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Constructing dense graphs with sublinear Hadwiger number

Jacob Fox
∗

Abstract

Mader asked to explicitly construct dense graphs for which the size of the largest clique minor
is sublinear in the number of vertices. Such graphs exist as a random graph almost surely has
this property. This question and variants were popularized by Thomason over several articles.
We answer these questions by showing how to explicitly construct such graphs using blow-ups of
small graphs with this property. This leads to the study of a fractional variant of the clique minor
number, which may be of independent interest.

1 Introduction

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

Minors form an important connection between graph theory, geometry, and topology. For example,

the Kuratowski-Wagner theorem states that a graph can be embedded in the plane if and only if it

has neither the complete graph K5 nor the complete bipartite graph K3,3 as a minor. This example

played an important role in the development of topological graph theory, whose masterpiece is the

Robertson-Seymour graph minor theorem. In a series of twenty papers [15], they proved Wagner’s

conjecture that every family of graphs closed under taking minors is characterized by a finite list of

forbidden minors.

The Hadwiger number h(G) of a graph G is the order of the largest clique which is a minor of G.

The famous conjecture of Hadwiger [8] states that every graph of chromatic number k has Hadwiger

number at least k. Hadwiger proved his conjecture for k ≤ 4. Wagner [25] proved that the case k = 5

is equivalent to the Four Color Theorem. In a tour de force, Robertson, Seymour, and Thomas [16]

settled the case k = 6 also using the Four Color Theorem. The conjecture is still open for k ≥ 7.

Bollobás, Catlin, and Erdős [2] analyzed the Hadwiger number of random graphs. They showed

that a random graph G on n vertices almost surely satisfies h(G) is asymptotic to n√
logn

. Here, and

throughout the paper, all logarithms unless otherwise indicated are in base 2. Also using the well

known fact that the chromatic number of a random graph on n vertices is almost surely Θ(n/ log n),

they deduced that almost all graphs satisfy Hadwiger’s conjecture.

Mader showed that large average degree is enough to imply a large clique minor. Precisely, for each

integer t there is a constant c(t) such that every graph G of average degree at least c(t) satisfies h(G) ≥
t. Kostochka [9, 10] and Thomason [19] independently proved that c(t) = Θ(t

√
log t). Thomason [22]

later determined the asymptotic behavior of c(t), with random graphs of a particular density as

extremal graphs for this problem. Myers [13] proved that any extremal graph under certain conditions

for this problem must be quasirandom.

Random graphs have some remarkable properties for which it is difficult to explicitly construct

graphs with these properties. One well-known example is Erdős’ lower bound on Ramsey numbers,

which shows that almost all graphs on n vertices do not contain a clique or independent set of order
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2 log n. Despite considerable attention over the last 60 years, there is no known construction (in

polynomial time) of a graph G on n vertices for which the largest clique or independent set in G is of

order O(log n).

Another interesting property of random graphs already mentioned is that almost surely they do

not contain a clique minor of linear size. Mader asked to construct a dense graph on n vertices with

h(G) = o(n). One of the main motivations for this problem is that proving interesting upper bounds

on the Hadwiger number of a graph appears to be a difficult problem. Thomason [20] showed that

many of the standard constructions of quasirandom graphs have linear clique minors and therefore

cannot be used to answer Mader’s problem.

Mader’s problem and a few variants were discussed by Thomason in several papers [20, 21, 22, 23,

24] and also by Myers [13]. Thomason [20] posed the stronger problem of constructing a graph G on

n vertices for which the Hadwiger numbers of G and its complement Ḡ are both o(n). He speculates

[21] that this problem might be as hard as the classical Ramsey problem of finding explicit graphs G

such that both G and Ḡ contain only small complete subgraphs.

Here we solve both the problems of Mader and Thomason. To do so, it is helpful to define what

an explicit construction is. We view a graph on 2n vertices as a function f :
({0,1}n

2

)

→ {0, 1}, where
the value of f tells whether or not two vertices are adjacent. By an explicit construction we mean

that the function f is computable in polynomial time (in n). That is, given two vertices, we can

compute whether or not they are adjacent in time polynomial in the number of bits used to represent

the vertices. There is also a weaker notion of explicit graph which is sometimes used. In this version,

the edges of the graph can be computed in time polynomial in the number of vertices of the graph.

Our construction which answers the problems of Mader and Thomason is given in nearly constant

time using blow-ups of nearly constant size graphs. We show that if a (small) graph is dense and has

relatively small Hadwiger number, then its blow-ups also have this property.

We formally define the blow-up of a graph as follows. For graphs G and H, the lexicographic

product G · H is the graph on vertex set V (G) × V (H), where (u1, v1), (u2, v2) ∈ V (G) × V (H) are

adjacent if and only if u1 is adjacent to u2 in G, or u1 = u2 and v1 is adjacent to v2 in H. Define

The blow-up G(t) = G · It, where It is the empty graph on t vertices. Define also the complete blow-up

G[t] = G ·Kt.

A graph G we call ǫ-Hadwiger if h(G) ≤ ǫ|G|. We will show for each ǫ > 0 how to construct a

graph G on n(ǫ) = 2(1+o(1))ǫ−2

vertices in time 2(1+o(1))n(ǫ)2/2 such that every complete blow-up of G

and its complement are ǫ-Hadwiger. Such blow-ups answer the questions of Mader and Thomason, as

one can compute any adjacency between vertices by simply looking at which parts of the blow-up the

vertices belong. As the size of G depends only on ǫ, the time to compute whether two vertices are

adjacent is nearly constant for ǫ slowly tending to 0.

The bounds above give an explicit construction of a graph on N vertices for which the Hadwiger

number of the graph and its complement is at most O( N√
log log logN

). For the weaker notion of explicit

construction, in which the running time is polynomial in the number of vertices, the graph onN vertices

we obtain has the property that it and its complement has Hadwiger number at most O( N√
log logN

).

While these bounds are sublinear, they do not come close to the tight bound of O( N√
logN

) which almost

all graphs on N vertices satisfy.

In order to study the Hadwiger number of a blow-up of a graph, it will be helpful to define a

fractional version of the Hadwiger number. This notion had independently been introduced earlier by

Seymour [18]. A bramble B for a graph G is a collection of connected subgraphs of G satisfying each

pair B,B′ ∈ B share a vertex or there is an edge of G connecting B to B′.
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Definition 1. The fractional Hadwiger number hf (G) of a graph G is the maximum h for which there

is a bramble B for G, and a weight function w : B → R≥0 such that h =
∑

B∈B w(B) and for each

vertex v, the sum of the weights of the subgraphs in B containing v is at most 1.

Define a strong bramble for a graph G to be a collection of connected subgraphs of G satisfying for

each pair B,B′ ∈ B (with possibly B = B′) there is an edge of G connecting B to B′. We define the

lower fractional Hadwiger number h′f (G) similarly, except that B is required to be a strong bramble

and not a bramble. The fractional Hadwiger number and the lower fractional Hadwiger number are

closely related. Indeed, it is easy to show that if G has an edge, then hf (G)/2 ≤ h′f (G) ≤ hf (G).

Equality occurs in the lower bound if G is complete and the upper bound if G is complete bipartite.

For a positive integer r, the r-integral Hadwiger number hr(G) is defined the same as the fractional

Hadwiger number, but all weights have to be multiples of 1/r. We similarly define the lower version

h′r(G). Note that h1(G) = h(G), and if s is a multiple of r, then hs(G) ≥ hr(G). It is easy to check

that hf (G) = limr→∞ hr(G), and it follows that hf (G) ≥ h(G).

The relationship between the Hadwiger number of the blow-up of a graph and the fractional

Hadwiger number of the graph is demonstrated by the following simple proposition.

Proposition 1. For every graph G and positive integer r, we have

h(G[r]) = r · hr(G) ≤ r · hf (G).

Essentially the same proof also gives h(G(r)) = r · h′r(G) ≤ r · h′f (G).

Thus, if we found a dense graph G with relatively small fractional Hadwiger number, then the

blow-up G[r] would also be dense and have relatively small Hadwiger number. To solve Mader’s

problem, it therefore suffices to show that there are dense graphs G on n vertices with fractional

Hadwiger number hf (G) = o(n).

It is not difficult to show that if h(G) < 4, then hf (G) = h(G). However, there are planar graphs

on n vertices with h(G) = 4 and hf (G) = Θ(
√
n). Indeed, consider the

√
n × √

n grid graph. The

grid graph is planar and thus has Hadwiger number at most 4. For each i, let Pi denote the induced

path consisting of the vertex (i, i) and all vertices of the grid graph directly below or to the right of

this point. Assigning each of these
√
n paths weight 1/2, we get that the fractional Hadwiger number

(and even the 2-integral Hadwiger number) of this grid graph is at least
√
n/2. This example also

shows that the following upper bound on the fractional Hadwiger number cannot be improved apart

from the constant factor.

Theorem 2. If G is a graph on n vertices, then

hf (G) ≤
√

2h(G)n.

It is natural to study the fractional Hadwiger number of random graphs. Theorem 2 implies that a

random graph on n vertices almost surely has fractional Hadwiger number O(n/(log n)1/4). We prove

a much better estimate, that the fractional Hadwiger number of a random graph is almost surely

asymptotic to its Hadwiger number. Bollobás, Catlin, and Erdős [2] showed that the random graph

G(n, p) on n vertices with fixed edge probability p almost surely has Hadwiger number asymptotic to
n√
logb n

, where b = 1/(1− p).

Theorem 3. The fractional Hadwiger number of a random graph is almost surely asymptotically equal

to its Hadwiger number. That is, for fixed p and all n, almost surely

hf (G(n, p)) = (1 + o(1))
n

√

logb n
,
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where b = 1/(1 − p).

We conjecture that a stronger result holds, that they are in fact almost surely equal.

Conjecture 1. A graph G on n vertices picked uniformly at random almost surely satisfies h(G) =

hf (G).

This would imply that for most graphs G, the ratio of the Hadwiger number of G to the number

of vertices of G is the same as for its blow-ups.

Organization: In the next section, we establish several upper bounds on the fractional Hadwiger

number, including Theorems 2 and 3. In Section 3, we use these upper bounds on the fractional

Hadwiger number to construct dense graphs with sublinear Hadwiger number. We finish with some

concluding remarks. We sometimes omit floor and ceiling signs for clarity of presentation.

2 Upper bounds on the fractional Hadwiger number

In this section we establish several upper bounds on the fractional Hadwiger number of a graph. We

begin by proving Theorem 2, which states that if G is a graph on n vertices, then hf (G) ≤
√

2h(G)n.

Proof of Theorem 2: Let B be a bramble for a graph G on n vertices. Let w : B → R≥0 be

a weight function such that h =
∑

B∈B w(B) and for each vertex v, the sum of the weights of the

subgraphs in B containing v is at most 1. It suffices to show that B contains a subcollection of at

least h2

2n vertex-disjoint subgraphs. Indeed, contracting these subgraphs we get a clique minor in G

of order at least h2

2n , and picking B and w to maximize h, we have h = hf (G) so that h(G) ≥ hf (G)2

2n

or equivalently hf (G) ≤
√

2h(G)n. We will prove the desired lower bound on the maximum number

of vertex-disjoint trees in B by induction on n. The base case n = 1 clearly holds, and suppose the

desired bound holds for all n′ < n.

Let B0 be a subgraph in B with the minimum number of vertices, and let t = |B0|. Since for

each vertex v, the sum of the weights of the subgraphs in B containing v is at most 1, summing this

inequality over all vertices yields
∑

B∈B
w(B)|B| ≤ n.

In particular,

h =
∑

B∈B
w(B) ≤ n/|B0| = n/t.

Delete from B all subgraphs containing a vertex in B0, and let B′ be the resulting subcollection

of subgraphs. Since for each vertex v, the sum of the weights of the trees containing v is at most 1,

we have
∑

B∈B′ w(B) ≥ h − t. The number of vertices not in B0 is n − t. Hence, from a maximum

subcollection of vertex-disjoint subgraphs in B′ and adding B0, we get by induction at least

1 +
(h− t)2

2(n − t)
≥ 1 +

(h− t)2

2n
= 1 +

h2

2n
(1− t

h
)2 ≥ 1 +

h2

2n
(1− n

h2
)2 ≥ 1 +

h2

2n
(1− 2n

h2
) =

h2

2n

vertex disjoint subgraphs in B, which completes the proof.

We next establish a useful lemma for proving Theorem 3. This lemma extends the result of

Bollobás, Catlin, and Erdős [2] on the largest clique minor in a random graph by giving a bound on

the size of the largest clique minor in which the size of the connected subgraphs corresponding to the

vertices of the clique are bounded. Recall that a clique minor in a graph G of size t consists of t vertex

4



disjoint connected subsets V1, . . . , Vt, such that for each pair i, j with i < j, there is an edge of G with

one vertex in Vi and the other in Vj. Define the breadth of the clique minor to be maxi |Vi|.

Lemma 1. Let 0 < p < 1 be fixed, 0 < ǫ < 1, and define d :=
√

(1− ǫ) logb n with b = 1/(1 − p).

Almost surely, the largest clique minor in G(n, p) of breadth at most d has order at most 4n1−ǫd lnn.

Proof. If d < 1, this trivially holds as there is no such nonempty clique minor of breadth at most d.

Hence, we may assume d ≥ 1. Consider a collection C = {V1, . . . , Vh} of h = ⌈4n1−ǫd ln n⌉ nonempty

vertex subsets each of size at most d. A rather crude estimate (which is sufficient for our purposes)

on the number of such collections is that it is at most ndh. For each pair Vi, Vj , the probability there

is an edge between Vi and Vj is

1− (1− p)|Vi||Vj| ≤ 1− (1− p)d
2 ≤ e−(1−p)d

2

= e−nǫ−1

,

where we used the inequality 1 − x ≤ e−x for 0 < x < 1 with x = (1 − p)d
2

. By independence, the

probability that there is, for all 1 ≤ i < j ≤ h, an edge between Vi and Vj is at most e−nǫ−1(h
2
).

Therefore, the expected number of clique minors of breadth at most d and size at least h is at most

ndhe−nǫ−1(h
2
) = eh(d lnn−nǫ−1(h−1)/2) = o(1).

This implies that almost surely no such clique minor exists.

Now we are ready to prove Theorem 3.

Proof of Theorem 3: Let G = G(n, p) be a random graph on n vertices with edge density p.

Let b = 1/(1 − p) and ǫ = 4 log logn
logn . Let B be a bramble for G. Suppose there is a weight function

w : B → R≥0 such that h =
∑

B∈B w(B) and for each vertex v, the sum of the weights of the subgraphs

in B containing v is at most 1.

Let B′ denote the subcollection of subgraphs in B each with more d =
√

(1− ǫ) logb n vertices, and

B′′ = B \ B′. We have

n ≥
∑

B∈B
w(B)|B| ≥

∑

B∈B′

w(B)|B| ≥ d
∑

B∈B′

w(B),

where the first inequality follows from the fact that the sum of the weights of the subgraphs in B
containing any given vertex is at most 1. Hence,

∑

B∈B′ w(B) ≤ n
d and

∑

B∈B′′

w(B) ≥ h− n

d
.

We now pick out a maximal subcollection of vertex-disjoint subgraphs in B′′. We can greedily

do this, picking out vertex disjoint subgraphs B1, . . . , Bs until there are no more subgraphs in B′′

remaining which are vertex-disjoint from these subgraphs. Since the sum of the weight of all subgraphs

containing a given vertex is at most 1, we must have
∑s

i=1 |Bi| ≥ h− n
d . Since also |Bi| ≤ d for each

i, we have s ≥ h−n/d
d . On the other hand, by Lemma 1, since B1, . . . , Bs forms a clique minor of size

s and depth at most d, almost surely s ≤ n1−ǫd lnn. We therefore get almost surely

h ≤ n

d
+ ds ≤ n

d
+ n1−ǫd2 lnn < (1 + ǫ)

n
√

logb n
,
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where we use n is sufficiently large, nǫ = log4 n, d =
√

(1− ǫ) logb n and the estimate 1√
1−ǫ

< 1+ 2
3ǫ for

ǫ < 1/4. As also hf (G) ≥ h(G), and almost surely h(G) = (1 + o(1)) n√
logb n

, this estimate completes

the proof.

Note that there is an edge between each pair of connected subgraphs corresponding to the vertices

of a clique minor. It follows that if G is a graph with m edges, then m ≥
(h(G)

2

)

. We finish the section

with a similar upper bound on the fractional Hadwiger number.

Proposition 4. If a graph G has m edges, then hf (G) ≤
√
3m+ 1.

Proof. It is easy to see that we may assume that G is connected and hence the number of vertices of

G is at most m+ 1. Let B be a bramble for G. Suppose there is a weight function w : B → R≥0 such

that h =
∑

B∈B w(B) and for each vertex v, the sum of the weights of the connected subgraphs in B
containing v is at most 1.

Consider the sum S =
∑

w(B)w(B′) over all ordered pairs of vertex-disjoint subgraphs in B. For
any fixed subgraph B, the sum of the weights of the subgraphs in B containing at least one vertex in

B is at most |B|, so the sum
∑

B′ w(B′) over all subgraphs B′ ∈ B disjoint from B is at least h− |B|.
Therefore, S ≥ ∑

B∈B w(B)(h − |B|) = h2 −∑

B∈B w(B)|B| ≥ h2 − n. For each edge (i, j), the sum
∑

w(B)w(B′) over all pairs of vertex-disjoint subgraphs in B with i ∈ V (B) and j ∈ V (B′) is at most

1 since the sum of the weights of the subgraphs containing any given vertex is at most 1. As between

each pair of vertex-disjoint subgraphs in B there is at least one edge, we therefore get S ≤ 2m. It

follows h ≤
√
2m+ n ≤

√
3m+ 1, which completes the proof.

3 Dense graphs with sublinear Hadwiger number

The purpose of this section is to give the details for the explicit construction of a dense graph with

sublinear Hadwiger number. We begin this section by proving Proposition 1, which states that

h(G[r]) = r · hr(G) ≤ r · hf (G)

holds for every graph G and positive integer r.

Proof of Proposition 1: Let G be a graph and G[r] be the complete blow-up of G. Consider a

maximum clique minor in G[r] of order t = h(G[r]) consisting of disjoint connected vertex subsets

V1, . . . , Vt with an edge between a vertex in Vi and a vertex in Vj for i 6= j. Let Bi be the vertex

subset of G where v ∈ Bi if there is a vertex in the blow-up of v which is also in Vi. The collection

B = {B1, . . . , Bt} is clearly a bramble. Define the weight w(Bi) = 1/r for each i. For each vertex v

of G, as V1, . . . , Vt are vertex disjoint, at most r sets Bi contain v. Hence, the bramble B with this

weight function demonstrates hr(G) ≥ h(G[r])/r.

In the other direction, consider a bramble B for G and a weight function w on B such that w(B) is a

multiple of 1/r for all B ∈ B and for every vertex v, the sum of the weights w(B) over all B containing

v is at most 1. For each such bramble B, we pick out rw(B) copies of B in the blow-up of B in G[r],

such that all of the copies are vertex-disjoint. We can do this since rw(B) is a nonnegative integer,

and for each vertex v of G, the sum of rw(B) over all B ∈ B which contain v is at most r. These copies

of the sets in B form a clique minor in G[r] of order
∑

B∈B rw(B) = rhr(G). Hence h(G[r]) ≥ rhr(G),

and we have proved h(G[r])/r = hr(G). Since hr(G) ≤ hf (G), the proof is complete.

The following theorem shows how to find, for each 0 < ǫ, p < 1, a graph G of edge density at least

p such that the ratio of the Hadwiger number of G to the number of vertices of G is at most ǫ for G

and its blow-ups.
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Theorem 5. For each 0 < ǫ, p < 1, there is a graph G with edge density at least p and hf (G) ≤ ǫ. In

particular, every complete blow-up of G has edge-density at least p and is ǫ-Hadwiger. Moreover, for

p fixed and ǫ tending to 0, the graph G has n0 = bǫ
−2+o(1) vertices with b = 1/(1− p) and can be found

in time
( N
pN

)1+o(1)
with N =

(n0

2

)

.

Proof. From Theorem 3, we have that the random graphG(n0, p) almost surely has fractional Hadwiger

number (1+ o(1)) n0√
logb n0

. Also, with at least constant positive probability, the edge density of such a

random graph is at least p. Furthermore, Lemma 1 shows that G(n0, p) almost surely has the stronger

property that its largest clique minor of depth at most d = (1 + δ) n0√
logb n0

with δ = 4 log logn0

logn0
has

order less than s = 4n1−δ
0 d lnn0. This is indeed stronger as in the proof of Theorem 3, we can bound

the fractional Hadwiger number from above by n0/d + ds, which is less than ǫn0 if the o(1) term in

the definition of n0 is picked correctly. To show that a graph does not have a clique minor of depth at

most d and order s, it suffices to simply test all possible disjoint vertex subsets V1, . . . , Vs with |Vi| ≤ d

for 1 ≤ i ≤ s, and check if each Vi is connected and there is an edge between each Vi and Vj for i 6= j.

There are at most nds
0 such s-tuples of subsets to try.

Thus, by testing each graph on n0 vertices with edge density p for a clique minor of order s and

depth at most d, we will find such a graph G without a clique minor order s and depth at most d,

and this is the desired graph G. The number of labeled graphs on n0 vertices with edge density p is
(

N
pN

)

with N =
(

n0

2

)

The amount of time, roughly nds
0 , needed to test each such graph is a lower order

term.

If we wish to get an explicit construction of a dense graph which is ǫ-Hadwiger on a given number

n of vertices, if n is not a multiple of n0, we can take a slightly larger blow-up of a small graph on n0

vertices, and simply delete a few vertices (less than n0 vertices with at most one from each clique in

the complete blow-up).

The next theorem gives a solution to Thomason’s problem by explicitly constructing a dense graph,

which is a blow-up of a small graph G, for which the Hadwiger number of the graph and its complement

are both relatively small.

Theorem 6. For all 0 < ǫ < 1 there is a graph G on n0 = 2(1+o(1))ǫ−2

vertices which can be found in

time 2(1+o(1))n2

0
/2 such that max(hf (G), hf (Ḡ)) ≤ ǫn0. In particular, every complete blow-up of G and

its complement are ǫ-Hadwiger.

Proof. From Theorem 3, a graph on n0 vertices picked uniformly at random almost surely has fractional

Hadwiger number (1 + o(1)) n0√
logn0

. Furthermore, Lemma 1 shows that a graph on n0 vertices picked

uniformly at random almost surely has the stronger property that its largest clique minor of depth at

most d = (1 + δ) n0√
logn0

with δ = 4 log logn0

logn0
has order less than s = 4n1−δ

0 d lnn0. As in the proof of

Theorem 3, we can bound the fractional Hadwiger number from above by n0/d + ds, , which is less

than ǫn0 if the o(1) term in the definition of n0 is picked correctly. To show that a graph and its

complement does not have a clique minor of depth at most d and order s, it suffices to simply test all

possible disjoint vertex subsets V1, . . . , Vs with |Vi| ≤ d for 1 ≤ i ≤ s, and check if each Vi is connected

and there is an edge between each Vi and Vj for i 6= j. There are at most nds
0 such s-tuples of subsets

to try.

Thus, testing each graph on n0 vertices, we find the desired graph G for which G and its complement

do not contain a clique minor order s and depth at most d. The number of graphs on n0 vertices is

2(
n0
2
), and the amount of time, roughly nds

0 , needed to test each such graph is a lower order term.
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4 Concluding remarks

• We showed how to explicitly construct a dense graph on n vertices with Hadwiger number o(n).

However, random graphs show that such graphs exist with Hadwiger number O( n√
logn

). It remains an

interesting open problem to construct such graphs.

• We conjecture that almost all graphs G satisfy h(G) = hf (G), i.e., a random graph on n vertices

almost surely satisfies that its Hadwiger number and fractional Hadwiger number are equal. We proved

in Theorem 3 that these numbers are asymptotically equal for almost all graphs. This conjecture is

equivalent to showing that almost all graphs satisfy the the ratio of the Hadwiger number to the

number of vertices is equal for all blow-ups of the graph.

• Note that if H is a minor of G, then hf (H) ≤ hf (G). It follows that the family FC of graphs G

with hf (G) < C is closed under taking minors. The Robertson-Seymour theorem implies that FC is

characterized by a finite list of forbidden minors. For each C, what is this family? We understand

this family for C ≤ 4 as then h(G) = hf (G).

• As noted by Seymour [18], it would be interesting to prove a fractional analogue of Hadwiger’s

conjecture, that hf (G) ≥ χ(G) for all graphs G. As hf (G) ≥ h(G), this conjecture would follow from

Hadwiger’s conjecture. This may be hard in the case of graphs of independence number 2. For such

graphs on n vertices, χ(G) ≥ n/2, and so Hadwiger’s conjecture would imply h(G) ≥ n/2, but the best

known lower bound [4] on the Hadwiger number is of the form h(G) ≥ (13 + o(1))n. Improving this

bound to h(G) ≥ (13 + ǫ)n for some absolute constant ǫ > 0 is believed to be a challenging problem,

and it is equivalent to proving a similar lower bound for hf (G).

• Graph lifts are another interesting operation. An r-lift of a graph G = (V,E) is the graph on

V × [r], whose edge set is the union of perfect matchings between {u} × [r] and {v} × [r] for each

edge (u, v) ∈ E. Drier and Linial [3] studied clique minors in lifts of the complete graph Kn. One

of the interesting open questions remaining here is whether every lift of the complete graph Kn has

Hadwiger number Ω(n).

• Treewidth is an important graph parameter introduced by Robertson and Seymour [14] in their

proof of Wagner’s conjecture. A tree decomposition of a graph G = (V,E) is a pair (X,T ), where

X = {X1, ...,Xt} is a family of subsets of V , and T is a tree whose nodes are the subsets Xi, satisfying

the following three properties.

1. V = X1 ∪ . . . ∪Xt.

2. For every edge (v,w) in the graph, there is a subset Xi that contains both v and w.

3. If Xi and Xj both contain a vertex v, then all nodes Xz of the tree in the (unique) path between

Xi and Xj contain v as well.

Robertson and Seymour proved that treewidth is related to the largest grid minor. Indeed, they

proved that for each r there is f(r) such that every graph with treedwidth at least f(r) contains a r×r

grid minor. The original upper bound on f(r) was enormous. It was later improved by Robertson,

Seymour, and Thomas [17], who showed cr2 log r ≤ f(r) ≤ 2c
′r5 where c and c′ are absolute constants.

In the other direction, it is easy to show that any graph which contains an r × r grid minor has

treewidth at least r.

Separators are another important concept in graph theory which have many algorithmic, extremal,

and enumerative applications. A vertex subset V0 of a graph G is a separator for G if there is a partition

V (G) = V0 ∪ V1 ∪ V2 such that |V1|, |V2| ≤ 2n/3 and there are no edges with one vertex in V1 and the

8



other vertex in V2. A fundamental result of Lipton and Tarjan states that every planar graph on n

vertices has a separator of size O(
√
n). This result has been generalized in many directions, to graphs

embedded on a surface [7], graphs with a forbidden minor [1], intersection graphs of balls in R
d, and

intersection graphs of geometric objects in the plane [5], [6]. The separation number of a graph G is

the minimum s for which every subgraph of G has a separator of size at most s.

The bramble number of a graph G is the minimum b such that for every bramble for G there is a

set of b vertices for which every subgraph in the bramble contains at least one of these b vertices.

Two graph parameters are comparable if one of them can be bounded as a function of the other,

and vice versa. Robertson and Seymour showed that treewidth and largest grid minor are comparable.

The following theorem which we state without proof extends this result. It may be surprising because

some of these parameters appear from their definitions to be unrelated.

Theorem 7. Fractional Hadwiger number, r-integral Hadwiger number for each r ≥ 2, bramble num-

ber, separation number, treedwidth, and maximum grid minor size are all comparable.

The dependence between some of these graph parameters is not well understood and improving

the bounds remains an interesting open problem.

Acknowledgements: I am greatly indebted to Noga Alon, Nati Linial, and Paul Seymour for helpful

conversations.
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