A SHORT PROOF OF THE MULTIDIMENSIONAL SZEMERÉDI THEOREM IN THE PRIMES

JACOB FOX AND YUFEI ZHAO

Abstract

Tao conjectured that every dense subset of \mathcal{P}^{d}, the d-tuples of primes, contains constellations of any given shape. This was very recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler. Here we give a simple proof using the Green-Tao theorem on linear equations in primes and the Furstenberg-Katznelson multidimensional Szemerédi theorem.

Let \mathcal{P}_{N} denote the set of primes at most N, and let $[N]:=\{1,2, \ldots, N\}$. Tao [12] conjectured the following result as a natural extension of the Green-Tao theorem [7] on arithmetic progressions in the primes and the Furstenberg-Katznelson [6] multidimensional generalization of Szemerédi's theorem. Special cases of this conjecture were proven in [4] and [11]. The conjecture was very recently resolved by Cook, Magyar, and Titichetrakun [5] and independently by Tao and Ziegler [13].

Theorem 1. Let d be a positive integer, $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$, and $\delta>0$. Then, if N is sufficiently large, every subset A of \mathcal{P}_{N}^{d} of cardinality $|A| \geq \delta\left|\mathcal{P}_{N}\right|^{d}$ contains a set of the form $a+t v_{1}, \ldots, a+t v_{k}$, where $a \in \mathbb{Z}^{d}$ and t is a positive integer.

In this note we give a short alternative proof of the theorem, using the landmark result of Green and Tao [8] (which is conditional on results later proved in [9] and with Ziegler in [10]) on the asymptotics for the number of primes satisfying certain systems of linear equations, as well as the following multidimensional generalization of Szemerédi's theorem established by Furstenberg and Katznelson [6].

Theorem 2 (Multidimensional Szemerédi theorem [6]). Let d be a positive integer, $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{d}$, and $\delta>0$. If N is sufficiently large, then every subset A of $[N]^{d}$ of cardinality $|A| \geq \delta N^{d}$ contains a set of the form $a+t v_{1}, \ldots, a+t v_{k}$, where $a \in \mathbb{Z}^{d}$ and t is a positive integer.

To prove Theorem 1, we begin by fixing $d, v_{1}, \ldots, v_{k}, \delta$. Using Theorem 2, we can fix a large integer $m>2 d / \delta$ so that any subset of $[m]^{d}$ with at least $\delta m^{d} / 2$ elements contains a set of the form $a+t v_{1}, \ldots, a+t v_{k}$, where $a \in \mathbb{Z}^{d}$ and t is a positive integer.

We next discuss a sketch of the proof idea. The Green-Tao theorem [7] (also see [3] for some recent simplifications) states that there are arbitrarily long arithmetic progressions in the primes. It follows that for N large, \mathcal{P}_{N}^{d} contains homothetic copies of $[m]^{d}$. We use a Varnavides-type argument [14] and consider a random homothetic copy of the grid $[m]^{d}$ inside \mathcal{P}_{N}^{d}. In expectation, the set A should occupy at least a $\delta / 2$ fraction of the random homothetic copy of $[m]^{d}$. This follows from a linearity of expectation argument. Indeed, the Green-Tao-Ziegler result [8, 9, 10] and a second moment argument imply that most points of \mathcal{P}_{N}^{d} appear in about the expected number of such copies of the grid $[m]^{d}$. Once we find a homothetic copy of $[m]^{d}$ containing at least $\delta m^{d} / 2$ elements of A, we obtain by Theorem 2 a subset of A of the form $a+t v_{1}, \ldots, a+t v_{k}$, as desired.

To make the above idea actually work, we first apply the W-trick as described below. This is done to avoid certain biases in the primes. We also only consider homothetic copies of $[m]^{d}$ with

[^0]common difference $r \leq N / m^{2}$ in order to guarantee that almost all elements of \mathcal{P}_{N}^{d} are in about the same number of such homothetic copies of $[m]^{d}$.

Remarks. This argument also produces a relative multidimensional Szemerédi theorem, where the complexity of the linear forms condition on the majorizing measure depends on d, v_{1}, \ldots, v_{k} and δ. It seems plausible that the dependence on δ is unnecessary; this was shown for the one-dimensional case in [3]. Our arguments share some similarities with those of Tao and Ziegler [13], who also use the results in $[8,9,10]$. However, the proof in [13] first establishes a relativized version of the Furstenberg correspondence principle and then proceeds in the ergodic theoretic setting, whereas we go directly to the multidimensional Szemerédi theorem. Cook, Magyar, and Titichetrakun [5] take a different approach and develop a relative hypergraph removal lemma from scratch, and they also require a linear forms condition whose complexity depend on δ.

Conditional on a certain polynomial extension of the Green-Tao-Ziegler result (c.f. the BatemanHorn conjecture [1]), one can also combine this sampling argument with the polynomial extension of Szemerédi's theorem by Bergelson and Leibman [2] to obtain a polynomial extension of Theorem 1.

The hypothesis that $|A| \geq \delta\left|\mathcal{P}_{N}\right|^{d}$ implies that

$$
\begin{equation*}
\sum_{n_{1}, \ldots, n_{d} \in[N]} 1_{A}\left(n_{1}, \ldots, n_{d}\right) \Lambda^{\prime}\left(n_{1}\right) \cdots \Lambda^{\prime}\left(n_{d}\right) \geq(\delta-o(1)) N^{d} \tag{1}
\end{equation*}
$$

where 1_{A} is the indicator function of A, and $o(1)$ denotes some quantity that goes to zero as $N \rightarrow \infty$, and $\Lambda^{\prime}(p)=\log p$ for prime p and $\Lambda^{\prime}(n)=0$ for nonprime n.

Next we apply the W-trick [8, §5]. Fix some slowly growing function $w=w(N)$; the choice $w:=\log \log \log N$ will do. Define $W:=\prod_{p \leq w} p$ to be the product of all primes at most w. For each $b \in[W]$ with $\operatorname{gcd}(b, W)=1$, define

$$
\Lambda_{b, W}^{\prime}(n):=\frac{\phi(W)}{W} \Lambda^{\prime}(W n+b)
$$

where $\phi(W)=\#\{b \in[W]: \operatorname{gcd}(b, W)=1\}$ is the Euler totient function. Also define

$$
1_{A_{b_{1}, \ldots, b_{d}, W}}\left(n_{1}, \ldots, n_{d}\right):=1_{A}\left(W n_{1}+b_{1}, \ldots, W n_{d}+b_{d}\right) .
$$

By (1) and the pigeonhole principle, we can choose $b_{1}, \ldots, b_{d} \in[W]$ all coprime to W so that

$$
\begin{equation*}
\sum_{1 \leq n_{1}, \ldots, n_{d} \leq N / W} 1_{A_{b_{1}, \ldots, b_{d}, W}}\left(n_{1}, \ldots, n_{d}\right) \Lambda_{b_{1}, W}^{\prime}(n) \Lambda_{b_{2}, W}^{\prime}(n) \cdots \Lambda_{b_{d}, W}^{\prime}(n) \geq(\delta-o(1))\left(\frac{N}{W}\right)^{d} \tag{2}
\end{equation*}
$$

We shall write

$$
\widetilde{N}:=\lfloor N / W\rfloor, \quad R:=\left\lfloor\tilde{N} / m^{2}\right\rfloor, \quad \widetilde{A}:=1_{A_{b_{1}, \ldots, b_{d}, W}} \quad \text { and } \quad \widetilde{\Lambda}_{j}:=\Lambda_{b_{j}, W}^{\prime}
$$

(all depending on N). So (2) reads

$$
\begin{equation*}
\sum_{n_{1}, \ldots, n_{d} \in[\widetilde{N}]} \widetilde{A}\left(n_{1}, \ldots, n_{d}\right) \widetilde{\Lambda}_{1}\left(n_{1}\right) \widetilde{\Lambda}_{2}\left(n_{2}\right) \cdots \widetilde{\Lambda}_{d}\left(n_{d}\right) \geq(\delta-o(1)) \widetilde{N}^{d} \tag{3}
\end{equation*}
$$

The Green-Tao result [8] (along with $[9,10]$) says that $\Lambda_{b_{j}, W}^{\prime}$ acts pseudorandomly with average value about 1 in terms of counts of linear forms. The statement below is an easy corollary of $[8$, Thm. 5.1].

Theorem 3 (Pseudorandomness of the W-tricked primes). Fix a linear map $\Psi=\left(\psi_{1}, \ldots, \psi_{t}\right)$: $\mathbb{Z}^{d} \rightarrow \mathbb{Z}^{t}$ (in particular $\Psi(0)=0$) where no two ψ_{i}, ψ_{j} are linearly dependent. Let $K \subseteq[-\widetilde{N}, \widetilde{N}]^{d}$ be any convex body. Then, for any $b_{1}, \ldots, b_{t} \in[W]$ all coprime to W, we have

$$
\sum_{n \in K \cap \mathbb{Z}^{d}} \prod_{j \in[t]} \Lambda_{b_{j}, W}^{\prime}\left(\psi_{j}(n)\right)=\#\left\{n \in K \cap \mathbb{Z}^{d}: \psi_{j}(n)>0 \forall j\right\}+o\left(\widetilde{N}^{d}\right) .
$$

where $o\left(\tilde{N}^{d}\right):=o(1) \tilde{N}^{d}$. Note that the error term does not depend on b_{1}, \ldots, b_{t} (although it does depend on $\Psi)$.

The next lemma shows that A in expectation contains a considerable fraction of a random homothetic copy of $[m]^{d}$ with common difference at most $R=\left\lfloor N / m^{2}\right\rfloor$ in the W-tricked subgrid of \mathcal{P}_{N}^{d}.

Lemma 4. If \widetilde{A} satisfies (3), then

$$
\begin{array}{r}
\sum_{\substack{n_{1}, \ldots, n_{d} \in[\widetilde{N}] \\
r \in[R]}}\left(\sum_{\substack{i_{1}, \ldots, i_{d} \in[m]}} \widetilde{A}\left(n_{1}+i_{1} r, \ldots, n_{d}+i_{d} r\right)\right) \\
\prod_{j \in[d]} \prod_{i \in[m]} \widetilde{\Lambda}_{j}\left(n_{j}+i r\right) \tag{4}\\
\geq\left(\delta m^{d}-d m^{d-1}-o(1)\right) R \widetilde{N}^{d}
\end{array}
$$

Proof of Theorem 1 (assuming Lemma 4). By Theorem 3 we have

$$
\sum_{\substack{n_{1}, \ldots, n_{d} \in[\widetilde{N}] \\ r \in[R]}} \prod_{j \in[d]} \prod_{i \in[m]} \widetilde{\Lambda}_{j}\left(n_{j}+i r\right)=(1+o(1)) R \widetilde{N}^{d}
$$

So by (4), for sufficiently large N, there exists some choice of $n_{1}, \ldots, n_{d} \in[\widetilde{N}]$ and $r \in[R]$ so that

$$
\sum_{i_{1}, \ldots, i_{d} \in[m]} \widetilde{A}\left(n_{1}+i_{1} r, \ldots, n_{d}+i_{d} r\right) \geq \frac{1}{2} \delta m^{d}
$$

This means that a certain dilation of the grid $[m]^{d}$ contains at least $\delta m^{d} / 2$ elements of A, from which it follows by the choice of m that it must contain a set of the form $a+t v_{1}, \ldots, a+t v_{k}$.

Lemma 4 follows from the next lemma by summing over all choices of $i_{1}, \ldots, i_{d} \in[m]$.
Lemma 5. Suppose \widetilde{A} satisfies (3). Fix $i_{1}, \ldots, i_{d} \in[m]$. Then we have

$$
\begin{equation*}
\sum_{\substack{n_{1}, \ldots, n_{d} \in[\widetilde{N}] \\ r \in[R]}} \widetilde{A}\left(n_{1}+i_{1} r, \ldots, n_{d}+i_{d} r\right) \prod_{j \in[d]} \prod_{i \in[m]} \widetilde{\Lambda}_{j}\left(n_{j}+i r\right) \geq\left(\delta-\frac{d}{m}-o(1)\right) R \widetilde{N}^{d} \tag{5}
\end{equation*}
$$

Proof. By a change of variables $n_{j}^{\prime}=n_{j}+i_{j} r$ for each j, we write the LHS of (5) as

$$
\begin{equation*}
\sum_{\substack{r \in[R]\\}} \sum_{\substack{n_{1}^{\prime}, \ldots, n_{d}^{\prime} \in \mathbb{Z} \\ n_{j}^{\prime}-i_{j} r \in[\widetilde{N}] \forall j}} \widetilde{A}\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right) \prod_{j \in[d]} \prod_{i \in[m]} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}+\left(i-i_{j}\right) r\right) \tag{6}
\end{equation*}
$$

Note that (6) is at least

$$
\begin{equation*}
\sum_{r \in[R]} \sum_{\tilde{N} / m<n_{1}^{\prime}, \ldots, n_{d}^{\prime} \leq \tilde{N}} \widetilde{A}\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right) \prod_{j \in[d]} \prod_{i \in[m]} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}+\left(i-i_{j}\right) r\right) \tag{7}
\end{equation*}
$$

By (3) and Theorem 3 we have

$$
\begin{equation*}
\sum_{\widetilde{N} / m<n_{1}, \ldots, n_{d} \leq \widetilde{N}} \widetilde{A}\left(n_{1}, \ldots, n_{d}\right) \widetilde{\Lambda}_{1}\left(n_{1}\right) \widetilde{\Lambda}_{2}\left(n_{2}\right) \cdots \widetilde{\Lambda}_{d}\left(n_{d}\right) \geq\left(\delta-\frac{d}{m}-o(1)\right) \widetilde{N}^{d} \tag{8}
\end{equation*}
$$

(the difference between the left-hand side sums of (3) and (8) consists of terms with $\left(n_{1}, \ldots, n_{d}\right)$ in some box of the form $[\tilde{N}]^{j-1} \times[\widetilde{N} / m] \times[\tilde{N}]^{d-j}$, which can be upper bounded by using $\widetilde{A} \leq 1$, applying Theorem 3, and then taking the union bound over $j \in[d])$. It remains to show that

$$
(7)-R \cdot(\text { LHS of }(8))=o\left(\tilde{N}^{d+1}\right)
$$

We have
(7) $-R \cdot($ LHS of $(8))$

$$
\begin{aligned}
& =\sum_{\substack{\tilde{N} / m<n_{1}^{\prime}, \ldots, n_{d}^{\prime} \leq \widetilde{N} \\
r \in[R]}} \widetilde{A}\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right)\left(\prod_{j \in[d]} \prod_{i \in[m]} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}+\left(i-i_{j}\right) r\right)-\prod_{j \in[d]} \widetilde{\Lambda}_{j}\left(n_{j}\right)\right) \\
& =\sum_{\tilde{N} / m<n_{1}^{\prime}, \ldots, n_{d}^{\prime} \leq \widetilde{N}} \widetilde{A}\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right)\left(\prod_{j \in[d]} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}\right)\right)\left(\sum_{r \in[R]}\left(\prod_{j \in[d]]} \prod_{i \in[m] \backslash\left\{i_{j}\right\}} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}+\left(i-i_{j}\right) r\right)-1\right)\right) .
\end{aligned}
$$

By the Cauchy-Schwarz inequality and $0 \leq \widetilde{A} \leq 1$, the above expression can be bounded in absolute value by $\sqrt{S T}$, where

$$
\begin{aligned}
S & =\sum_{\tilde{N} / m<n_{1}^{\prime}, \ldots, n_{d}^{\prime} \leq \tilde{N}}\left(\prod_{j \in[d]} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}\right)\right)\left(\sum_{r \in[R]}\left(\prod_{j \in[d]} \prod_{i \in[m] \backslash\left\{i_{j}\right\}} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}+\left(i-i_{j}\right) r\right)-1\right)\right)^{2} \\
T & =\sum_{\tilde{N} / m<n_{1}^{\prime}, \ldots, n_{d}^{\prime} \leq \tilde{N}} \prod_{j \in[d]} \widetilde{\Lambda}_{j}\left(n_{j}^{\prime}\right) .
\end{aligned}
$$

By Theorem 3 we have $S=o\left(\widetilde{N}^{d+2}\right)$ (to see this, expand the square, apply Theorem 3, and observe the cancellations) and $T=O\left(\widetilde{N}^{d}\right)$, so that $\sqrt{S T}=o\left(\widetilde{N}^{d+1}\right)$, as desired.

Acknowledgment. We thank David Conlon, Ben Green, and Terry Tao for helpful comments.

References

[1] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363-367.
[2] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerdi's theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725-753.
[3] D. Conlon, J. Fox, and Y. Zhao, A relative Szemerédi theorem, arXiv:1305.5440.
[4] B. Cook, A. Magyar, Constellations in \mathbb{P}^{d}, Int. Math. Res. Not. IMRN 2012 (2012), no. 12, 2794-2816.
[5] B. Cook, A. Magyar, and T. Titichetrakun, A multidimensional Szemerédi theorem in the primes, arXiv:1306.3025.
[6] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291.
[7] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167 (2008), no. 2, 481-547.
[8] , Linear equations in primes, Ann. of Math. 171 (2010), no. 3, 1753-1850.
[9] , The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. 175 (2012), no. 2, 541-566.
[10] B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm, Ann. of Math. 176 (2012), no. 2, 1231-1372.
[11] A. Magyar, and T. Titichetrakun, Corners in dense subsets of \mathbb{P}^{d}, arXiv:1306.3026.
[12] T. Tao, The Gaussian primes contain arbitrarily shaped constellations, J. Anal. Math. 99 (2006), 109-176.
[13] T. Tao and T. Ziegler, A multi-dimensional Szemerédi theorem for the primes via a correspondence principle, arXiv:1306.2886.
[14] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358-360.

[^1]
[^0]: The first author was supported by a Simons Fellowship, NSF grant DMS-1069197, by an Alfred P. Sloan Fellowship, and by an MIT NEC Corporation Fund Award, and the second author was supported by an internship at Microsoft Research New England.

[^1]: Department of Mathematics, MIT, Cambridge, MA 02139-4307
 E-mail address: fox@math.mit.edu
 Department of Mathematics, MIT, Cambridge, MA 02139-4307
 E-mail address: yufeiz@math.mit.edu

