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Abstract
The Gallai-Milgram theorem says that the vertex set of any digraph with stability number k

can be partitioned into k directed paths. In 1990, Hahn and Jackson conjectured that this theorem
is best possible in the following strong sense. For each positive integer k, there is a digraph D with
stability number k such that deleting the vertices of any k− 1 directed paths in D leaves a digraph
with stability number k. In this note, we prove this conjecture.

1 Introduction

The Gallai-Milgram theorem [7] states that the vertex set of any digraph with stability number k can
be partitioned into k directed paths. It generalizes Dilworth’s theorem [4] that the size of a maximum
antichain in a partially ordered set is equal to the minimum number of chains needed to cover it.
In 1990, Hahn and Jackson [8] conjectured that this theorem is best possible in the following strong
sense. For each positive integer k, there is a digraph D with stability number k such that deleting
the vertices of any k − 1 directed paths in D leaves a digraph with stability number k. Hahn and
Jackson used known bounds on Ramsey numbers to verify their conjecture for k ≤ 3. Recently, Bondy,
Buchwalder, and Mercier [3] used lexicographic products of graphs to show that the conjecture holds
if k = 2a3b with a and b nonnegative integers. In this short note we prove the conjecture of Hahn and
Jackson for all k.

Theorem 1 For each positive integer k, there is a digraph D with stability number k such that deleting
the vertices of any k − 1 directed paths leaves a digraph with stability number k.

To prove this theorem we will need some properties of random graphs. As usual, the random graph
G(n, p) is a graph on n labeled vertices in which each pair of vertices forms an edge randomly and
independently with probability p = p(n).

Lemma 1 For k ≥ 3, the random graph G = G(n, p) with p = 20n−2/k and n ≥ 215k2
a multiple of

2k has the following properties.
(a) The expected number of cliques of size k + 1 in G is at most 20(

k+1
2 ).

(b) With probability more than 2
3 , every induced subgraph of G with n

2k vertices has a clique of size k.

Proof: (a) Each subset of k + 1 vertices has probability p(k+1
2 ) of being a clique. By linearity of

expectation, the expected number of cliques of size k + 1 is
(

n

k + 1

)
p(k+1

2 ) =
(

n

k + 1

)
20(k+1

2 )n−k−1 ≤ 20(k+1
2 ).
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(b) Let U be a set of n
2k vertices of G. We first give an upper bound on the probability that U has no

clique of size k. For each subset S ⊂ U with |S| = k, Let BS be the event that S forms a clique, and
XS be the indicator random variable for BS . Since k ≥ 3, by linearity of expectation, the expected
number µ of cliques in U of size k is

µ = E

[∑

S

XS

]
=

( n
2k

k

)
p(k

2) ≥ nk

2(2k)kk!
20(k

2)n1−k ≥ 2n.

Let ∆ =
∑

Pr[BS ∩BT ], where the sum is over all ordered pairs S, T with |S ∩ T | ≥ 2. We have

∆ =
k−1∑

i=2

∑

|S∩T |=i

Pr[BS ∩BT ] =
k−1∑

i=2

∑

|S∩T |=i

p2(k
2)−(i

2) =
k−1∑

i=2

(
n

i

)(
n− i

k − i

)(
n− k

k − i

)
p2(k

2)−(i
2)

≤
k−1∑

i=2

n2k−ipk(k−1)−(i
2) ≤ 20k2

k−1∑

i=2

n2−i+i(i−1)/k ≤ k20k2
n2/k .

Here we used the fact that i(i − 1)/k − i for 2 ≤ i ≤ k − 1 clearly achieves its maximum when i = 2
or i = k − 1.

Using that k ≥ 3 and n ≥ 215k2
, it is easy to check that ∆ ≤ n. Hence, by Janson’s inequality (see,

e.g., Theorem 8.11 of [2]) we can bound the probability that U does not contain a clique of size k by
Pr

[∧SB̄S

] ≤ e−µ+∆/2 ≤ e−n. By the union bound, the probability that there is a set of n
2k vertices of

G(n, p) which does not contain a clique of size k is at most
(

n
n
2k

)
e−n ≤ 2ne−n < 1/3. 2

The proof of Theorem 1 combines the idea of Hahn and Jackson of partitioning a graph into maximum
stable sets and orienting the graph accordingly with Lemma 1 on properties of random graphs.
Proof of Theorem 1. Let k ≥ 3 and n ≥ 215k2

. By Markov’s inequality and Lemma 1(a), the
probability that G(n, p) with p = 20n−2/k has at most 2 · 20(

k+1
2 ) cliques of size k + 1 is at least 1/2.

Also, by Lemma 1(b), we have that with probability at least 2/3 every set of n
2k vertices of this random

graph contains a clique of size k. Hence, with positive probability (at least 1/6) the random graph
G(n, p) has both properties. This implies that there is a graph G on n vertices which contains at most
2 · 20(k+1

2 ) cliques of size k + 1 and every set of n
2k vertices of G contains a clique of size k. Delete one

vertex from each clique of size k + 1 in G. The resulting graph G′ has at least n− 2 · 20(
k+1
2 ) ≥ 3n/4

vertices and no cliques of size k + 1. Next pull out vertex disjoint cliques of size k from G′ until
the remaining subgraph has no clique of size k, and let V1, . . . , Vt be the vertex sets of these disjoint
cliques of size k. Since every induced subgraph of G of size at least n

2k contains a clique of size k, then
|V1 ∪ . . . ∪ Vt| ≥ 3n

4 − n
2k ≥ n

2 . Define the digraph D on the vertex set V1 ∪ . . . ∪ Vt as follows. The
edges of D are the nonedges of G. In particular, all sets Vi are stable sets in D. Moreover, all edges
of D between Vi and Vj with i < j are oriented from Vi to Vj . By construction, the stability number
of D is equal to the clique number of G′, namely k. Also any set of n

2k vertices of D contains a stable
set of size k. Note that every directed path in D has at most one vertex in each Vi. Hence, deleting
any k− 1 directed paths in D leaves at least |D|/k ≥ n

2k remaining vertices. These remaining vertices
contain a stable set of size k, completing the proof. 2

Remark. Note that in order to prove Theorem 1, we only needed to find a graph G on n vertices with
no clique of size k + 1 such that every set of n

2k vertices of G contains a clique of size k. The existence
of such graphs were first proved by Erdős and Rogers [6], who more generally asked to estimate the
minimum t for which there is a graph G on n vertices with no clique of size s such that every set of
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t vertices of G contains a clique of size r. Since then a lot of work has been done on this question,
see, e.g., [9, 1, 10, 5]. Although most result for this problem used probabilistic arguments, Alon and
Krivelevich [1] give an explicit construction of an n-vertex graph G with no clique of size k + 1, such
that every subset of G of size n1−εk contains a k-clique. Since we only need a much weaker result to
prove the conjecture of Hahn and Jackson, we decided to include its very short and simple proof to
keep this note self-contained.
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