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Abstract

For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of
G that is a tree. In this paper, we study the problem of bounding t(G) for graphs which do not
contain a complete graph Kr on r vertices. This problem was posed twenty years ago by Erdős,
Saks, and Sós. Substantially improving earlier results of various researchers, we prove that every
connected triangle-free graph on n vertices contains an induced tree of order

√
n. When r ≥ 4, we

also show that t(G) ≥ log n
4 log r for every connected Kr-free graph G of order n. Both of these bounds

are tight up to small multiplicative constants, and the first one disproves a recent conjecture of
Matoušek and Šámal.

1 Introduction

For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G that
is a tree. The problem of bounding t(G) in a connected graph G was first introduced twenty years
ago by Erdős, Saks, and Sós [5]. Clearly, to get a non-trivial result one must impose some conditions
on the graph G, because, for example, the complete graph contains no induced tree with more than
2 vertices. In their paper, Erdős, Saks, and Sós studied the relationship between t(G) and several
natural parameters of the graph G. They were able to obtain asymptotically tight bounds on t(G)
when either the number of edges or the independence number of G were known.

Erdős, Saks, and Sós also considered the problem of estimating the size of the largest induced tree
in graphs with no Kr (complete graph on r vertices). Let tr(n) be the minimum value of t(G) over all
connected Kr-free graphs G on n vertices. In particular, for triangle-free graphs, they proved that

Ω
(

log n

log log n

)
≤ t3(n) ≤ O(

√
n log n),

and left as an interesting open problem the task of closing the wide gap between these two bounds.
The first significant progress on this question was made only recently by Matoušek and Šámal

[15], who actually came to the problem of estimating t3(n) from a different direction. Pultr had been
studying forbidden configurations in Priestley spaces [2], and this led him to ask in [17] how large t(G)
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could be for connected bipartite graphs G. Let tB(n) be the minimum value of t(G) over all connected
bipartite graphs on n vertices. It is clear that t3(n) ≤ tB(n), so the result of Erdős, Saks, and Sós
immediately gives a lower bound on tB(n).

Motivated by Pultr’s question, Matoušek and Šámal studied tB(n) and t3(n). They found the
following nice construction which shows that t3(n) ≤ tB(n) < 2

√
n+1. Let m =

√
n, and consider the

graph with parts V−m+1, V−m+2, . . . , Vm−1, where |Vi| = m − |i|, and each consecutive pair of parts
(Vi, Vi+1) induces a complete bipartite graph. This graph is clearly bipartite with m2 = n vertices, and
it is easy to see that every induced tree in it has at most 2m−1 vertices. On the other hand, Matoušek
and Šámal were able to improve the lower bound on tB(n) and t3(n), showing that t3(n) ≥ ec

√
log n for

some constant c. Furthermore, they also proved that if there was even a single value of n0 for which
t3(n0) <

√
n0, then in fact t3(n) ≤ O(nβ) for some constant β strictly below 1/2. The above fact

led Matoušek and Šámal to conjecture that the true asymptotic behavior of t3(n) was some positive
power of n which is strictly smaller than 1/2.

Our first main result essentially solves this problem. It determines that the order of growth of
both t3(n) and tB(n) is precisely Θ(

√
n), disproving the conjecture of Matoušek and Šámal.

Theorem 1. Let G be a connected triangle-free graph on n vertices. Then t(G) ≥ √
n.

Furthermore, our approach can also be used to give asymptotically tight bounds on the size of the
largest induced tree in Kr-free graphs for all remaining values of r. In their original paper, Erdős, Saks,
and Sós gave an elegant construction which shows that tr(n) for r ≥ 4 has only logarithmic growth.
Indeed, let T be a balanced (r − 1)-regular tree, that is, a rooted tree in which all non-leaf vertices
have degree r − 1 and the depth of any two leaves differs by at most 1. Then the line graph1 L(T ) is
clearly Kr-free, and one can easily check that induced trees in L(T ) correspond to induced paths in
T , which have only logarithmic length. Optimizing the choice of the parameters in this construction,
one can show that tr(n) ≤ 2 log(n−1)

log(r−2) + 2. On the other hand, using Ramsey Theory, Erdős, Saks, and

Sós also showed that tr(n) ≥ cr log n
log log n , where cr is a constant factor depending only on r. Our second

main result closes the gap between these two bounds as well, and determines the order of growth of
tr(n) up to a small multiplicative constant.

Theorem 2. Let r ≥ 4, and let G be a connected graph on n vertices with no clique of size r. Then
t(G) ≥ log n

4 log r .

One can also study induced forests rather than trees in Kr-free graphs. Let fr(n) be the maximum
number such that every Kr-free graph on n vertices contains an induced forest with at least fr(n)
vertices. Trivially we have fr(n) ≥ tr(n), but it appears that the size of the maximum induced forest
in a graph is more closely related to another parameter. The independence number α(G) of a graph is
the size of the largest independent set of vertices in G. Since an independent set is a forest and every
forest is bipartite, the size of the largest induced forest in a graph G is at least α(G) and at most
2α(G). Using the best known upper bound for off-diagonal Ramsey numbers [1], for fixed r ≥ 3 and
all n we have fr(n) ≥ cn

1
r−1 log

r−2
r−1 n for some positive constant c. Hence, f3(n) is larger than t3(n) by

a factor of c
√

log n. Furthermore, for fixed r > 3, fr(n) and tr(n) behave very differently, as fr(n) is
1The vertices of L(T ) are the edges of T , and two of them are adjacent if they share a vertex in T .
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polynomial in n while tr(n) is only logarithmic. This demonstrates that in Kr-free graphs the largest
guaranteed induced forest is much larger than the largest guaranteed induced tree.

We close this introduction by mentioning some related research. Our work considers the Ramsey-
type problem of finding either a clique or a large induced tree. The similar problem of finding an
induced copy of a particular tree T in a Kr-free graph was independently raised by Gyárfás [9] and
Sumner [20]. They conjectured that for any fixed integer r and tree T , any graph with sufficiently
large chromatic number (depending on r and T ) must contain either an r-clique or an induced copy
of T . Note that the essential parameter for the graph G is now the chromatic number and not the
number of vertices. Indeed, a complete bipartite graph has no clique of size 3, but contains only stars
as induced subtrees. This conjecture is widely open, although some partial results were obtained in
[10, 11, 12, 18].

Induced trees were also studied in the context of sparse random graphs. This line of research
was started by Erdős and Palka [4], who conjectured that for any constant c > 1, the random graph
G(n, c/n) would with high probability contain an induced tree of order γ(c)n. This was solved by
Fernandez de la Vega [6], and other variants of this result were obtained in [13, 7, 8, 14, 19]. In
another regime, when the edge probability is p = c log n/n, Palka and Ruciński [16] showed that the
largest induced tree in G(n, p) has size Θ(n log log n/ log n) with high probability.

The rest of this paper is organized as follows. In Section 2 we discuss the proof of Theorem 1, and
show how to reduce it to an abstract optimization problem on certain bipartite graphs with weights on
the vertices. The solution of this problem is provided in the following section. In Section 4, we show
how to extend our argument to the case of Kr-free graphs with r ≥ 4, and prove our second result,
Theorem 2. The final section of the paper contains a few concluding remarks. Throughout our paper,
we will omit floor and ceiling signs whenever they are not essential, to improve clarity of presentation.

2 Triangle-free graphs

The main idea in the proof of Theorem 1 is to use induction to prove a slightly2 stronger statement.
Instead of finding a single induced tree, we show that no matter which vertex v of the graph we choose,
there exists a large induced tree which contains v. More precisely, we prove that any connected,
triangle-free graph with n + 1 vertices contains an induced tree of size

√
n + 1 through any given

vertex.
This is obviously true for n = 1, which serves as the base of our induction. It remains to prove the

statement for general n ≥ 2, while assuming its truth for all smaller values of n. So, let G = (V, E)
be an arbitrary connected triangle-free graph with n + 1 vertices, and fix an arbitrary vertex v ∈ V .
We will find a large induced tree through v. Note that since G is triangle-free, {v} ∪N(v) induces a
star. Therefore, we may assume that the size of the neighborhood satisfies |N(v)| <

√
n, or else we

are done.
Consider the subgraph of G induced by V \({v}∪N(v)). It decomposes into connected components,

whose vertex sets we call V1, . . . , Vm. Now suppose that we could find a subset U ⊂ N(v), and a subset
I ⊂ [m], with the following properties:

2We will discuss the relative strength of this statement in detail in our concluding remarks.
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(i) For each i ∈ I, there is exactly one u ∈ U which is adjacent to at least one vertex in Vi. Let us
denote this vertex by u(i).

(ii) The sum
∑

i∈I

√
|Vi| is at least

√
|V1 ∪ . . . ∪ Vm|.

Then, for each i ∈ I, we could apply the induction hypothesis to the connected subgraph of G induced
by {u(i)} ∪ Vi. This would give an induced tree Ti containing u(i), of size 1 +

√
|Vi|. Furthermore, it

is easy to see that the union of {v} with all of the above constructed trees Ti is also an induced tree.
Indeed, since each Vi is a maximal connected component, there are no edges between the Ti, and since
G is triangle-free, there are no edges inside U ⊂ N(v). Therefore, we will have an induced tree with
total size at least:

|{v}|+ |{u(i) : i ∈ I}|+
∑

i∈I

√
|Vi| ≥ 1 + 1 +

√
|V1 ∪ . . . ∪ Vm|

= 2 +
√
|V \ ({v} ∪N(v)|)

≥ 2 +
√

(n + 1)− 1−√n

≥ 1 +
√

n,

as desired. Thus, the following abstract lemma completes the proof.

Lemma 1. Consider a bipartite graph with sides A and B, with the property that each vertex in B

has degree at least 1. Let each vertex i ∈ B have an associated weight wi ≥ 0. We call a subset
H ⊂ A∪B admissible if each vertex v ∈ B∩H has exactly one neighbor in A∩H. Then there exists
an admissible H with

∑
i∈B∩H

√
wi ≥

√∑
i∈B wi.

The connection between this lemma and our required selection of I ⊂ [m] and U ⊂ N(v) is clear.
The sides A and B correspond to the sets N(v) and [m], respectively, and the weights wi are precisely
the sizes of the connected components |Vi|. The requirement that each vertex in B has degree at least
1 is satisfied by the fact that G is connected, and so each component Vi has at least one neighbor in
N(v). Therefore, this lemma will indeed complete the proof of Theorem 1.

3 Main lemma

Before proving our main lemma, Lemma 1, let us discuss an easy special case which we will actually
need later in our study of Kr-free graphs when r ≥ 4. Observe that if the weights wi in Lemma 1 were
roughly equal, then one way to control the objective

∑
i∈B∩H

√
wi would be to find a lower bound on

|B ∩H|. This motivates the following claim, which we record for later use.

Lemma 2. Consider a bipartite graph with sides A and B, with the property that each vertex in B

has degree at least 1. We still call a subset H ⊂ A ∪ B admissible if each vertex v ∈ B ∩ H has
exactly one neighbor in A ∩H. Then there exists an admissible H with |B ∩H| ≥

√
|B|.

Proof. The key observation, which we will also use in the proof of Lemma 1, is that we may assume
that every v ∈ A has some vertex w ∈ B which is adjacent only to v. Indeed, suppose this is not
the case, and every neighbor of v has additional neighbors in A. Then, deleting v from A will not
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break the hypothesis of the lemma. Therefore, after repeatedly performing this reduction, we obtain
a bipartite graph in which every vertex v ∈ A has a neighbor in B that sees only v. Notice that this
implies that there is an induced matching between A and some subset B′ ⊂ B.

If |A| ≥
√
|B|, then the induced matching immediately yields an admissible set H = A∪B′ which

satisfies the assertion. On the other hand, when |A| <
√
|B|, there is a vertex in A with degree at least√

B. Indeed, since every vertex in B has degree at least 1, the total number of edges in the bipartite
graph is at least |B|, and therefore some vertex v ∈ A has degree ≥ |B|/|A| > √

B. The induced star
H = {v} ∪N(v) provides the desired admissible set. ¤

We pause now to remark that Lemma 2 is far from being sharp. In fact, it is always possible to
find an admissible H with |H ∩ B| ≥ Ω(|B|/ log |B|), and this is tight. Although we do not need
this result for our proof we sketch it here for the sake of completeness. By the reduction in the proof
of Lemma 2, we may assume that there is an induced matching between A and a subset B′ ⊂ B.
In particular, this implies that all degrees in B are at most |A| = |B′| ≤ |B|. The set of possible
degrees {1, 2, . . . , |B|} is covered by the family of log2 |B| dyadic intervals Ik = [2k, 2k+1], so there
must be some Ik with the property that at least |B|/ log2 |B| vertices of B have degrees in Ik. Sample
a random subset A′ ⊂ A by taking each vertex independently with probability p = 2−k−1, and let
B′′ be the set of all vertices in B that are adjacent to exactly one vertex in A′. It is clear that
H = A′ ∪ B′′ is admissible, so it remains to control |B′′|. Any vertex v ∈ B has probability exactly
P[Bin(d(v), 2−k−1) = 1] = d(v)2−k−1(1 − 2−k−1)d(v)−1 of being chosen for B′′. Since Ik = [2k, 2k+1],
when d(v) ∈ Ik this probability is bounded from below by an absolute constant (one can take 1/8).
Hence the expected size of B′′ is at least Ω(|Ik|) ≥ Ω(|B|/ log |B|), which implies that there must exist
some choice of A′ and B′′ that satisfy this bound.

The following construction shows that this bound is asymptotically tight. Choose integers m = 2k,
let A = Z/mZ, and let B = B0 ∪ . . . ∪ Bk, where each Bi = {bi,1, . . . , bi,m}. Let each bi,j be
adjacent to precisely {i, i + 1, . . . , i + 2j − 1} ∈ A, where we reduce everything modulo m. This
has |B| = (k + 1)m = Θ(m log m), but it is not too difficult to verify that any admissible H has
|H ∩B| < 2m.

3.1 Proof of Lemma 1

Unfortunately, Lemma 2 is insufficient in general for our application, because in our triangle-free
graph, the sizes of the connected components Vi of V \ ({v} ∪ N(v)) may differ wildly. For this, we
need its weighted variant, which we prove in this section. The main trick in the proof is to vary the
weights, which leads us to study the following function.

Definition 1. Let G be a bipartite graph with vertex set A ∪ B. For notational convenience, let the
vertices of B be named {1, 2, . . . , m}. Then, we define

FG(w1, . . . , wm) = max
admissible H⊂A∪B

∑

i∈B∩H

√
wi,

where we still say that a nonempty subset H ⊂ A ∪B is admissible when every vertex in B ∩H has
exactly one neighbor in A ∩H.
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Lemma 1 is thus equivalent to the statement that FG(w) ≥ √∑m
i=1 wi for any collection of wi ≥ 0.

Since this inequality is homogeneous in the wi, from now on we will always assume that the weights
have been normalized to sum to 1. It then suffices to show that FG(w) ≥ 1 for all w that satisfy the
constraints wi ≥ 0,

∑
wi = 1. Observe that this domain is now compact, and FG is a maximum of a

finite collection of continuous functions, hence continuous. Therefore, FG attains its infimum on this
domain, which we will denote minw FG.

So, suppose for the sake of contradiction that we have some graph G of minimum order for which
minw FG < 1. Graph G must have an induced matching between A and some subset B′ ⊂ B, since
otherwise we can use the same reduction argument as in the proof of Lemma 2 to obtain a contradiction
to the minimality of G. Let (w1, . . . , wm) be a minimizing assignment for FG, satisfying the constraints
wi ≥ 0 and

∑
wi = 1. Note that actually all wi must be strictly positive, or else we could delete a

vertex i with wi = 0 to obtain a proper induced subgraph G′ of G and a weight assignment w′ for
which FG′(w′) < 1, again contradicting the minimality of G.

We now exploit the fact that we have cast our problem in a continuous setting. Let us study the
effect of performing the following perturbation on the weights.

Stage 1. For each i ∈ B′, let w′i = wi − ε
√

wi. For i 6∈ B′, let w′i = wi.

Stage 2. To compensate for the fact that
∑

w′i = 1 − ε
∑

j∈B′
√

wj < 1, renormalize by scaling up
every weight by the same proportion. That is, for all i ∈ B, let

w′′i =
w′i

1− ε
∑

j∈B′
√

wj
.

Note that since all wi > 0, for all sufficiently small ε, all new w′i are still positive. This perturbation
is chosen in the particular way because for small ε and i ∈ B′,

√
w′i =

√
wi− ε

2 + o(ε). This is because
it is easy to check that for every x > 0,

lim
ε→0

√
x− ε

√
x− (

√
x− ε/2)

ε
= 0.

So, the effect on the square root of each weight wi with i ∈ B′ is roughly the same, no matter what
the weight is.

Now recall that the function FG(w1, . . . , wm) is defined as the maximum over all admissible H of∑
i∈B∩H

√
wi. Since all wi ≥ 0 by definition, this is equal to the maximum over all maximal admissible

H, where this maximality is defined with respect to set inclusion. For brevity, let M = FG(w1, . . . , wm)
be that maximum and let H be any such maximal admissible selection.

Note that H must intersect B′ (the subset of B that has an induced matching to A). This is
because any maximal admissible H contains at least one vertex from A, and that vertex’s partner in
B′ can be added to H while preserving admissibility. In particular, the sum

∑
i∈B∩H

√
wi includes at

least one downwardly perturbed weight from B′. Therefore,

∑

i∈B∩H

√
w′i ≤

( ∑

i∈B∩H

√
wi

)
− ε

2
+ o(ε) ≤ M − ε

2
+ o(ε).
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The renormalization that converts w′i into w′′i is particularly simple to analyze. Using the previous
inequality and the observation that

∑
j∈B′

√
wj ≤ M (because B′ ∪ A is an induced matching, hence

admissible):
∑

i∈B∩H

√
w′′i ≤

M − ε
2 + o(ε)√

1− ε
∑

j∈B′
√

wj

≤ M − ε
2 + o(ε)√

1− εM
.

The final bound is independent of H, so if it were strictly smaller than M , we would have
FG(w′′1 , . . . , w′′m) < M = FG(wi, . . . , wm), contradicting the minimality of (w1, . . . , wm). Therefore,
we must have:

M − ε
2 + o(ε)√

1− εM
≥ M

M − ε

2
+ o(ε) ≥ M

√
1− εM

M − ε

2
+ o(ε) ≥ M

(
1− εM

2
+ o(εM)

)

− ε

2
+ o(ε) ≥ −εM2

2
+ o(εM2)

1− o(1) ≤ M2.

In the final inequality, we used the fact that M is fixed, and therefore o(M2) = o(1). Sending ε to zero,
we conclude that FG(w) = M ≥ 1. This contradicts our assumption that FG(w) = minw FG < 1, so
our proof is complete. ¤

Remark. The following example shows that the assertion of Lemma 1 no longer holds for any
exponent α > 1/2. Indeed, consider the following bipartite graph. For some very large t, let A =
{a1, . . . , at}, let B = {b0, . . . , bt}, and connect each ai to b0 and bi. Let the weight of b0 be 1 − t−1,
and the weights of all other vertices in B be t−2, so the total weight is 1. It is easy to see that the only
maximal admissible sets in this graph are either a star containing b0 and some other bi, or the induced
matching between A and B \ {b0}. Since α > 1/2 and t is sufficiently large, we have in the first case
that (1 − t−1)α + (t−2)α = 1 − αt−1 + o(t−1) < 1. On the other hand, for the second admissible set,
we only have t · (t−2)α = t1−2α < 1.

4 Kr-free graphs

This section is devoted to the proof of Theorem 2. The induction approach we used in Section 2 easily
extends to the case of Kr-free graphs when r ≥ 4, and in fact the argument becomes even simpler. We
prove that for any r ≥ 4, every connected Kr-free graph G = (V, E) with n + 1 vertices contains an
induced tree of size log n

4 log r + 1 through any particular vertex. Note that since the logarithm appears in
both the numerator and denominator, its base is irrelevant. The statement is clearly true for n = 1,
which starts our induction.

Now, consider any n ≥ 2, and suppose that the statement holds for all smaller values of n. Let
v ∈ V be an arbitrary vertex. We will find an induced tree of size log n

4 log r + 1 containing v. Recall the

well-known fact from Ramsey Theory (see, e.g., chapter 6.1 of [3]) that any graph with ab ≥ (
a+b−2
a−1

)
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vertices contains either a clique of size a or an independent set of size b. This implies that the degree
of v must be less than rlog n/4 log r = n1/4, or else we would already be done. Indeed, since G is Kr-free,
the neighborhood of v would then contain an independent set of size log n

4 log r . The vertices of this set
together with v form an induced star of the desired size. The same argument also shows that every
w ∈ N(v) has less than n1/4 neighbors in V \ ({v} ∪ N(v)). Otherwise, by the above discussion, we
could find an independent set I ⊂ V \ ({v} ∪N(v)) of size log n

4 log r , all of whose vertices are adjacent to
w. Then, v, w, and I will form a large induced tree containing v.

Let V1, . . . , Vm be the vertex sets of the connected components of the subgraph of G induced by
V \ ({v} ∪N(v)). Since G is connected, each Vi is adjacent to some vertex in N(v). As we explained
above, each vertex in N(v) is adjacent to fewer than n1/4 sets Vi, so in particular m < |N(v)|n1/4 <

n1/2. We claim that all components Vi have size at most n
r4 . Indeed, suppose that some |Vi| exceeds

n
r4 . Let u be a vertex in N(v) which is adjacent to at least one vertex in Vi. Applying the induction

hypothesis to {u}∪Vi, we find an induced tree T through u of size log(n/r4)
4 log r +1 = log n

4 log r . Then {v}∪T

gives an induced tree of the desired size.
Next, we show that there are more than r2 indices i for which |Vi| ≥

√
n

r2 . Indeed, if this were not
the case, then the total number of vertices in V would be less than:

|{v} ∪N(v)|+
m∑

i=1

|Vi| < 1 + n1/4 + m ·
√

n

r2
+ r2 · n

r4
< 1 + n1/4 + 2 · n

r2
. ≤ 1 + n1/4 +

n

8
.

This is less than n + 1 = |V | for all n ≥ 2, which is a contradiction.
Let B be the above set of indices for which |Vi| ≥

√
n

r2 , and let A = N(v). Consider the auxiliary
bipartite graph with sides A and B obtained by connecting u ∈ A with i ∈ B if u is adjacent to at
least one vertex in Vi. Applying Lemma 2, we find subsets A′ ⊂ A and B′ ⊂ B with |B′| ≥

√
|B| > r

such that for each i ∈ B′ the component Vi is adjacent to exactly one vertex in A′ ⊂ N(v), which we
denote u(i). In fact, |B′| ≥ r + 1 since both |B′| and r are integers. Apply the induction hypothesis
to each {u(i)} ∪ Vi to find an induced tree Ti containing u(i) of size at least log |Vi|

4 log r + 1.
If all u(i) are distinct, then we can find u(i) 6= u(j) which are not adjacent in G, because this is a

set of at least r + 1 vertices in a Kr-free graph. Then, {v, u(i), u(j)} ∪ Ti ∪ Tj is an induced tree. On
the other hand, if there is some u(i) = u(j), then {v, u(i)} ∪ Ti ∪ Tj is an induced tree. In either case,
we find an induced tree of size at least

|{v, u(i), u(j)}|+ log |Vi|
4 log r

+
log |Vj |
4 log r

≥ 2 + 2 · log(
√

n/r2)
4 log r

= 1 +
log n

4 log r
,

as desired. This completes the proof. ¤

5 Concluding remarks

In this paper, we obtain a lower bound on the size of the largest induced-tree in a Kr-free graph,
which is tight up to a small multiplicative constant. Moreover, our proof shows that we can find a
large tree through any particular vertex in the graph. It turns out that this seemingly stronger result
is equivalent up to a constant factor to the original problem of finding one large tree.
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Claim. Let T be an induced tree in a graph G, and let v be an arbitrary vertex. Then G has an
induced tree of size 1 + |T |

2 which contains v.

Proof. If v is already in T , then there is nothing to prove. Otherwise, let P = (v1, v2, . . . , vm) be
a shortest path between v and T , with v1 = v and vm ∈ T . By minimality of P , there are no edges
between {v1, . . . , vm−2} and T . Let e1, . . . , ek be the edges connecting vm−1 and T , and let t1, . . . , tk
be their endpoints in T . Since T is a tree, by deleting some edges, we can partition it into subtrees T1,
. . . , Tk, such that each Ti contains ti. Consider the auxiliary graph on k vertices, in which vertices i

and j are adjacent if there is an edge of G between Ti and Tj . Note that this graph also forms a tree,
and therefore is bipartite. Hence, we can find two disjoint subsets I ∪ J = [k] such that the collection
of Ti with i ∈ I has no edges crossing between them, and similarly, the collection of Tj with j ∈ J also
has no crossing edges. Therefore, the union of {v1, . . . , vm−1} with either one of these two collections
will form an induced tree. Clearly, both of these trees contain v, and their union covers T . Thus, one
of them has size at least 1 + |T |

2 . ¤

We also wish to remark that for the problem of finding a large induced tree through every vertex
of a triangle-free graph, one can improve the 2

√
n upper bound of Matoušek and Šámal. Indeed,

consider the following triangle-free graph on n vertices. Let m =
√

2n, and take the graph with
parts V0, . . . , Vm−1, where V0 = {v}, every other |Vi| = m − i, and each consecutive pair of parts
(Vi, Vi+1) induces a complete bipartite graph. This is a bipartite (hence also triangle-free) graph with
1 + m(m − 1)/2 = (1 + o(1))n vertices, but one can easily check that any induced tree containing v

has at most m =
√

2n vertices. In particular, this shows that any approach which guarantees a large
tree through every vertex of the graph cannot match Matoušek and Šámal’s upper bound.

In light of this discussion, we do not have a clear conjecture as to what is the right constant in
front of

√
n in the problem of finding a maximum induced tree in a triangle-free graph on n vertices.

Nevertheless, as the upper and lower bounds are now so close, perhaps there is a hope to bridge this
gap with other methods.
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[13] L. Kučera and V. Rödl, Large trees in random graphs, Comment. Math. Univ. Carolin. 28 (1987),
7–14.

[14] T. ÃLuczak and Z. Palka, Maximal induced trees in sparse random graphs, Discrete Math. 72
(1988), 257–265.
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