A SHORT PROOF OF THE
MULTIDIMENSIONAL SZEMEREDI THEOREM IN THE PRIMES

JACOB FOX AND YUFEI ZHAO

ABSTRACT. Tao conjectured that every dense subset of P%, the d-tuples of primes, contains con-
stellations of any given shape. This was very recently proved by Cook, Magyar, and Titichetrakun
and independently by Tao and Ziegler. Here we give a simple proof using the Green-Tao theorem on
linear equations in primes and the Furstenberg-Katznelson multidimensional Szemerédi theorem.

Let Py denote the set of primes at most NV, and let [N] := {1,2,..., N}. Tao [12] conjectured the
following result as a natural extension of the Green-Tao theorem [7] on arithmetic progressions in the
primes and the Furstenberg-Katznelson [6] multidimensional generalization of Szemerédi’s theorem.
Special cases of this conjecture were proven in [4] and [11]. The conjecture was very recently resolved
by Cook, Magyar, and Titichetrakun [5] and independently by Tao and Ziegler [13].

Theorem 1. Let d be a positive integer, v1, ..., v, € Z%, and 6 > 0. Then, if N is sufficiently large,
every subset A of P of cardinality |A| > & |77N|d contains a set of the form a + tvy,...,a + tug,
where a € Z% and t is a positive integer.

In this note we give a short alternative proof of the theorem, using the landmark result of Green
and Tao [8] (which is conditional on results later proved in [9] and with Ziegler in [10]) on the
asymptotics for the number of primes satisfying certain systems of linear equations, as well as the
following multidimensional generalization of Szemerédi’s theorem established by Furstenberg and
Katznelson [6].

Theorem 2 (Multidimensional Szemerédi theorem [6]). Let d be a positive integer, vy, ..., v € Z4,
and § > 0. If N is sufficiently large, then every subset A of [N]¢ of cardinality |A| > 6N? contains
a set of the form a + tvy,...,a+ tvy, where a € Z¢ and t is a positive integer.

To prove Theorem 1, we begin by fixing d,v1,...,vg,d. Using Theorem 2, we can fix a large
integer m > 2d/§ so that any subset of [m]? with at least dm?/2 elements contains a set of the
form a + tvq, ..., a + tv,, where a € Z% and ¢ is a positive integer.

We next discuss a sketch of the proof idea. The Green-Tao theorem [7] (also see [3] for some
recent simplifications) states that there are arbitrarily long arithmetic progressions in the primes.
It follows that for N large, 77]‘6 contains homothetic copies of [m]?. We use a Varnavides-type
argument [14] and consider a random homothetic copy of the grid [m]? inside P%. In expectation,
the set A should occupy at least a §/2 fraction of the random homothetic copy of [m]?. This
follows from a linearity of expectation argument. Indeed, the Green-Tao-Ziegler result [8, 9, 10]
and a second moment argument imply that most points of P]C\l, appear in about the expected number
of such copies of the grid [m]¢. Once we find a homothetic copy of [m]¢ containing at least m?/2
elements of A, we obtain by Theorem 2 a subset of A of the form a + tvy,...,a + tvg, as desired.

To make the above idea actually work, we first apply the W-trick as described below. This is
done to avoid certain biases in the primes. We also only consider homothetic copies of [m]¢ with
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common difference r < N/m? in order to guarantee that almost all elements of P% are in about

the same number of such homothetic copies of [m]?.

Remarks. This argument also produces a relative multidimensional Szemerédi theorem, where the
complexity of the linear forms condition on the majorizing measure depends on d,v1,..., v and J.
It seems plausible that the dependence on § is unnecessary; this was shown for the one-dimensional
case in [3]. Our arguments share some similarities with those of Tao and Ziegler [13], who also
use the results in [8, 9, 10]. However, the proof in [13] first establishes a relativized version of the
Furstenberg correspondence principle and then proceeds in the ergodic theoretic setting, whereas
we go directly to the multidimensional Szemerédi theorem. Cook, Magyar, and Titichetrakun [5]
take a different approach and develop a relative hypergraph removal lemma from scratch, and they
also require a linear forms condition whose complexity depend on 4.

Conditional on a certain polynomial extension of the Green-Tao-Ziegler result (c.f. the Bateman-
Horn conjecture [1]), one can also combine this sampling argument with the polynomial extension of
Szemerédi’s theorem by Bergelson and Leibman [2] to obtain a polynomial extension of Theorem 1.

The hypothesis that |A| > §|Py|? implies that
S a(nn o)A () - Nng) > (6 - o(1))NY, 1)

where 14 is the indicator function of A, and o(1) denotes some quantity that goes to zero as N — oo,
and A’(p) = log p for prime p and A’(n) = 0 for nonprime n.

Next we apply the W-trick [8, §5]. Fix some slowly growing function w = w(N); the choice
w := logloglog N will do. Define W := Hpgwp to be the product of all primes at most w. For
each b € [W] with ged(b, W) = 1, define

w
ng(n) = gb(I/V)A’(Wn +b)
where ¢p(W) = #{b € [W]: ged(b, W) = 1} is the Euler totient function. Also define

1Ab1 ,,,,, bd,W(n17 o ,nd) = 1A(Wn1 +b1,...,Wng+ bd).
By (1) and the pigeonhole principle, we can choose by, ...,b; € [W] all coprime to W so that

d
S L (e b (G ) A > G- o) (75 ) 2

1<ni,....,ng<N/W
We shall write

N:=|N/W|, R:=|N/m?|, A:i=1a, ,, and Aj:=A,
(all depending on N). So (2) reads
> A, na)Ai(na)Ra(ng) - - Ag(na) > (5 — o(1))N* (3)
nl,...,nde[ﬁ]

The Green-Tao result [8] (along with [9, 10]) says that Agﬁw acts pseudorandomly with average

value about 1 in terms of counts of linear forms. The statement below is an easy corollary of [8,
Thm. 5.1].

Theorem 3 (Pseudorandomness of the W-tricked primes). Fiz a linear map ¥ = (11,...,1) :
Z% — 7 (in particular ¥(0) = 0) where no two ;, v; are linearly dependent. Let K C [N, N]¢
be any convex body. Then, for any by, ..., by € [W] all coprime to W, we have

> T AL w@i(n) = #{n € KNZ*: 4h(n) > 0 ¥j} + o(N?).

neKNZ4 jelt]
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where o(N%) := o(1)N%. Note that the error term does not depend on by,...,b; (although it does
depend on ¥ ).

The next lemma shows that A in expectation contains a considerable fraction of a random
homothetic copy of [m]? with common difference at most R = | N/m?| in the W-tricked subgrid of
P

Lemma 4. If A satisfies (3), then

Z Z Av(n1+l'17”,...,nd+idr) H H Kj(nj+iT)

n1yeemg€[N] \i15-1d€[M] jeld] ie[m]
re[R]

> (6m? — dm® 1 — o(1))RN®. (4)

Proof of Theorem 1 (assuming Lemma 4) . By Theorem 3 we have

> II I Ainy +ir) = (1 4 0(1))RNY,
N1,y ndE[N]Je[d]le[m]
re[R]

So by (4), for sufficiently large N, there exists some choice of ny,...,ng € [N] and r € [R] so that
- 1
Z A(ny +i1ry ... ng +igr) > iémd.
i1,eenyig €[M]

This means that a certain dilation of the grid [m]? contains at least dm</2 elements of A, from

which it follows by the choice of m that it must contain a set of the form a + tvy,...,a +tvy. W
Lemma 4 follows from the next lemma by summing over all choices of i1, ...,i4 € [m].
Lemma 5. Suppose A satisfies (3). Fiz iy, ..., iq € [m]. Then we have
~ , ‘ Y . d ~d
Z i A(ny +i1r, ... ng + igr) H H Aj(n; +ir) > ((5 - 0(1)> RN*. (5)
ni,...,ng€[N] JEld] ig[m]
re[R]

Proof. By a change of variables n; =n; + 4,1 for each j, we write the LHS of (5) as

> oo AWh o) T T A+ G —ig)r). (6)
re[R] n’l,...,ngLeZ j€ld] i€[m]
n/jf’ij’f’e[N] Vi

Note that (6) is at least
> > Al TT TT Ay + (= ij)r). (7)
r€lR] N/m<n/,..n/,<N j€ld] i€[m]

By (3) and Theorem 3 we have

S Al na) () Ra(ns) - Ralng) > (a S o<1>) M@
N/m<ni,...,ng<N

(the difference between the left-hand side sums of (3) and (8) consists of terms with (ng,...,nq)

in some box of the form [N}~ x [N/m] x [N]%~J, which can be upper bounded by using A < 1,

applying Theorem 3, and then taking the union bound over j € [d]). It remains to show that

(7) — R - (LHS of (8)) = o(N%1).
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We have
(7) — R - (LHS of (8))

= Z E(n/l,,nfi) H H K](n; + (i —ij)r) — H Kj(nj)

]V/m<n’1,...,n’d§f\7 J€ld] ig[m] Jj€ld]

= > At o) | TTNE) DSV TT T A+ G—ipr) —1
Jeld]

N/m<nl,...n,<N re[R] \seld] ie[m]\{i;}

By the Cauchy-Schwarz inequality and 0 < A< 1, the above expression can be bounded in absolute
value by VST, where

S = > A DT T A+ G—ipr) -1

N/m<nf,..n,<N \J€ld] re[R] \jeld] ie[m]\{i;}

T = > T 2.

N/m<n/1,...,n’dglvje[d]

2

By Theorem 3 we have S = o(ﬁ d+2) (to see this, expand the square, apply Theorem 3, and observe
the cancellations) and T' = O(N?), so that v ST = o(N9!), as desired. [ |
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