A Bipartite Analogue of Dilworth's Theorem for Multiple Partial Orders

Jacob Fox ${ }^{1}$
Department of Mathematics, Princeton, Princeton, NJ, USA
János Pach ${ }^{2}$
City College, CUNY and Courant Institute, NYU, New York, NY, USA

Abstract

Let r be a fixed positive integer. It is shown that, given any partial orders $<_{1}, \ldots$, $<_{r}$ on the same n-element set P, there exist disjoint subsets $A, B \subset P$, each with at least $n^{1-o(1)}$ elements, such that one of the following two conditions is satisfied: (1) there is an $i(1 \leq i \leq r)$ such that every element of A is larger than any element of B in the partial order $<_{i}$, or (2) no element of A is comparable with any element of B in any of the partial orders $<_{1}, \ldots,<_{r}$. As a corollary, we obtain that any family C of n convex compact sets in the plane has two disjoint subfamilies $A, B \subset C$, each with at least $n^{1-o(1)}$ members, such that either every member of A intersects all members of B, or no member of A intersects any member of B.

1 Introduction

A chain in a partially ordered set is a set of pairwise comparable elements and an antichain is a set of pairwise incomparable elements. Dilworth's celebrated theorem [4,13] implies that every partially ordered set on n elements contains a chain of length ℓ or an

[^0]antichain of length $\left\lceil\frac{n}{\ell}\right\rceil$. Consequently, one can always find a chain or an antichain of length $\lceil\sqrt{n}\rceil$. Dilworth's theorem has motivated a great deal of research $[15,23]$ in combinatorics and has several applications in combinatorial geometry [1,5,9,17,20,22], theoretical computer science $[3,18]$, and set theory [8].

To prove Ramsey-type results on intersection patterns of convex sets, Larman et al. [17] and Pach and Törőcsik [20] introduced four partial orders $<_{1},<_{2},<_{3},<_{4}$ on the family of all convex sets in the plane such that any two disjoint sets are comparable by at least one of them, but no two intersecting bodies are comparable by any of them. Applying Dilworth's theorem four times, we obtain that any family of n plane convex sets has at least $n^{1 / 5}$ members that form a chain with respect to some i or an antichain with respect to all $i(1 \leq i \leq 4)$. In the first case, these sets are pairwise disjoint, in the second case pairwise intersecting. That is, we have the following theorem.
Theorem 1 [17] Any family of n plane convex sets has at least $n^{1 / 5}$ members that are either pairwise disjoint or pairwise intersecting.

On the other hand, Károlyi et al. [16] showed that for infinitely many n, there exists a family of n line segments in the plane with at most $n^{\log 4 / \log 27} \approx n^{41}$ members that are pairwise intersecting or pairwise disjoint. A vertically convex set is a compact connected set in the plane with the property that any straight line parallel to the y-axis of the coordinate system intersects it in an interval (which may be empty or may consist of one point). The above theorem remains true for vertically convex sets. In fact, the same proof goes through. Any x-monotone arc, that is, the graph of any continuous function defined on an interval of the x-axis, is vertically convex.

For a partially ordered set (P, \prec), we write $a \perp b$ if a and b are incomparable. For subsets A and B of P, we write $A \prec B$ if $a \prec b$ for all $a \in A$ and $b \in B$. Likewise, we write $A \perp B$ if $a \perp b$ for all $a \in A$ and $b \in B$.

It was suggested by Erdős et al. [7] that under certain restrictions much stronger Ramsey-type results may hold if instead of large homogeneous subsets, we want to find large homogeneous (i.e., complete or empty) bipartite patterns. Indeed, for partially ordered sets, the first author proved the following bipartite analogue of Dilworth's theorem.
Theorem 2 [10] Every n-element partially ordered set (P, \prec) has two subsets $A, B \subset P$ with $|A|=|B| \geq \frac{n}{4 \log _{2} n}$ such that $A \prec B$ or $A \perp B$, provided that n is sufficiently large. This bound is tight up to a constant factor.

The same statement with $\frac{\sqrt{n}}{2}$ in place of $\frac{n}{4 \log _{2} n}$ immediately follows from Dilworth's theorem. Throughout this paper, all logarithms are of base 2.

In Section 2, we establish a generalization of the last theorem to multiple partial orders. We write $a \perp_{i} b$ to denote that a and b are incomparable by partial order $<_{i}$. Accordingly, for any subsets $A, B \subset P$, we write $A \perp_{i} B$ if $a \perp_{i} b$ for all $a \in A$ and for all $b \in B$.
Theorem 3 Let r be a fixed positive integer, and let $<_{1}, \ldots,<_{r}$ be partial orders on an n element set P. Then there are two disjoint subsets $A, B \subset P$, each with at least $n / 2^{(1+o(1))(\log \log n)^{r}}$ elements, such that either $A<_{i} B$ for at least one i, or $A \perp_{i} B$ for all $1 \leq i \leq r$.

Note that a straightforward, repeated application of Dilworth's theorem establishes
the existence of two much smaller subsets $A, B \subset P$ with the above properties $(|A|,|B| \geq$ $\left.\left\lfloor\frac{n^{1 /(r+1)}}{2}\right\rfloor\right)$.

Our next result shows that Theorem 3 is not very far from best possible. It will be proved in Section 3.
Theorem 4 Let r be a positive integer, and let $0<\epsilon<1$. There is a constant $C(r, \epsilon)>0$ such that for all sufficiently large positive integers n, there are r partial orders $<_{1}, \ldots,<_{r}$ on an n-element set P with the following properties:

1. $<_{1}, \ldots,<_{r}$ have a common linear extension.
2. For any $v \in P$ and for any $i(1 \leq i \leq r)$, the number of elements in P comparable with v in the partial order $<_{i}$ is at most n^{ϵ}.
3. For any pair of disjoint subsets $A, B \subset P$, each with at least $C(r, \epsilon) n \frac{(\log \log n)^{r-1}}{(\log n)^{r}}$ elements, there exist $x \in A, y \in B$, and $i(1 \leq i \leq r)$ such that $x<_{i} y$ or $y<_{i} x$.

Applying Theorem 3 to the $r=4$ partial orders on the family of plane convex sets, introduced by Larman et al. [17] and Pach an Töröcsik [20], we immediately obtain the following theorem.
Corollary 5 Any collection of n vertically convex compact sets in the plane has two disjoint subcollections, A and B, each with at least $n / 2^{(1+o(1))(\log \log n)^{4}}$ members such that either every member of A intersects all members of B or every member of A is disjoint from all members of B.

Corollary 5 is not far from being best possible. Based on the construction in [10], Pach and Tóth [19] showed that there is a collection of n vertically convex sets (x-monotone arcs) in the plane, which contains no subcollections A and B with the above properties such that $|A|,|B| \geq c \frac{n}{\log n}$, where c is a particular constant. This is a simple consequence of the second statement of Theorem 2 and the next lemma by Golumbic, Rotem, and Urrutia [14].
Lemma 6 The elements of every partially ordered set $(\{1,2, \ldots, n\}, \prec)$ can be represented by continuous real functions $f_{1}, f_{2}, \ldots, f_{n}$ defined on the interval $[0,1]$ such that $f_{i}(x)<f_{j}(x)$ for every $x \in[0,1]$ if and only if $i \prec j(i \neq j)$.

2 Proof of Theorem 3

We need a simple technical lemma.
Lemma 7 Let $S=S_{1} \cup \ldots \cup S_{m}$ be a partition of a set S with $\left|S_{i}\right|=\ell$ for $1 \leq i \leq m$, and let A and B be disjoint subsets of S of the same size. For $1 \leq i \leq m$, let $A_{i}=A \cap S_{i}$ and $B_{i}=B \cap S_{i}$. Then there is a partition of the set $\{1, \ldots, m\}$ into two parts, I_{1} and I_{2}, such that

$$
\sum_{i \in I_{1}}\left|A_{i}\right| \geq \frac{|A|-\ell}{2} \text { and } \sum_{i \in I_{2}}\left|B_{i}\right| \geq \frac{|A|-\ell}{2}
$$

Proof: Define two subsets J_{1} and J_{2} of the index set by $J_{1}=\left\{i:\left|A_{i}\right| \geq\left|B_{i}\right|\right\}$ and $J_{2}=\left\{i:\left|B_{i}\right| \geq\left|A_{i}\right|\right\}$. Since

$$
\sum_{i \in J_{1}}\left|A_{i}\right|+\sum_{i \in J_{2}}\left|B_{i}\right| \geq|A|,
$$

we have $\sum_{i \in J_{1}}\left|A_{i}\right| \geq \frac{|A|}{2}$ or $\sum_{i \in J_{2}}\left|B_{i}\right| \geq \frac{|A|}{2}$. Suppose without loss of generality that $\sum_{i \in J_{1}}\left|A_{i}\right| \geq \frac{|A|}{2}$. Since each A_{i} has at most ℓ elements, there exists a subset $I_{1} \subset J_{1}$ satisfying

$$
\frac{|A|-\ell}{2} \leq \sum_{i \in I_{1}}\left|A_{i}\right|<\frac{|A|+\ell}{2} .
$$

Letting $I_{2}:=\{1,2, \ldots, m\} \backslash I_{1}$, we have

$$
\sum_{i \in I_{2}}\left|B_{i}\right|=|A|-\sum_{i \in I_{1}}\left|B_{i}\right| \geq|A|-\sum_{i \in I_{1}}\left|A_{i}\right|>\frac{|A|-\ell}{2}
$$

which proves the lemma.
Now we are in a position to formulate a general statement for families of graphs that are closed by taking induced subgraphs.
Theorem 8 Let F_{1}, \ldots, F_{r} be families of graphs that are closed by taking induced subgraphs, and let $f_{i}(n)$ be a monotonically increasing function such that for every graph $G \in F_{i}$ on $n>1$ vertices, either G or the complement of G contains a complete bipartite subgraph with at least $\frac{n}{f_{i}(n)}$ vertices in each of its classes $(i=1, \ldots, r)$.

Given any graphs $G_{1} \in F_{1}, \ldots, G_{r} \in F_{r}$ on the same vertex set V, there exist disjoint subsets $V_{1}, V_{2} \subset V$ with $\min \left(\left|V_{1}\right|,\left|V_{2}\right|\right) \geq \frac{n}{f(n)}$, where

$$
\log f(n)=\prod_{i=1}^{r}\left(\left\lceil\log f_{i}(n)\right\rceil+2\right)
$$

such that one of the following two conditions is satisfied: (1) there is an $i(1 \leq i \leq r)$ such that in G_{i} every element of V_{1} is adjacent to every element of V_{2}, or (2) in $G_{1} \cup \ldots \cup G_{r}$, no element of V_{1} is adjacent to any element of V_{2}.

Proof: For $r=1$, the theorem is trivially true. The general statement follows from the special case $r=2$ by a straightforward induction argument.

Let $k=2+\left\lceil\log f_{2}(n)\right\rceil$. By recursively using the definition of $f_{1}(n)$ on k levels, we obtain that either G_{1} contains a complete bipartite graph $K_{m, m}$ with $m \geq \frac{n}{f_{1}(n)^{k}}$ (in which case we are done), or there are 2^{k} disjoint subsets $S_{1}, \ldots, S_{2^{k}}$ of V with $\left|S_{i}\right|=\left\lceil\frac{n}{f_{1}(n)^{k}}\right\rceil$ for $1 \leq i \leq 2^{k}$ such that there are no edges in G_{1} between S_{i} and S_{j} for $1 \leq i<j \leq 2^{k}$. Let $S=S_{1} \cup \ldots \cup S_{2^{k}}$. We are also done in the case when $K_{m, m}$ with $m \geq \frac{|S|}{f_{2}(n)}$ is a subgraph of G_{2} induced by the vertices in S, since

$$
\frac{|S|}{f_{2}(n)} \geq \frac{2^{k} n}{f_{2}(n) f_{1}(n)^{k}} \geq \frac{n}{f_{1}(n)^{k}} \geq \frac{n}{2^{\log f_{1}(n)\left(\left[\log f_{2}(n)\right]+2\right)}}
$$

Thus, we may assume that there are disjoint subsets A and B of S with $|A|=|B|>\frac{|S|}{f_{2}(n)}$ such that no vertex of A is adjacent to a vertex of B in G_{2}. Let $A_{i}=A \cap S_{i}$ and $B_{i}=B \cap S_{i}$ for $1 \leq i \leq 2^{k}$. Applying Lemma 7 , we obtain a partition of $\left\{1, \ldots, 2^{k}\right\}$ into subsets I_{1} and I_{2} such that

$$
\min \left(\sum_{i \in I_{1}}\left|A_{i}\right|, \sum_{i \in I_{2}}\left|B_{i}\right|\right) \geq \frac{|A|-\left|S_{1}\right|}{2} \geq \frac{|S|}{2 f_{2}(n)}-\frac{\left|S_{1}\right|}{2} \geq\left|S_{1}\right| \geq \frac{n}{f_{1}(n)^{k}}
$$

and no element of $V_{1}=\bigcup_{i \in I_{1}} A_{i}$ is adjacent to any element of $V_{2}=\bigcup_{i \in I_{2}} B_{i}$ in G_{i} for $i \in\{1,2\}$. To complete the proof, we note that

$$
\log _{2}\left(\frac{n}{\min \left(\left|V_{1}\right|,\left|V_{2}\right|\right)}\right) \geq k \log _{2} f_{1}(n)=\left(\left\lceil\log _{2} f_{2}(n)\right\rceil+2\right) \log _{2} f_{1}(n)
$$

Now we are in a position to complete the proof of Theorem 3. One can associate with any partially ordered set (P, \prec) a comparability graph, whose vertex set is P and two vertices are connected by an edge if and only if they are comparable.

Apply Theorem 8 to the families F_{i} of comparability graphs with respect to the partial orderings $<_{i}$ defined on all subsets of the underlying set $P(i=1, \ldots, r)$. In view of Theorem 2, these families of graphs satisfy the conditions in the theorem with $f_{i}(n)=4 \log n$. Thus, we can conclude that there are two disjoint subsets $A, B \subset P$, each with at least $n / 2^{(1+o(1))(\log \log n)^{r}}$ elements, such that either there exists an $i(1 \leq i \leq r)$ such that every element of A is comparable to all elements of B with respect to $<_{i}$, or $A \perp_{i} B$ for $1 \leq i \leq r$. In the former case, it is enough to refer to the following simple observation from [10].
Lemma 9 Suppose that the comparability graph of a partially ordered set (P, \prec) contains a complete bipartite subgraph with m vertices in each of its classes. Then there are two subsets $A, B \subset P$ with $|A|=|B| \geq \frac{m}{2}$ such that $A \prec B$.

3 Construction

The aim of this section is to prove Theorem 4. The proof is by induction on r, based on Lemma 10 with appropriately chosen parameters.

The height $h(x)$ of an element x of a poset (P, \prec) is the length of the longest chain with largest element x. For a subset S of a partially ordered set (P, \prec), let

$$
D(S, h)=\{p: p \in P, h(p) \geq h \text { and } p \preceq s \text { for at least one element } s \in S\}
$$

and

$$
U(S, h)=\{p: p \in P, h(p) \leq h \text { and } s \preceq p \text { for at least one element } s \in S\} .
$$

For a positive integer a and for a graph G on the vertex set $V=\{1, \ldots, m\}$, define the poset $P(a, G)$ on the ground set $\{(j, l): 1 \leq j \leq a$ and $1 \leq l \leq m\}$ by setting $\left(j_{1}, l_{1}\right) \prec\left(j_{2}, l_{2}\right)$
whenever $j_{2}=j_{1}+1$ and $\left(l_{1}, l_{2}\right)$ is an edge of G. For the sake of clarity, we slightly abuse notation by often referring to the ground set of $P(a, G)$ by $P(a, G)$. Let $P_{j}(a, G)=\{(j, l)$: $1 \leq l \leq m\}$, that is, $P_{j}(a, G)$ is the set of elements of $P(a, G)$ of height j.

The neighborhood $N(S)$ of a set S of vertices consists of those vertices that are adjacent to at least one vertex in S. A graph $G=(V, E)$ is an δ-expander if for every subset $S \subset V$ with $|S| \leq \frac{|V|}{2}$ satisfies $|N(S)| \geq(1+\delta)|S|$. Note that if G is a δ-expander with $\delta \geq 0$, then $|N(S)| \geq|V| / 2$ for every subset $S \subset V$ with $|S| \geq|V| / 2$.
Lemma 10 Let a, d, and Δ be positive integers, $0<\delta<1$, and $G=(V, E)$ be a δ-expander graph with $|V|>2 d$, maximum degree Δ, and such that for any two subsets $V_{1}, V_{2} \subset V$ of size at least d, there is an edge between a vertex of V_{1} and a vertex of V_{2}.

Then every element of $P(a, G)$ is comparable with at most $\frac{\Delta^{a}-1}{\Delta-1}$ other elements of $P(a, G)$, and if A and B are subsets of $P(a, G)$ such that $|A|=|B|>\frac{4(1+\delta)}{\delta} d$ and $A \perp B$, then there is a j such that

$$
\left|A \cap P_{j}(a, G)\right| \geq \frac{|A|}{4} \text { and }\left|B \cap P_{j}(a, G)\right| \geq \frac{|B|}{4}
$$

Proof: The proof of the fact that every element of $P(a, G)$ is comparable with at most $\frac{\Delta^{a}-1}{\Delta-1}$ elements follows by a straightforward counting argument that can be found in [10, Lemma $8]$.

Suppose that A and B are subsets of $P(a, G)$ such that $|A|=|B|>\frac{4(1+\delta)}{\delta} d$ and every element of A is incomparable with every element of B. We note that there is a j_{0} and there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right| \geq \frac{|B|}{2}$ such that either $h(x) \geq j_{0} \geq h(y)$ for all $x \in A^{\prime}$ and $y \in B^{\prime}$, or $h(x) \leq j_{0} \leq h(y)$ for all $x \in A^{\prime}$ and $y \in B^{\prime}$. Without loss of generality, we may assume that $h(x) \leq j_{0} \leq h(y)$ for all $x \in A^{\prime}$ and $y \in B^{\prime}$.

Assume for contradiction that $\left|A^{\prime} \cap P_{j_{0}}(a, G)\right|<\frac{|A|}{4}$ or $\left|B^{\prime} \cap P_{j_{0}}(a, G)\right|<\frac{|B|}{4}$. Without loss of generality, we may assume that $\left|B^{\prime} \cap P_{j_{0}}(a, G)\right|<\frac{|B|}{4}$. Since $A \perp B$, we know that $D\left(B, j_{0}+1\right) \perp U\left(A, j_{0}\right)$. Using the fact that G is a δ-expander, we have

$$
\left|D\left(B, j_{0}+1\right) \cap P_{h}(a, G)\right| \geq \min \left((1+\delta)\left|D\left(B, j_{0}+1\right) \cap P_{h+1}(a, G)\right|, \frac{|V|}{2}\right)
$$

for every h satisfying $j_{0}+1 \leq h \leq a$. Therefore,

$$
\frac{|V|}{2} \leq\left|P_{j_{0}+1}(a, G) \cap D\left(B, j_{0}+1\right)\right|
$$

or

$$
\begin{aligned}
& \frac{|B|}{4} \leq\left|B^{\prime}\right|-\left|B^{\prime} \cap P_{j_{0}}(a, G)\right| \leq\left|D\left(B, j_{0}+1\right)\right|=\sum_{1 \leq i \leq a-j_{0}}\left|P_{j_{0}+i}(a, G) \cap D\left(B, j_{0}+1\right)\right| \\
& \leq \sum_{1 \leq i \leq a-j_{0}}(1+\delta)^{1-i}\left|P_{j_{0}+1}(a, G) \cap D\left(B, j_{0}+1\right)\right| \leq \frac{1+\delta}{\delta}\left|P_{j_{0}+1}(a, G) \cap D\left(B, j_{0}+1\right)\right| .
\end{aligned}
$$

Let $V_{1} \subset V$ be defined by $V_{1}=\left\{l: l \in V\right.$ and $\left.\left(j_{0}, l\right) \in U\left(A, j_{0}\right)\right\}$, and let $V_{2} \subset V$ be defined by $V_{2}=\left\{l: l \in V\right.$ and $\left.\left(j_{0}+1, l\right) \in D\left(B, j_{0}+1\right)\right\}$. By the above discussion, $\left.\left|V_{2}\right| \geq \min \left(\frac{|V|}{2}, \frac{\delta}{4(1+\delta)}|A|\right)\right)$. Since $\left|V_{1}\right| \geq\left|A^{\prime} \cap P_{j_{0}}(a, G)\right|$, the same argument shows that

$$
\left.\left.\left|V_{1}\right| \geq \min \left(\frac{|A|}{4}, \frac{|V|}{2}, \frac{\delta}{4(1+\delta)}|A|\right)\right) \geq \min \left(\frac{|V|}{2}, \frac{\delta}{4(1+\delta)}|A|\right)\right)
$$

Notice that there are no edges between elements of V_{1} and elements of V_{2} and $\min \left(V_{1}, V_{2}\right) \geq$ $\min \left(\frac{|V|}{2}, \frac{\delta}{4(1+\delta)}|A|\right)$. This contradicts the assumptions that $|V|>2 d,|A|=|B|>\frac{4(1+\delta)}{\delta} d$, and there is an edge between any pair of subsets of V of size at least d.

As usual, the random graph $G(n, p)$ is the probability space of labeled graphs on n vertices, where every edge appears independently and with probability p.

Proof of Theorem 4: We prove Theorem 4 by induction on r. The case $r=1$ was handled in the paper [10]. Our induction hypothesis is that for $r>1$ and $0<\epsilon<1$ there is a constant $C(r-1, \epsilon)$ such that for every sufficiently large positive integer m, there is a set V on m elements and there are $r-1$ partial orders $<_{1}, \ldots,<_{r-1}$ on V with the property that for any $i \leq r-1$, no element of V is comparable with m^{ϵ} other elements of V by $<_{i}$, and for any pair $A, B \subset V$ of disjoint subsets with $|A|=|B|>C(r-1, \epsilon) m(\log m)^{1-r}(\log \log m)^{r-2}$, there is an index $j \leq r-1$ and elements $x \in A$ and $y \in B$ such that either $x<_{j} y$ or $y<_{j} x$.

It is an easy computational exercise to show that $G\left(m,(\log m)^{2 r} / m\right)$ has, with probability tending to 1 as $m \rightarrow \infty$, the following three properties:
(1) It is a $1 / 2$-expander graph.
(2) It has maximum degree less than $(\log m)^{4 r}$.
(3) For any pair A, B of disjoint vertex subsets, each of cardinality greater than $m /(\log m)^{r}$, there is an edge between a vertex of A and a vertex of B.
Let n be a sufficiently large positive integer. Let $a=\left\lfloor\frac{\epsilon \log n}{4 r \log \log n}\right\rfloor$ and $m=\lceil n / a\rceil$. Let $G=(V, E)$ be a graph on m vertices satisfying conditions (1)-(3) with G in place of $G\left(m,(\log m)^{2 r} / m\right)$. Let P consist of the $a m$ elements of $P(a, G)$, and let $<_{r}$ be the partial order on $P(a, G)$. By Lemma 10, every element of $P(a, G)$ is comparable with at most $\left((\log m)^{4 r}\right)^{a}<n^{\epsilon}$ other elements of $P(a, G)$. Also by Lemma 10 with $\delta=1 / 2$ and $d=\frac{m}{(\log m)^{r}}$, if A and B are subsets of P with $|A|=|B|>12 m /(\log m)^{r}$ such that every element of A is incomparable with every element of B with respect to $<_{r}$, then there is $j \leq a$ such that $\left|P_{j}(a, G) \cap A\right| \geq \frac{|A|}{4}$ and $\left|P_{j}(a, G) \cap B\right| \geq \frac{|B|}{4}$.

Let $\prec_{1}, \ldots, \prec_{r-1}$ be partial orders on the set V such that for each $i \leq r-1$, no element of V is comparable with m^{ϵ} other elements of V by partial order \prec_{i}, and for each pair A and B of disjoint subsets of V with $|A|=|B|>C(r-1, \epsilon) \frac{m(\log \log m)^{r-2}}{(\log m)^{r-1}}$, there is $j \leq r-1$ and there are elements $x \in A$ and $y \in B$ such that either $x \prec_{j} y$ or $y \prec_{j} x$.

Define the partial orders $<_{1}, \ldots,<_{r-1}$ on the set P by $\left(j_{1}, l_{1}\right)<_{i}\left(j_{2}, l_{2}\right)$ if and only if $j_{1}=j_{2}$ and $l_{1} \prec_{i} l_{2}$. So for each $i \leq r-1$, no element of P is comparable with $m^{\epsilon}<n^{\epsilon}$ other elements of P by $<_{i}$.

Let $C(r, \epsilon)=\frac{32 r}{\epsilon} C(r-1, \epsilon)$. Assume for contradiction that there exist disjoint subsets
$A, B \subset P$ with $|A|=|B|>C(r, \epsilon) n \frac{(\log \log n)^{r-1}}{(\log n)^{r}}$ such that every element of A is incomparable with every element of B by the partial orders $<_{1}, \ldots,<_{r}$. By Lemma 10 (as explained above), it follows that there are disjoint subsets $V_{1}, V_{2} \subset V$ with $\left|V_{1}\right|=\left|V_{2}\right| \geq \frac{|A|}{4}$ such that every element of V_{1} is incomparable with every element of V_{2} by the partial orders $\prec_{1}, \ldots, \prec_{r-1}$. By the induction hypothesis, for n sufficiently large, we have

$$
\begin{aligned}
&\left|V_{1}\right| \leq C(r-1, \epsilon) m \frac{(\log \log m)^{r-2}}{(\log m)^{r-1}}<C(r-1, \epsilon)\lceil n / a\rceil \frac{(\log \log n)^{r-2}}{(\log n)^{r-1}} \\
& \leq \frac{8 r}{\epsilon} C(r-1, \epsilon) n \frac{(\log \log n)^{r-1}}{(\log n)^{r}} \leq \frac{|A|}{4} \leq\left|V_{1}\right|
\end{aligned}
$$

a contradiction.

4 Concluding remarks

Intersection patterns of convex sets in the plane. By "filling out" every member of a finite family of vertically convex sets in the plane with a sufficiently fine x-monotone curve, one can obtain a family of x-monotone curves with the same intersection graph. Thus, instead of intersection graphs of vertically convex sets, we may restrict our attention to intersection graphs of x-monotone curves. It was proved in [11] that there is a positive constant c such that every n-member collection C of x-monotone curves in the plane contains subcollections A, B such that either $|A|=|B|>c n$ and every curve in A is disjoint from every curve in B, or $|A|=|B|>c n / \log n$ and every curve in A intersects every curve in B. Hence, it follows that the same is true for intersection graphs of vertically convex sets in the plane. This result is tight up to a constant factor [20].

We can further strengthen Corollary 5 if the sets are convex (and not just vertically convex). It was proved in [11] that there is a positive constant c such that every collection C of $n>1$ convex sets in the plane contains subcollections A, B with $|A|=|B|>c n$ with the property that every convex set in A is disjoint from every convex set in B, or every convex set in A intersects every convex set in B. A similar result was obtained in [12] for collections of curves in the plane with any pair intersecting in a bounded number of points.

Erdős-Hajnal-type results. We say that a class of graphs \mathcal{G} has the Erdős-Hajnal property if it is closed under taking induced subgraphs and there exists an $\epsilon>0$ such that every member $G \in \mathcal{G}$ has either a complete subgraph or an independent set of size at least $|V(G)|^{\epsilon}$. According to a well known conjecture of Erdős and Hajnal [6], for any graph H, the class of graphs containing no induced subgraph isomorphic to H has the Erdős-Hajnal property. The combinatorial core of the proof of Theorem 1 in [17] is the following simple statement: For every $\epsilon>0$ and for every positive integer r, there is a $\delta=\delta(\epsilon, r)>0$ such that, if $\mathcal{F}_{i}(1 \leq i \leq r)$ are families of graphs that have the Erdős-Hajnal property with exponent $\epsilon>0$, then the class of all graphs that can be obtained as $\cup_{1 \leq i \leq r} F_{i}$ for some $F_{i} \in \mathcal{F}_{i}(1 \leq$ $i \leq r$), also has the Erdős-Hajnal property, with the exponent δ. Moreover, for any such
graph $F=\cup_{1 \leq i \leq r} F_{i}$, there is a subset $U \subset V(F)$ with $|U| \geq|V(F)|^{\delta}$ such that U induces either a complete subgraph in some F_{i} or an independent set in all $F_{i} \mathrm{~s}$ (and hence in F). It is easy to see that here $\delta(\epsilon, r)$ can be taken to be ϵ^{r}.

We say that a class of graphs has the strong Erdős-Hajnal property if it is closed under taking induced subgraphs and there exists an $\epsilon>0$ such that for every member $G \in \mathcal{G}$ that has at least two vertices, either G or its complement \bar{G} has a complete bipartite subgraph with at least $\epsilon|V(G)|$ vertices in each of its classes. It was shown in [2] that the strong Erdős-Hajnal property implies the Erdős-Hajnal property.

Theorem 8 has the following immediate corollary that can be regarded as a bipartite version of the above statement from [17].
Corollary 11 For every $\epsilon>0$ and for every positive integer r, there is a $\gamma=\gamma(\epsilon, r)>0$ such that, if $\mathcal{F}_{i}(1 \leq i \leq r)$ are families of graphs that have the strong Erdős-Hajnal property with parameter $\epsilon>0$, then the class of all graphs that can be obtained as $\cup_{1 \leq i \leq r} F_{i}$ for some $F_{i} \in \mathcal{F}_{i}(1 \leq i \leq r)$, also has the strong Erdős-Hajnal property, with the parameter γ.

Moreover, for any such graph $F=\cup_{1 \leq i \leq r} F_{i}$, there are disjoint subsets $U_{1}, U_{2} \subset V(F)$ with $\left|U_{1}\right|,\left|U_{2}\right| \geq \gamma|V(F)|$ such that either there is an index $i(1 \leq i \leq r)$ such that every vertex of U_{1} is adjacent to every vertex of U_{2} in F_{i}, or no vertex of U_{1} is adjacent to any vertex of U_{2} in F.

By Theorem $8, \gamma(\epsilon, r)$ can be taken to be $2^{-\left(3+\log \frac{1}{\epsilon}\right)^{r}}$.

5 Acknowledgements

The authors would like to thank Rados Radoičić and Csaba Tóth for interesting discussions on the topic.

References

[1] P. K. Agarwal and N. H. Mustafa, Independent set of intersection graphs of convex objects in 2D. Comput. Geom. 34 (2006), 83-95.
[2] N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir, Crossing patterns of semi-algebraic sets. J. Combin. Theory Ser. A 111 (2005) 310-326.
[3] A. Benczúr, A. András, J. Förster, and Z. Király, Dilworth's theorem and its application for path systems of a cycle - implementation and analysis. Algorithms-ESA '99 (Prague), 498-509, Lecture Notes in Comput. Sci., 1643, Springer, Berlin, 1999.
[4] R. P. Dilworth, A decomposition theorem for partially ordered sets. Ann. of Math. (2) 51 (1950) 161-166.
[5] A. Dumitrescu and G. Tóth, Ramsey-type results for unions of comparability graphs. Graphs Combin. 18 (2002) 245-251.
[6] P. Erdős and A. Hajnal, Ramsey-type theorems. Discrete Appl. Math. 25 (1989) 37-52.
[7] P. Erdős, A. Hajnal, and J. Pach, Ramsey-type theorem for bipartite graphs. Geombinatorics 10 (2000) 64-68.
[8] P. Erdős and J. Komlós, On a problem of Moser. Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969), pp. 365-367. North-Holland, Amsterdam, 1970.
[9] P. Erdős and G. Szekeres, A combinatorial problem in geometry. Compositio Mathematica 2 (1935) 463-470.
[10] J. Fox, A bipartite analogue of Dilworth's theorem. Order 23 (2006) 197-209.
[11] J. Fox, J. Pach, and C. Tóth, Turán-type results for partial orders and intersection graphs of convex sets, submitted.
[12] J. Fox, J. Pach, and C. Tóth, Intersection patterns of curves, submitted.
[13] I. Gessel and G.-C. Rota (ed.), Classic papers in combinatorics. Birkhäuser Boston, Inc., Boston, MA, 1987.
[14] M. C. Golumbic, D. Rotem, and J. Urrutia, Comparability graphs and intersection graphs. Discrete Math. 43 (1983), 37-46.
[15] C. Greene and D. J. Kleitman, The structure of Sperner k-families. J. Combinatorial Theory Ser. A 20 (1976) 41-68.
[16] Gy. Károlyi, J. Pach, and G. Tóth, Ramsey-type results for geometric graphs, I. Discrete and Computational Geometry 18 (1997) 247-255.
[17] D. Larman, J. Matoušek, J. Pach, and J. Törőcsik, A Ramsey-type result for convex sets. Bull. London Math. Soc. 26 (1994) 132-136.
[18] J. Matoušek and E. Welzl, Good splitters for counting points in triangles. J. Algorithms 13 (1992) 307-319.
[19] J. Pach and G. Tóth, Comments on Fox News. Geombinatorics 15 (2006) 150-154.
[20] J. Pach and J. Törőcsik, Some geometric applications of Dilworth's theorem. Discrete Comput. Geom. 12 (1994) 1-7.
[21] H. Tietze, Über das Problem der Nachbargeibiete im Raum, Monatshefte Math. 16 (1905) 211-216.
[22] G. Tóth, Note on geometric graphs. J. Combin. Theory Ser. A 89 (2000) 126-132.
[23] W. T. Trotter, Combinatorics and partially ordered sets. Dimension theory. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 1992.

[^0]: Email addresses: jacobfox@math.princeton.edu (Jacob Fox), pach@cims.nyu.edu (János Pach).
 ${ }^{1}$ supported by an NSF Graduate Research Fellowship and a Princeton Centennial Fellowship.
 ${ }^{2}$ Supported by NSF Grant CCF-05-14079, and by grants from NSA, PSC-CUNY, Hungarian Research Foundation OTKA, and BSF.

