ(1) > aπ(2)+1 − aπ(2) > . . . > aπ(k−1)+1 − aπ(k−1).

That is, R(k; q) ≤ 2k
20q

.

Common to the proofs of both Theorems 1.1 and 1.2 is a simple, yet powerful lemma whose proof,

which we present in the next section, uses a probabilistic argument known as dependent random choice.

Early versions of this technique were developed in the papers [12, 14, 19]. Several variants have since

been discovered and applied to various problems in Ramsey theory and extremal graph theory (see

the survey [11] for more details).

Organization of the paper. We prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4.

In Section 3, we make use of a weighted variant of Ramsey’s theorem, Lemma 3.2, which may be

of independent interest. In Section 5, we make several additional related remarks. These include

discussing the asymptotic behavior of f(n), considering what happens for other weight functions,

showing that some natural variants of both problems have simple counterexamples, and presenting a

simple coloring that gives a lower bound on Ramsey numbers for cliques with increasing consecutive

differences. All logarithms are base 2 unless otherwise indicated. For the sake of clarity of presentation,

we systematically omit floor and ceiling signs whenever they are not crucial. We also do not make any

serious attempt to optimize absolute constants in our statements and proofs.

2 Dependent Random Choice

The following lemma shows that every dense graph contains a large vertex subset U such that every

small subset S ⊂ U has many common neighbors. For a vertex v in a graph, let N(v) denote the set

of neighbors of v. For a set T of vertices, let N(T ) denote the set of common neighbors of T .

Lemma 2.1 Suppose p > 0 and s, t, N1, N2 are positive integers satisfying
(
N1

s

)
(m/N2)t ≤ ptN1/2.

If G = (V1, V2, E) is a bipartite graph with |Vi| = Ni for i = 1, 2 and at least pN1N2 edges, then G

has a vertex subset U ⊂ V1 such that |U | ≥ ptN1/2 and every s vertices in U have at least m common

neighbors.
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Proof: Consider a set T of t vertices in V2 picked uniformly at random with repetition. LetW = N(T )

and X denote the cardinality of W . We have

E[X] =
∑
v∈V1

(
|N(v)|
N2

)t
= N−t2

∑
v∈V1

|N(v)|t ≥ N1N
−t
2

(∑
v∈V1 |N(v)|
N1

)t
≥ ptN1,

where the second to last inequality is by Jensen’s inequality applied to the convex function f(z) = zt.

Let Y be the random variable which counts the number of subsets S ⊂W of size s with fewer than m

common neighbors. For a given S ⊂ V1, the probability that it is a subset of W equals (|N(S)|/N2)t.

Since there are at most
(
N1

s

)
such sets, it follows that

E[Y ] ≤
(
N1

s

)(
m

N2

)t
.

By linearity of expectation,

E[X − Y ] = E[X]− E[Y ] ≥ ptN1 −
(
N1

s

)(
m

N2

)t
≥ ptN1/2,

where the last inequality uses the assumption of the lemma. Hence, there is a choice of T such that

the corresponding set W satisfies X − Y ≥ ptN1/2. Delete one vertex from each subset S of W of

size s with fewer than m common neighbors. We let U be the remaining subset of W . We have

|U | ≥ X − Y ≥ ptN1/2 and all subsets of size s have at least m common neighbors. 2

3 Monochromatic cliques of large weight

The off-diagonal Ramsey number is the smallest natural number n such that any red-blue edge-coloring

of Kn contains either a red copy of Ks or a blue copy of Kt. The Erdős-Szekeres bound for Ramsey

numbers says that for any s, t ≥ 2,

r(s, t) ≤
(
s+ t− 2

s− 1

)
.

Note that this implies r(s, t) ≤ 2s+t and hence that every 2-coloring of Kn contains a monochromatic

clique of order 1
2 log n. The following lemma is a further simple consequence of this formula. Note

that here and throughout the rest of this section we will use the natural logarithm ln as well as the

log base 2.

Lemma 3.1 Suppose 0 < a ≤ 1
4 . Then, every 2-coloring of the edges of Kn contains either a red

clique of order a lnn or a blue clique of order e
1
4a lnn.

Proof: From the Erdős-Szekeres bound, we have

r(s, t) ≤
(
s+ t

s

)
≤
(
e(s+ t)

s

)s
.
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Applying this with s = a lnn and t = a(e
1
a
−1 − 1) lnn tells us that, since(

e(a lnn+ a(e
1
a
−1 − 1) lnn)

a lnn

)a lnn

= elnn = n,

there is either a red clique of order s or a blue clique of order t. For 0 < a ≤ 1
4 , we have

a(e
1
a
−1 − 1) ≥ e

1
4a .

The result follows. 2

We would now like to prove a weighted version of Ramsey’s theorem. The set-up is that each vertex v

is given two weights rv and bv which are balanced in a certain sense. We would then like to show that

it is possible to find a red clique K or a blue clique L for which either the sum of rv over the vertices

of K or the sum of bv over the vertices of L is large.

Lemma 3.2 Suppose that the edges of Kn have been two-colored in red and blue and that each vertex

v has been given positive weights rv and bv satisfying bv ≥ ln(4/rv) if rv ≤ bv and rv ≥ ln(4/bv) if

bv ≤ rv. Then there exists either a red clique K for which
∑

v∈K rv ≥
1
2 lnn or a blue clique L for

which
∑

v∈L bv ≥
1
2 lnn.

Proof: Let w(n) be the infimum, over all red-blue edge-colorings of Kn, for the sum of the maximum

of
∑

v∈K rv over all red cliques K and the maximum of
∑

v∈L bv over all blue cliques L. We will show

by induction on n that w(n) ≥ lnn. This clearly implies the desired bound.

The base cases n = 1, 2 clearly hold. Suppose, therefore, that n ≥ 3 and that w(n′) ≥ lnn′ for all

positive integers n′ < n.

Consider a red-blue edge-coloring of Kn, and let w be the sum of the maximum of
∑

v∈K rv over all

red cliques K and the maximum of
∑

v∈L bv over all blue cliques L. It suffices to show that w ≥ lnn.

Let v be a vertex in Kn. By symmetry, we may suppose without loss of generality that rv ≥ bv. Since

rv ≥ ln(4/bv) and rv ≥ bv, we have rv ≥ 1. We may assume rv ≤ lnn as otherwise we could pick the

red clique K to consist of just the vertex v. Hence, bv ≥ 4/n.

Let R be the set of red neighbors of v and B be the set of blue neighbors of v, so |R|+ |B| = n− 1.

Let α = |R|/n. We can add v to the largest red clique in R in terms of weight, and thus w ≥
rv +w(αn) ≥ rv + ln(αn) ≥ rv + lnα+ lnn. We may assume rv + lnα < 0, as otherwise we are done.

So α < e−rv ≤ bv
4 . From rv ≥ 1, we have α < 1/e. From the above lower bounds on bv, we have

bv ≥ 4 max(α, 1
n) ≥ 2β, where β = α + 1

n <
1
e + 1

3 < 3/4. We can add v to the largest blue clique in

B in terms of weight, and thus

w ≥ bv + w(|B|) ≥ bv + ln

(
1− α− 1

n

)
+ lnn ≥ 2β + ln (1− β) + lnn ≥ lnn,

where we used 0 < β < 3/4, which completes the proof. 2

Scaling all weights by a factor c > 0, we have the following equivalent version.
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Lemma 3.3 Let c > 0. Suppose that the edges of Kn have been two-colored in red and blue and

that each vertex v has been given positive weights rv and bv satisfying bv ≥ c ln(4c/rv) if rv ≤ bv and

rv ≥ c ln(4c/bv) if bv ≤ rv. Then there exists either a red clique K for which
∑

v∈K rv ≥
c
2 lnn or a

blue clique L for which
∑

v∈L bv ≥
c
2 lnn.

We are now ready to prove Theorem 1.1, which we restate for convenience. The key idea behind

Rödl’s lower bound for f(n) is to try and force the type of situation that arises in the upper bound

construction. We follow the basic line of his argument but add two extra ideas, dependent random

choice and the weighted variant of Ramsey’s theorem above, to achieve a tight result.

Theorem 3.1 For sufficiently large n, in every red-blue edge-coloring of the complete graph on the

interval {2, . . . , n} there is a monochromatic clique with vertex set I such that∑
i∈I

1

log i
≥ 2−8 log log log n.

Proof: Let d = 1
2

√
log logn − 1 and c = 1/4. For i = 1, . . . , d, let Si = {ni, ni + 1, . . . , 2ni − 1} be

the interval of size ni beginning at the integer ni, where log log ni = i
√

log log n+ 1
2 log logn. For each

j = 0, 1, . . . , d, we will find, by induction, a collection of subsets Si,j such that

• for each i ≤ j, the set Si,j is the union of two monochromatic cliques, one in red of order 1
4ri log ni

and the other in blue of order 1
4bi log ni, where ri ≥ c ln(4c/bi) if bi ≤ ri and bi ≥ c ln(4c/ri) if

ri ≤ bi;

• for each i > j, the set Si,j satisfies |Si,j | ≥ n
1− j

2i
i ;

• for each ` > k with j ≥ k, there exists a color χ(k, `) such that every vertex in Sk,j is connected

to every vertex in S`,j by an edge with color χ(k, `).

To begin the induction, we let Si,0 = Si for each i. The required conclusion then holds trivially for

j = 0. Suppose therefore that the result holds for j. We will prove it also holds for j + 1.

For i < j + 1, we let Si,j+1 = Si,j . For each i ≥ j + 1, we will find a subset Si,j+1 of Si,j satisfying the

conditions. To do this we apply another induction, finding for each j + 1 ≤ k ≤ d, a subset Tk,j+1 of

Sj+1,j such that

• |Tk,j+1| ≥ n
1
2
− k

4d
j+1 ;

• for every j+1 < i ≤ k, there is a color χ(i, j+1) such that every collection of log nj+1 log log log n

vertices in Tk,j+1 have at least n
1− j+1

2i
i common neighbors in color χ(i, j + 1) in the set Si,j .

Once this induction is complete, we consider Td,j+1. Let 1
4rj+1 lnnj+1 and 1

4bj+1 lnnj+1 denote the

orders of the largest red clique and the largest blue clique, respectively, in Td,j+1. Since |Td,j+1| ≥
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n
1/4
j+1, Lemma 3.1 and the remark before it imply that, if rj+1 ≥ bj+1, then either bj+1 ≥ 1/4 and

rj+1 ≥ 1/2 ≥ c ln
(

4c
bj+1

)
or bj+1 < 1/4 and rj+1 ≥ e1/(4bj+1) ≥ c ln

(
4c
bj+1

)
. Similarly, if bj+1 ≥ rj+1,

then bj+1 ≥ c ln
(

4c
rj+1

)
.

Note that we may assume that rj+1 and bj+1 are each less than 1
2 log log log n. Suppose otherwise and

that rj+1 ≥ 1
2 log log log n. Let Rj+1 be the red clique of order 1

4rj+1 log nj+1. Then∑
i∈Rj+1

1

log i
≥ 1

4
rj+1 lnnj+1

1

log 2nj+1
≥ 1

16
log log log n,

so we would be done.

Let Sj+1,j+1 be the union of the largest red and blue cliques in Td,j+1. Note that rj+1 + bj+1 ≤
log log log n. Hence, |Sj+1,j+1| ≤ log nj+1 log log log n and therefore, for every j + 1 < i ≤ d, the

collection of vertices in Sj+1,j+1 has at least n
1− j+1

2i
i common neighbors, in color χ(i, j + 1), in Si,j .

We let this set of common neighbors be Si,j+1. It is now elementary to verify that the Si,j+1 satisfy

the conditions of the first induction. Hence, it only remains to show that the second induction holds

good.

To begin the induction, we let Tj+1,j+1 be Sj+1,j . This clearly satisfies the required conditions.

Suppose, therefore, that Tk,j+1 has been defined and we now wish to find a subset Tk+1,j+1 of Tk,j+1

satisfying the conditions of the induction. Consider the graph between Tk,j+1 and Sk+1,j . Either red

or blue will have density at least 1
2 in this graph. We let χ(k+ 1, j+ 1) be such a color, breaking a tie

arbitrarily.

Now apply Lemma 2.1 to the bipartite graph of color χ(k + 1, j + 1) between Tk,j+1 and Sk+1,j . We

take N1 = |Tk,j+1|, N2 = |Sk+1,j |, m = N
1−1/2

√
log logn

2 , s = log nj+1 log log log n and t =
lognj+1

4
√

log logn
.

We need to verify that
(
N1

s

)
( mN2

)t ≤ ptN1

2 with p = 1/2. It will be enough to show that N s
1 ( m
pN2

)t ≤ 1.

But this is easy to check, since

N s
1

(
m

pN2

)t
≤ (2N1)sN

−t/2
√

log logn
2 =

(
(2N1)log log logn

N
1/8 log logn
2

)lognj+1

≤

(
(2nj+1)log log logn

n
1/16 log logn
k+1

)lognj+1

< 1.

Here we used that N1 = |Tk,j+1| ≤ nj+1, N2 = |Sk+1,j | ≥ n
1/2
k+1 and, whenever k > j and n is

sufficiently large,

nk+1 ≥ n2
√
log logn

j+1 ≥ (2nj+1)16 log logn log log logn.

Therefore, there exists a subset Mk+1 of Tk,j+1 of order ptN1

2 such that every vertex subset of order s

has at least m common neighbors in Sk+1,j . We let Tk+1,j+1 = Mk+1. Note that

|Tk+1,j+1| ≥
pt|Tk,j+1|

2
=

1

2
2
−

lognj+1
4
√
log lognn

1
2
− k

4d
j+1 =

1

2
n
− 1

8(d+1)

j+1 n
1
2
− k

4d
j+1 ≥ n

1
2
− k+1

4d
j+1 ,

as required. Moreover, since k ≤ d ≤ 1
2

√
log logn, every subset of Tk+1,j+1 of order log nj+1 log log log n

has at least

m ≥ |Sk+1,j |1−1/2
√

log logn ≥
(
n

1− j
2(k+1)

k+1

)1−1/2
√

log logn

≥ n
1− j+1

2(k+1)

k+1
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common neighbors in Sk+1,j , so the second requirement of the induction scheme also holds.

To complete the proof, note that for each i = 1, . . . , d, we have found a red clique Ri and a blue

clique Bi of orders 1
4ri lnni and 1

4bi lnni, respectively, such that every vertex in Ri ∪ Bi is connected

to every vertex in Rj ∪ Bj by color χ(i, j). Consider the 2-colored complete graph on the vertex set

{1, 2, . . . , d} where i and j are joined in color χ(i, j). We give each vertex the two weights ri and bi.

Since bi ≥ c ln(4c/ri) if ri ≤ bi and ri ≥ c ln(4c/bi) if bi ≤ ri, we may apply Lemma 3.3 to find a red

clique R such that ∑
i∈R

ri ≥
c

2
ln d ≥ 1

32
log log log n

or a blue clique B such that
∑

i∈B bi ≥
1
32 log log log n. Suppose, without loss of generality, that there

is a red clique R such that
∑

i∈R ri ≥
1
32 log log log n.

Consider now the set R =
⋃
i∈RRi. Since R is a red clique by coloring χ, the edges between different

Ri are red. Therefore, since also each Ri is a red clique, we see that R is a red clique in the original

graph. Moreover,∑
j∈R

1

log j
≥
∑
i∈R

∑
j∈Ri

1

log j
≥
∑
i∈R

ri
4

log ni
1

log 2ni
≥
∑
i∈R

ri
8
≥ 2−8 log log log n,

as required. 2

4 Monochromatic sets with differences satisfying a prescribed order

In this section we prove Theorem 1.2, which gives an improved bound for Ramsey numbers with fixed

order type. We begin with several simple definitions and lemmas.

An interval I of integers is a set of consecutive integers. Let S be a nonempty set of integers, and

min(S) and max(S) denote the minimum and maximum integers in S. The density dI(S) of S with

respect to an interval I of integers with S ⊂ I is |S|/|I|.
The following definition is useful for finding cliques of a certain order type.

Definition: An ordered pair (T1, T2) of sets of integers are separated if, for j = 1, 2,

min(T2)−max(T1) > max(Tj)−min(Tj).

The next lemma shows that any dense subset S contains a pair of large dense subsets which are

separated.

Lemma 4.1 Let S be a finite set of integers with |S| ≥ 6, and I = [a, b] an interval with S ⊂ I. Then,

for j = 1, 2, there is Tj ⊂ S and an interval Ij with Tj ⊂ Ij, (T1, T2) separated, dIj (Tj) ≥ dI(S)/2,

and |Ij | ≥ |S|/12.
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Proof: Let i1 ∈ I be the maximum integer (if it exists) such that the restriction of S to the interval

[a, i1] has density at most dI(S)/2. If no such i1 exists, let i1 = a − 1. Similarly, let i2 ∈ I be the

minimum integer greater than i1 (if it exists) such that the restriction of S to the interval [i2, b] has

density at most dI(S)/2. If no such i2 exists, let i2 = b + 1. Let S′ be the restriction of S to the

interval (i1, i2), i.e., the set of s ∈ S with i1 < s < i2. Since at most 1/2 of the elements of S are

deleted to obtain S′, we have |S′| ≥ |S|/2.

Let I ′ denote the interval [min(S′),max(S′)] of integers. Partition the interval I ′ into three intervals

each of size as equal as possible, and let I1 be the first interval and I2 be the last interval. This

guarantees that if T1 ⊂ I1 and T2 ⊂ I2, then (T1, T2) is separated. It follows from the definition of

i1 and i2 that the restrictions of S to each of the two end intervals has density at least dI(S)/2. Let

Tj = |S ∩ Ij | for j = 1, 2. Since S′ ⊂ I ′, we have |I ′| ≥ |S′| ≥ |S|/2. The end intervals have size at

least b|I ′|/3c. Hence, for j = 1, 2,

|Ij | ≥ b|I ′|/3c ≥ b|S|/6c ≥ |S|/12.

The result follows. 2

We also need the following simple lemma which allows us to pass to a subinterval of a given size

without the density decreasing significantly.

Lemma 4.2 Suppose S is a set of positive integers, J is an interval containing S, and r ≤ |J | is a

positive integer. Then there is a subset S′ ⊂ S and an interval I of size r containing S′ such that

dI(S
′) ≥ dJ(S)/2.

Proof: We can cover the interval J with d|J |/re intervals of size r, some of which may be overlapping.

If S restricted to any of these intervals has density at least dJ(S)/2, then we can pick S′ to be this

subset of S. Otherwise, since d|J |/re ≤ 2|J |/r, the total number of elements of S is less than

d|J |/rerdJ(S)/2 ≤ |S|,

a contradiction, which completes the proof. 2

For a permutation π of [k − 1], an increasing sequence a1, . . . , ak of k integers has type π if

aπ(1)+1 − aπ(1) > aπ(2)+1 − aπ(2) > . . . > aπ(k−1)+1 − aπ(k−1).

Let G be a graph on a subset of the integers, J be an interval, and S ⊂ J∩V (G). For 0 < α, β, γ, δ, p <

1, we say that G is (α, β, γ, δ, p)-heavy with respect to S if for all subsets S′ ⊂ S for which there is

an interval J ′ with S′ ⊂ J ′, dJ ′(S
′) ≥ δdJ(S), and |S′| ≥ γ|S|, there are subsets T1, T2 ⊂ S′ and, for

j = 1, 2, intervals Ij with Tj ⊂ Ij such that (T1, T2) is a separated pair, dIj (Tj) ≥ αdJ ′(S′), |Ij | ≥ β|S′|
and the edge density of G across T1, T2 is at least p.

Let φ : [h− 1]→ [k− 1] be an injective function, 0 < η < 1, and r ∈ N. A clique in G of type (φ, η, r)

consists of h pairwise adjacent vertices a1, . . . , ah such that ai+1− ai ∈ [ηφ(i)r, ηφ(i)−1r) for i ∈ [h− 1].

10



Note that if h = k and φ is the inverse permutation of π, then a clique of type (φ, η, r) is also a clique

of type π.

The following lemma shows that if a large subset S of a graph G is (α, β, γ, δ, p)-heavy with appropriate

choices of parameters α, β, γ, δ, and p, then it must contain a clique of type (φ, η, r). We next describe

the proof idea, which is by induction on the order h of the desired clique. Let τ be the minimum

element of the image of φ, and j be such that φ(j) = τ . We first pass to an interval I of size

just smaller than ητ−1r using Lemma 4.2. Using the heavy hypothesis, we find a separated pair

(T1, T2) of large subsets of S ∩ I such that the edge density of G between T1 and T2 is at least p,

and min(T2) − max(T1) ≥ ητr. This implies that for any choice of aj ∈ T1 and aj+1 ∈ T2, we have

aj+1 − aj ∈ [ητr, ητ−1r). Applying the dependent random choice lemma, Lemma 2.1, we find that

there is large subset U ⊂ T1 such that all small subsets of U have many common neighbors in T2. We

find from the heavy hypothesis and induction that there is a clique with vertices a1, . . . , aj ∈ U such

that, for 1 ≤ i ≤ j − 1, ai+1 − ai ∈ [ηφ(i)r, ηφ(i)−1r). Since every small subset of U has many common

neighbors in T2, the set W of common neighbors of a1, . . . , aj in T2 is large. We again find from the

heavy hypothesis and induction that there is a clique with vertices aj+1, . . . , ah ∈ W such that, for

j + 1 ≤ i ≤ h − 1, ai+1 − ai ∈ [ηφ(i)r, ηφ(i)−1r). We conclude that a1, . . . , ah forms the desired clique

in G of type (φ, η, r).

Lemma 4.3 Suppose G is a graph on a subset of the integers, J is an interval, S ⊂ J ∩ V (G),

φ : [h− 1]→ [k− 1] is an injective function, 0 < α, β, γ, δ, η, p < 1, and r ∈ N. Let t = 2
√
k log1/p |S|,

ε = pt/2, λ =
(
εα
4

)2h
, and κ = λβdJ(S)2ηkr. Provided that κ ≥ h, |J | ≥ r, η ≤ βλdJ(S)2, δ ≤ λ, and

γ|S| ≤ κ, the following holds. If G is (α, β, γ, δ, p)-heavy with respect to S then there is a clique in G

of type (φ, η, r).

Proof: The proof is by induction on h. In the base case h = 1, it suffices to show that S is nonempty,

which it clearly is. The induction hypothesis is that the lemma holds for all positive integers h′ < h,

where h ≥ 2.

Let τ = mini∈[h−1] φ(i) and j ≤ h − 1 be such that φ(j) = τ . Let φ1 : [j − 1] → [k − τ − 1] and

φ2 : [h−j−1]→ [k−τ−1] be the injective functions given by φ1(x) = φ(x)−τ and φ2(x) = φ(x+j)−τ .

Let s be the largest integer less than ητ−1r. Since ητ−1r ≥ ηkr ≥ κ ≥ h ≥ 2, then s ≥ ητ−1r/2. As

|J | ≥ r ≥ s, we can apply Lemma 4.2 to obtain a subset S′ ⊂ S and an interval I with |I| = s and

S′ ⊂ I such that dI(S
′) ≥ dJ(S)/2.

We have dI(S
′) ≥ dJ(S)/2 ≥ λdJ(S) ≥ δdJ(S) and |S′| = dI(S

′)|I| ≥ dJ (S)
2 |I| ≥

dJ (S)
4 ητ−1r ≥ κ ≥

γ|S|. Hence, by the heaviness hypothesis, for i = 1, 2, there is an interval Ii and a subset Ti ⊂ Ii ∩ S′

such that (T1, T2) is a separated pair, dIi(Ti) ≥ αdI(S
′) ≥ α

2 dJ(S), |Ii| ≥ β|S′| and the edge density

of G between T1 and T2 is at least p. Note that |Ti| = |Ii|dIi(Ti) ≥ dIi(Ti)β|S′| ≥ 1
2αβdJ(S)|S′|.

We apply Lemma 2.1 to the bipartite subgraph of G with parts T1 and T2 and s = j, with t as defined

in the statement of the lemma, N1 = |T1|, N2 = |T2|, and m = ε|T2|. Since |T1|k ≤ |S|k = p−
1
4
t2 , we

can verify that (
|T1|
j

)(
ε|T2|
|T2|

)t
≤ |T1|kεt = |T1|kpt

2
/2t ≤ p

3
4
t2/2t ≤ pt|T1|/2.
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Using that |T1| ≥ 1
2αβdJ(S)|S′|, |S′| ≥ dJ (S)

4 ητ−1r and η ≤ βλdJ(S)2 ≤ β
(
εα
16

)
dJ(S)2, we conclude

that there is a subset U ⊂ T1 with

|U | ≥ pt|T1|/2 = ε|T1| ≥ εαβ
dJ(S)

2
|S′| ≥ εαβ dJ(S)2

8
ητ−1r ≥ ητr

such that every j vertices in U have at least ε|T2| common neighbors in T2. Since (T1, T2) is separated

and |T1| ≥ |U | ≥ ητr we have that for any a ∈ T1 and b ∈ T2,

ητr ≤ |T1| ≤ b− a ≤ |I| < ητ−1r.

We also have

dI1(U) =
|U |
|I1|
≥ ε|T1|
|I1|

= εdI1(T1) ≥ εαdI(S′) ≥ ε
α

2
dJ(S).

Let δ′ = dJ (S)
dI1 (U)δ and γ′ = |S|

|U |γ. Since G is (α, β, γ, δ, p)-heavy with respect to S and U ⊂ S, then G is

also (α, β, γ′, δ′, p)-heavy with respect to U .

Let t′ = 2
√

(k − τ) log1/p |U |, k′ = k − τ , r′ = ητr and ε′ = pt
′
/2, so ε′ ≥ ε. Let λ′ =

(
ε′α
4

)2j
and

κ′ = λ′βdI1(U)2ηk
′
r′. Then λ ≤

(
εα
4

)2
λ′ and therefore

κ′ = λ′βdI1(U)2ηk
′
r′ ≥ λ′β

(
ε
α

2
dJ(S)

)2
ηkr ≥ λβdJ(S)2ηkr = κ ≥ h ≥ j.

Since |I1| ≥ |U | ≥ ητr = r′, δ ≤ λ =
(
εα
4

)2h ≤ ( εα4 )2 λ′, ε′ ≥ ε and dI1(U) ≥ εα
2 dJ(S) we have that

η ≤ βdJ(S)2λ ≤ βdI1(U)2λ′,

δ′ =
dJ(S)

dI1(U)
δ ≤ 2ε−1α−1δ ≤

(εα
4

)2h−1
≤ λ′,

and

γ′|U | = γ|S| ≤ κ ≤ κ′

Thus, we can apply the induction hypothesis and obtain a clique in G with vertices a1, . . . , aj in U

which is of type (φ1, η, η
τr).

Let W be the set of common neighbors of a1, . . . , aj in T2, so |W | ≥ ε|T2|. Let δ′′ = dJ (S)
dI2 (W )δ and

γ′′ = γ|S|
|W | . As above, since W ⊂ S and G is (α, β, γ, δ, p)-heavy with respect to S, we have that G

is also (α, β, γ′′, δ′′, p)-heavy with respect to W . Again, by the induction hypothesis (exactly as done

above, replacing U by W and j by h− j), there is a clique b1, . . . , bh−j in G with vertices from W of

type (φ2, η, η
τr). Then, letting aj+i = bi for 1 ≤ i ≤ h − j, we have that a1, . . . , ah form a clique of

type (φ, η, r) in G, completing the proof. 2

The following theorem is a restatement of Theorem 1.2. Recall that if h = k and φ is the inverse

permutation of π, then a clique of type (φ, η, r) is also a clique of type π. In the proof of Theorem 1.2,

we show that a q-colored complete graph on sufficiently many vertices must contain a subset which is

appropriately heavy in the graph of one of the colors. Lemma 4.3 then implies that the graph of this
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color contains the desired monochromatic clique with order type π. To find such a heavy subset, we

suppose for contradiction that none exists. We then find a large interval Iq and a dense subset Sq of

Iq such that for each color i, every separated pair (T1, T2) of subsets of Sq and large intervals J1, J2

with Tj a dense subset of Jj has edge density less than p = 1/q in color i between T1 and T2. But, by

Lemma 4.1, Sq contains a separated pair (T1, T2) of large dense subsets. By the pigeonhole principle,

the edge density between T1 and T2 in one of the q colors is at least 1/q, contradicting the existence

of Sq.

Theorem 4.1 Let k, q ≥ 2 be integers and π a permutation of [k−1]. Every q-coloring of the complete

graph on [n] with n = 2k
20q

contains a monochromatic clique of type π.

Proof: Suppose for contradiction that there is a q-coloring of the edges of the complete graph on [n]

without a monochromatic copy of Kk of type π. We label the q colors 1, . . . , q. Let S0 = I0 = [n], so

dI0(S0) = 1 and |S0| = |I0| = n. Let φ = π−1, p = 1/q, t = 2
√
k log1/p n, and ε = pt/2.

For q ≥ i ≥ 1, we define αi, βi, γi, δi, ηi recursively as follows, starting with i = q. We have αq = 1/2,

δi =
(
εαi
4

)2k
, and αi = δi+1αi+1. Explicitly, δq−i =

(
ε
8

)2k(2k+1)i
, and for i ≥ 1, αq−i = 1

2

(
ε
8

)(2k+1)i−1
.

Let ∆0 = 1 and ∆i = δi∆
2
i−1 for 1 ≤ i ≤ q. Let ∆ = ∆q. We have from the explicit formula for δq−i

that

∆ = δq∆
2
q−1 = δqδ

2
q−1∆4

q−2 = · · · =
q−1∏
i=0

δ2i

q−i =

q−1∏
i=0

( ε
8

)2k(4k+2)i

≥
( ε

8

)(4k+2)q

≥
( ε

8

)(k+2)2q−2
.

Let βq = 1/12. For each i, let ηi = βi∆, and γi = ηk+1
i , and, if i < q, βi = γi+1βi+1. Explicitly, βq−i =

1
12

(
∆
12

)(k+2)i−1
, ηq−i =

(
∆
12

)(k+2)i
, and γq−i =

(
∆
12

)(k+1)(k+2)i
. Finally, let Γ0 = 1 and Γi = γiΓi−1 for

1 ≤ i ≤ q. Let Γ = Γq. We have

Γ =

q∏
i=1

γi =

(
∆

12

)(k+2)q−1

≥
(

1

12

( ε
8

)(k+2)2q−2
)(k+2)q−1

≥
(( ε

8

)(k+2)2q
)(k+2)q

=
( ε

8

)(k+2)3q

≥
( ε

8

)k6q
.

We will next define a sequence of subsets S0 ⊃ S1 ⊃ . . . ⊃ Sq and a sequence of intervals I0 ⊃ I1 ⊃
. . . ⊃ Iq such that for each i, 1 ≤ i ≤ q, we have

• Si ⊂ Ii,

• dIi(Si) ≥ δidIi−1(Si−1) ≥ ∆i,

• |Si| ≥ γi|Si−1| ≥ Γin, and

• there is no separated pair (T1, T2) with T1, T2 ⊂ Si and intervals J1, J2 such that, for j = 1, 2,

Tj ⊂ Jj , dJj (Tj) ≥ αidIi(Si), |Jj | ≥ βi|Si|, and the graph in color i has edge density at least p

between T1 and T2.
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We next show how to pick Si and Ii having already picked Si−1 and Ii−1. Since the graph in color i does

not contain a clique of type π, it also does not contain a clique of type (φ, ηi, ri) with ri = |Ii|. We now

wish to apply Lemma 4.3 with S = Si−1 to conclude that the graph in color i is not (αi, βi, γi, δi, p)-

heavy with respect to Si−1. To do this, we must verify the assumptions of the lemma.

Let λi =
(
εαi
4

)2k
and κi = λiβidIi−1(Si−1)2ηki ri. Note that δi = λi and

ηi = βi∆ ≤ βi∆i = βiδi∆
2
i−1 ≤ βiλidIi−1(Si−1)2.

We also have

γi|Si−1| = ηk+1
i |Si−1| ≤ βiλidIi−1(Si−1)2ηki |Si−1| ≤ λiβidIi−1(Si−1)2ηki ri = κi.

Finally, since γi|Si−1| ≥ Γin ≥ Γn and n = 2k
20q

, we have

κi ≥ Γn ≥ n
( ε

8

)k6q
= n

(
q−2
√
k logq n

16

)k6q
≥ n

(
2−k

12q
)k6q

= n2−k
18q ≥ k.

Here we used that q−2
√
k logq n ≥ 2−2k10q+1

√
log q ≥ 2−k

12q+4.

We may therefore apply Lemma 4.3. Hence, there is a subset Si ⊂ Si−1 and an interval Ii ⊂ Ii−1

satisfying the four desired properties itemized above.

However, by Lemma 4.1, Sq contains a separated pair (T1, T2) and intervals J1, J2 such that, for

j = 1, 2, Tj ⊂ Jj , dJj (Tj) ≥ dIq(Sq)/2, and |Jj | ≥ |Sq|/12. By the pigeonhole principle, for some i,

1 ≤ i ≤ q, the density across T1, T2 in color i is at least 1/q = p. But

1

2
dIq(Sq) = αqdIq(Sq) ≥ αqδqdIq−1(Sq−1) = αq−1dIq−1(Sq−1) ≥ αq−2dIq−2(Sq−2) ≥ · · · ≥ αidIi(Si)

and, similarly, |Sq|/12 ≥ βi|Si|, contradicting that Si contains no such separated pair. 2

5 Further remarks

5.1 Asymptotics of maximum weight monochromatic cliques

A well-known conjecture of Erdős states that the limit limn→∞
log r(n)

n exists. If this limit exists, denote

it by c0. We will assume the conjecture that c0 exists. The bounds of Erdős and Erdős-Szekeres on

Ramsey numbers imply that 1
2 ≤ c0 ≤ 2.

Recall that the weight of a set S of integers greater than one is the sum of 1/ log s over all s ∈ S, and

f(n) is the maximum real number for which any red-blue edge-coloring ofKn contains a monochromatic

clique of weight at least f(n). Theorem 1.1 shows that f(n) is within a constant factor of log log log n.

We further conjecture the constant factor.

Conjecture 5.1 We have

f(n) =
(
c−2

0 + o(1)
)

log log log n,

where c0 = limn→∞
log r(n)

n .
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The construction of Rödl described in the introduction can easily be modified to obtain

f(n) ≤ (c−2
0 + o(1)) log log log n.

Indeed, let a = 1 + ε with ε → 0 slowly as n → ∞ (picking ε = 1/ log log log n will do). Cover [2, n]

by intervals, where the ith interval is [2a
i−1
, 2a

i
) and has largest element less than ni := 2a

i
. The

number of intervals is d = d 1
log a log logne = O(ε−1 log logn). Note that the logarithm of any two

numbers in the same interval is within a factor a = 1 + ε of each other. We red-blue edge-color the

complete graph on each of these intervals so as to minimize the order of the largest monochromatic

clique in the interval. Then the weight of any monochromatic clique in the ith interval is at most

(1/ log ni)(c
−1
0 + o(1)) log ni = c−1

0 + o(1), where the o(1) term goes to 0 as ni increases. We color

between intervals monochromatic so as to minimize the order of the largest monochromatic clique with

vertices in distinct intervals. The order of this monochromatic clique with vertices in distinct intervals

is (c−1
0 + o(1)) log d = (c−1

0 + o(1)) log log log n. Hence, f(n) ≤ (c−1
0 + o(1))(c−1

0 + o(1)) log log log n =

(c−2
0 + o(1)) log log log n.

In the other direction, a simple modification of the proof of Theorem 1.1 with a careful analysis gives

the lower bound

f(n) ≥
(

1

4
− o(1)

)
log log log n,

which would be sharp if the exponential constant in the upper bound for diagonal Ramsey numbers

is best possible, i.e., if c0 = 2. We next give a rough sketch of how to achieve this.

One first constructs d = (log log n)1−o(1) intervals Si of the form [ni, 2ni) with ni = i(log log n)o(1) +
1
2 log log n, where the o(1) term slowly goes to 0 as n tends to infinity. After going through the

proof, we obtain in each Si a red clique Ri and a blue clique Bi, such that for each i < j, the

complete bipartite graph between Ri ∪Bi and Rj ∪Bj is monochromatic. The monochromatic cliques

Ri and Bi are chosen to be the largest monochromatic cliques of each color in a particular subset

Td,i ⊂ Si with |Td,i| = |Si|1−o(1). By the Erdős-Szekeres estimate, we have |Ri| ≥ (ri− o(1)) log ni and

|Bi| ≥ (bi − o(1)) log ni where bi and ri (asymptotically) satisfy (bi + ri) log (bi+ri)
ri
− bi log bi

ri
= 1.

Consider the induced red-blue edge-coloring of the complete graph with one vertex vi from each Ri∪Bi.
Assign vertex vi red weight ri and blue weight bi. An appropriate variant of Lemma 3.2, the weighted

version of Ramsey’s theorem, tells us that there is a monochromatic clique vi1 , vi2 , . . . , vis of large

weight. Assuming without loss of generality that this clique is red, the tailored variant of Lemma 3.2

then tells us that the red weight of the clique is asymptotically at least 1
4 log d = (1

4 +o(1)) log log log n.

This is obtained when for each i, bi = ri = 1
2 + o(1) and the clique has size 1

2 log d. Let S be the union

of the Rij with 1 ≤ j ≤ s. As, for each i < j, the complete bipartite graph between Ri ∪ Bi and

Rj ∪Bj is monochromatic red, the set S forms a monochromatic clique of weight

∑
j∈S

1

log j
≥
(

1

4
+ o(1)

)
log log log n.

The proof sketched above uses an application of both Ramsey’s theorem and its weighted variant, so

that the asymptotics of the lower bound on f(n) are dictated by the bounds in these theorems. We
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believe that the optimal bounds should always follow, as above, from the diagonal case, in which case

Conjecture 5.1 would follow.

5.2 Weighted cliques with alternative weight functions

One question which arises naturally is whether we can also find cliques of large weight for other weight

functions. Let w(i) be a weight function defined on all positive integers n ≥ a and let f(n,w) be the

minimum over all 2-colorings of [a, n] of the maximum weight of a monochromatic clique. In particular,

if w1(i) = 1/ log i and a = 2, then f(n,w1) = f(n).

The next interesting case is when w2(i) = 1/ log i log log log i, since, for any function u(i) which tends

to infinity with i, Theorem 1.1 implies that f(n, u′) → ∞, where u′(i) = u(i)/ log i log log log i. We

may show also that f(n,w2)→∞.

Sketch of the proof. Suppose that we are using the weight function w2. We consider the intervals

Ij = [nj , 2nj) for which 2nj ≤ n with log log nj = 10j log log log n. The number d of such intervals

is log log n/10 log log log n. By applying the methods used in the proof of Theorem 3.1, we may find

d sets T1, T2, . . . , Td, with Tj ⊂ Ij , the collection of edges between Ti and Tj is monochromatic for

every i 6= j, and each Tj is the union of a red clique of size roughly rj log nj and a blue clique of

size bj log nj . Here rj and bj are chosen to satisfy the balancing condition stipulated by Lemma 3.1.

Any vertex in Tj will have weight about 1/ log nj log log log nj , the full contribution of the red clique

is Ω(rj/ log log log nj) = Ω(rj/(log j + log log log log n)) = Ω(rj/ log max(j, log log log n)), and the blue

clique is Ω(bj/ log max(j, log log log n)).

We may now treat the Tj as though they were vertices with two weights in a graph whose edges have

been 2-colored. For j ≥ log log log n, the red weight is rj/ log j and the blue weight is bj/ log j. For

smaller j, the red weight is rj/ log log log log n and the blue weight is bj/ log log log log n. However, there

are so few such smaller j that we will be able to safely ignore such vertices. We would like to repeat the

argument above with this new graph on d vertices. To begin, we consider c ≈ log log d/10 log log log d

intervals S1, . . . , Sc in [d], each of the form [di, 2di) with log log di = 10i log log log d. For the rest of

the argument we only consider vertices j in one of these intervals, so that j ≥ d1 ≥ log log log n and j

has red weight rj/ log j and blue weight bj/ log j. We may assume that rj and bj are each less than

(log j)2, as otherwise the vertex j, or rather the red or blue subset of Tj , would be a monochromatic

clique of weight Ω(log j) = Ω(log log log log n). By Lemma 3.1, this also implies that all rj and bj
are at least 1/(16 log log j). Therefore the ratio between any two of rj and any two of bj is at most

16 log2 j log log log j ≤ (log j)3 and hence we may split each Si into hi = 6 log log di subsets, so that the

rj and bj are within a factor 2 of each other within each piece. That is, we are decomposing the interval

Si into Si,1, . . . , Si,hi so that within any Si,` all rj and bj are essentially the same. Within each Si, we

pass to the largest Si,`, which we will call Ui. As |Ui| ≥ di/(6 log log di), we have log |Ui| ≈ log |Si| for

each i. We let r′i and b′i be the minimum over j ∈ Ui of rj and bj , respectively.

If we again apply the method of Theorem 3.1, we will find a collection of sets T ′i ⊂ Si such that the

graph is monochromatic between any two sets and T ′i contains a red clique of size r̂i log |Ui| ≈ r̂i log |Si|
and a blue clique of size roughly b̂i log |Si|. The red clique will have red weight Ω(r̂ir

′
i) and the blue
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clique will have blue weight Ω(b̂ib
′
i). Treating the T ′i as though they were the vertices in a graph, we

see that the vertex i will have red weight Ω(r̂ir
′
i) and blue weight Ω(b̂ib

′
i), where r̂i and b̂i as well as

r′i and b′i satisfy, up to a constant factor, the balancing criterion stipulated by Lemma 3.1. It is now

easy to verify that the weight functions r̂ir
′
i and b̂ib

′
i satisfy the requirements of Lemma 3.3 with c > 0

an appropriately chosen absolute constant. Hence, we will be able to find a monochromatic clique of

weight Ω(log c) = Ω(log log log d) = Ω(log log log log log n). This yields a clique of the same weight in

the original graph. 2

It is not hard to show that this bound is tight up to the constant. Color the interval Ij = [22j−1
, 22j ) so

that the largest clique has size at most 2j+1. Then the contribution of the jth interval will be at most

4/ log j. We now treat Ij as though it were a vertex of weight 4/ log j and, blowing up Rödl’s coloring,

color monochromatically between the different Ij so that the largest weight of any monochromatic

clique is O(log log log d) = O(log log log log log n).

On the other hand, by using Rödl’s coloring, we can show that if w′1(i) = 1/(log i)1+ε, for any fixed

ε > 0, then f(n,w′1) converges. By using the coloring from the previous paragraph, we may improve

this to show that if w′2(i) = 1/ log i(log log log i)1+ε, then f(n,w′2) also converges.

More generally, we have the following theorem. Here log(i)(x) is the iterated logarithm given by

log(0)(x) = x and, for i ≥ 1, log(i)(x) = log(log(i−1)(x)).

Theorem 5.1 Let ws(i) = 1/
∏s
j=1 log(2j−1) i. Then f(n,ws) = Θ(log(2s+1) n). However, letting

w′s(x) = ws(x)/(log(2s−1) i)
ε for any fixed ε > 0, then f(n,w′s) converges.

That is, the sequence of functions ws form a natural boundary below which f(n, ·) converges.

5.3 A counterexample to finding skewed cliques in hypergraphs

For 3-uniform hypergraphs, the Ramsey number r3(t) is defined to be the smallest natural number n

such that in any 2-coloring of the edges of K
(3)
n there is a monochromatic copy of K

(3)
t . It is known

(see [3, 8, 9]) that

2ct
2 ≤ r3(t) ≤ 22c

′t

and the upper bound is widely conjectured to be correct. Phrased differently, we know that every

2-coloring of the edges of K
(3)
n contains a monochromatic clique of size at least Ω(log log n) and that

there are 2-colorings of K
(3)
n which contain no monochromatic clique of size O(

√
log n).

Let ρ3(n) be the function which gives the minimum size of the largest monochromatic clique taken

over every 2-coloring of K
(3)
n . Note that this function is increasing and that ρ3(r3(t)) = t. In keeping

with Erdős’ conjecture for graphs, we can give a weight of 1/ρ3(i) to vertex i and let the weight of a

set S be
∑

i∈S 1/ρ3(i). We then ask for the minimum over all 2-colorings of the edges of the complete

3-uniform hypergraph on vertex set [n] of the maximum weight of a monochromatic clique.

Split [n] into intervals given by Rj = [r3(2j−1), r3(2j)). Within each interval, we color so that the

largest monochromatic clique has size at most 2j . If i < j, we color edges containing two vertices
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from Ri and one vertex from Rj red and edges containing two vertices from Rj and one vertex from

Ri blue. We color all other edges arbitrarily.

Suppose now that we have a monochromatic clique S. Then S has at most one vertex in all but one

of the sets Rj . Otherwise, if there were two vertices, say u1 and u2, in Ri and two vertices, v1 and

v2, in Rj , the edges u1u2v1 and u1v1v2 would have opposite color. We may therefore suppose that

S = T` ∪ {s1, s2, . . . }, where T` ⊂ R` and si is a single vertex from Ri.

Since, for any i ∈ R`, we have ρ(i) ≥ ρ3(r3(2`−1)) = 2`−1 and the largest monochromatic clique in R`
has size at most 2`, the contribution from T` is at most 2. Similarly, the contribution from si is at

most 21−i, so that total weight of the clique is at most 2 +
∑∞

i=1 21−i ≤ 4. Therefore, unlike the graph

case, there are colorings for which the maximum weight of a monochromatic clique is bounded.

5.4 A simple construction

Here we present a simple explicit construction which beats the random lower bound for Ramsey

numbers for a certain prescribed order on the consecutive differences. A sequence n1 < n2 < . . . < nk
is convex if n2 − n1 < n3 − n2 < . . . < nk − nk−1.

Proposition 5.1 For i < j, let f(i, j) = blog(j − i)c. Consider the 2-edge-coloring of the complete

graph on the first n = 4k−1 positive integers where the color of edge (i, j) with i < j is the parity of

f(i, j). This coloring has no convex monochromatic clique of order k + 1.

Proof: Suppose for contradiction that a1 < . . . < ak+1 is a convex monochromatic clique of order k+1

in this 2-edge-coloring of the complete graph on n. We claim that for 1 ≤ i ≤ k − 1, f(ai+2, ai+1) ≥
f(ai+1, ai) + 2. Indeed, as the sequence is convex, ai+1 − ai < ai+2 − ai+1, and hence f(ai+2, ai+1) ≥
f(ai+1, ai). If the claim does not hold, then for some i, 1 ≤ i ≤ k−1, we have f(ai+2, ai+1) = f(ai+1, ai)

or f(ai+2, ai+1) = f(ai+1, ai)+1. In the first case, as ai+2−ai = (ai+2−ai+1)+(ai+1−ai), we have that

f(ai+2, ai) = f(ai+1, ai)+1, so the edges (ai, ai+2) and (ai, ai+1) are different colors. In the second case,

(ai+2, ai+1) and (ai+1, ai) are different colors. As the clique is monochromatic, this cannot happen,

and hence the claim holds. From the claim, we have f(ak+1, ak) ≥ f(2, 1) + 2(k − 1) ≥ 2(k − 1). It

follows that ak+1 > ak+1 − ak ≥ 22(k−1), contradicting ak+1 ≤ n = 4k−1 and completing the proof. 2

We actually proved that not only is there no convex monochromatic complete graph on k+ 1 vertices

in the 2-edge-coloring of the complete graph on the first 4k−1 positive integers, but also a much sparser

graph on k + 1 vertices is forbidden as a monochromatic subgraph in convex position, namely, the

square of the monotone path on k + 1 vertices. That is, for this coloring, there is no convex sequence

a1, . . . , ak+1 such that all edges (ai, aj) with |j− i| ≤ 2 are the same color. This is in strong contrast to

Ramsey numbers without order, where the Ramsey number of the square of a path or, more generally,

any bounded degree graph (see, e.g., [1, 4]) is linear in the number of vertices.

As with ordinary Ramsey numbers, the lower bound for complete Ramsey numbers with order types

which comes from considering a random 2-edge-coloring of the complete graph is of the form 2k/2+o(k).

As the simple constructive coloring in Proposition 5.1 gives a better bound while forbidding a much
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sparser structure, it suggests that Ramsey’s theorem with order types is a substantially different and

more intricate problem than Ramsey’s theorem.

5.5 Counterexamples to variants of Ramsey’s theorem with order types

There are several natural variants of Väänänen’s question which have negative answers. For example,

the natural hypergraph analogue fails. Indeed, there is a coloring of the complete 3-uniform hypergraph

on the positive integers such that every monochromatic set a1, . . . , ak satisfies that the sequence

a2 − a1, a3 − a2, . . . , ak − ak−1 of consecutive differences is monotone. We color an edge (a1, a2, a3)

with a1 < a2 < a3 red if a3−a2 ≥ a2−a1 and blue otherwise. Hence, if a1 < a2 < a3 < a4 are positive

integers, (a1, a2, a3) and (a2, a3, a4) are both red or both blue if and only if a2 − a1, a3 − a2, a4 − a3 is

a monotone sequence.

Another variant which fails to hold is the case of monochromatic cliques where the higher differences

have a prescribed order. This was first observed by Erdős, Hajnal, and Pach [7]. We give such an

example forbidding an ordering of the second differences ai+2− ai. Before describing this coloring, we

first remark that it is easy to show that any second difference is realizable. That is, for any permutation

π of [k − 2], there are (many) sequences a1 < · · · < ak of positive integers satisfying

aπ(1)+2 − aπ(1) > aπ(2)+2 − aπ(2) > · · · > aπ(k−2)+2 − aπ(k−2).

However, for certain π there exist 2-edge-colorings of the complete graph on the positive integers in

which none of these sequences form a monochromatic clique. Indeed, consider the 2-edge-coloring of

the complete graph on the positive integers, where the color of (i, j) with i < j is given by the parity of

f(i, j) = blog(j−i)c. In this coloring, no monochromatic clique with vertices a1 < a2 < a3 < a4 < a5 <

a6 < a7 satisfies a5−a3 is the largest of the second differences and a4−a2, a6−a4 are the two smallest

second differences. Suppose that such a monochromatic clique exists. By symmetry, we may assume

without loss of generality that a4 − a3 ≥ a5 − a4. For ai < aj < ah, as ah − ai = (ah − aj) + (aj − ai),
we have max(f(ai, aj), f(aj , ah)) ≤ f(ai, ah) ≤ max(f(ai, aj), f(aj , ah)) + 1. Since the parity of f(a, b)

is the same for any two vertices a < b of the monochromatic clique, we must have f(ai, ah) =

max(f(ai, aj), f(aj , ah)). In particular, this implies f(a3, a5) = f(a3, a4) and f(a1, a5) = f(a3, a5).

Since a3 − a1 ≥ a4 − a2 (by minimality of a4 − a2), we must have a2 − a1 ≥ a4 − a3 and hence

f(a3, a5) ≥ f(a1, a3) ≥ f(a1, a2) ≥ f(a3, a4) = f(a3, a5), where the first inequality comes from the

fact that a5−a3 is the largest second difference. But if f(a1, a3) = f(a3, a5), then f(a1, a5) > f(a3, a5),

contradicting the equality deduced earlier.
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