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ABSTRACT
A topological graph is a graph drawn in the plane with ver-
tices represented by points and edges as arcs connecting its
vertices. A k-grid in a topological graph is a pair of subsets
of the edge set, each of size k, such that every edge in one
subset crosses every edge in the other subset. It is known
that for a fixed constant k, every n-vertex topological graph
with no k-grid has O(n) edges. We conjecture that this re-
mains true even when: (1) considering grids with distinct
vertices; or (2) all edges are straight-line segments and the
edges within each subset of the grid are required to be pair-
wise disjoint. These conjectures are shown to be true apart
from log∗ n and log2 n factors, respectively. We also settle
the conjectures for some special cases.

1. INTRODUCTION
The intersection graph of a set C of geometric objects has

vertex set C and an edge between every pair of objects with
a nonempty intersection. The problems of finding maxi-
mum independent set and maximum clique in the intersec-
tion graph of geometric objects have received a considerable
amount of attention in the literature due to their applica-
tions in VLSI design [9], map labeling [1], frequency as-
signment in cellular networks [12], and elsewhere. Here we
study the intersection graph of the edge set of graphs that
are drawn in the plane. It is known that if this intersection
graph does not contain a large complete bipartite subgraph,
then the number of edges in the original graph is small. We
show that this remains true even under some very restrictive
conditions.

A topological graph is a graph drawn in the plane with
points as vertices and edges as arcs connecting its vertices.
The arcs are allowed to cross, but they may not pass through
vertices except for their endpoints. We only consider graphs
without parallel edges or self-loops. A topological graph is
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simple if every pair of its edges intersect at most once. If the
edges are drawn as straight-line segments, then the graph is
geometric.

Given a topological graph G, the intersection graph of
E(G) has the edge set of G as its vertex set, and an edge
between every pair of crossing edges. Note that we consider
the edges of G as open curves, therefore, edges that intersect
only at a common vertex are not adjacent in the intersection
graph. A complete bipartite subgraph in the intersection
graph of E(G) corresponds to a grid structure in G.

Definition 1.1. A (k, l)-grid in a topological graph is a
pair of edge subsets E1, E2 such that |E1| = k, |E2| = l, and
every edge in E1 crosses every edge in E2. A k-grid is an
abbreviation for a (k, k)-grid.

Theorem 1.2 ([15]). Given fixed constants k, l ≥ 1
there exists another constant ck,l, such that any topologi-
cal graph on n vertices with no (k, l)-grid has at most ck,ln
edges.

The proof of Theorem 1.2 in [15] actually guarantees a
grid in which all the edges of one of the subsets are adjacent
to a common vertex. For two recent and different proofs of
Theorem 1.2 see [8] and [7]. Tardos and Tóth [19] extended
the result in [15] by showing that there is a constant ck such
that a topological graph on n vertices and at least ckn edges
must contain three subsets of k edges each, such that every
pair of edges from different subsets cross, and for two of
the subsets all the edges within the subset are adjacent to a
common vertex.

Note that according to Definition 1.1 the edges within
each subset of the grid are allowed to cross or share a
common vertex, as is indeed required in the proofs of [15]
and [19]. However, a drawing similar to Figure 1 usually
comes to mind when one thinks of a “grid”. That is, we
would like every pair of edges within each subset of the grid
to be disjoint, i.e., neither to share a common vertex nor
to cross. We say that a (k, l)-grid formed by edge subsets
E1 and E2 is natural if the edges within E1 are pairwise
disjoint, and the edges within E2 are pairwise disjoint.

Conjecture 1.3. Given fixed constants k, l ≥ 1 there ex-
ists another constant ck,l, such that any simple topological
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Figure 1: a “natural” grid

graph G on n vertices with no natural (k, l)-grid has at most
ck,ln edges.

Note that it is already not trivial to show that an n-vertex
geometric graph with no k pairwise disjoint edges has O(n)
edges (see [17] and [20]). Moreover, it is an open question
whether a simple topological graph on n vertices and no k
disjoint edges has O(n) edges (the best upper bound, due to
Pach and Tóth [16], is O(n log4k−8 n)). Therefore, a proof
of Conjecture 1.3 is probably hard to obtain. Here we prove
the following bounds for geometric and simple topological
graphs with no natural k-grids.

Theorem 1.4.

(i) An n-vertex geometric graph with no natural k-grid has
O(k2n log2 n) edges.

(ii) An n-vertex simple topological graph with no natural
k-grid has O(n log4k−6 n) edges.

An n-vertex topological graph with no (1, 1)-grid is planar
and hence has at most 3n − 6 edges, for n > 2. We settle
Conjecture 1.3 for the first nontrivial case.

Theorem 1.5. An n-vertex simple topological graph with
no natural (2, 1)-grid has O(n) edges.

Many extremal problems on geometric graphs become eas-
ier for convex geometric graphs— geometric graphs whose
vertices are in convex position. Indeed, it was already
pointed out by Klazar and Marcus [10] that it is not hard
to modify the proof of the Marcus-Tardos Theorem [13] and
obtain a linear bound for the number of edges in an or-
dered graph that does not contain a certain ordered match-
ing (see [10] for more details). Since crossings in convex
geometric graphs are determined by the order of the ver-
tices, this also settles Conjecture 1.3 for convex geometric
graphs.

Corollary 1.6. Given a fixed constant k ≥ 1 there ex-
ists another constant ck, such that any convex geometric
graph on n vertices with no natural k-grid has at most ckn
edges.

The constant ck in Corollary 1.6 is huge. Using different
techniques, we prove tighter upper bounds for the number
of edges in convex geometric graphs avoiding natural (2, 1)-,
(2, 2)-, or (k, 1)-grids.

Conjecture 1.3 is clearly false for (not necessarily simple)
topological graphs: the complete graph can be drawn as a
topological graph in which every pair of edges intersect (at
most twice [16]). Therefore, for topological graphs we have
to settle for only one of the components of “disjointness”.

Conjecture 1.7. Given fixed constants k, l ≥ 1 there ex-
ists another constant ck,l, such that any topological graph
on n vertices with no (k, l)-grid with distinct vertices has at
most ck,ln edges.

This conjecture is shown to be true for l = 1.

Theorem 1.8. An n-vertex topological graph with no
(k, 1)-grid with distinct vertices has O(n) edges.

For the general case we provide a slightly superlinear up-
per bound.

Theorem 1.9. Every n-vertex topological graph with no
k-grid with distinct vertices has at most ckn log∗ n vertices,
where ck = kO(log log k) and log∗ is the iterated logarithm
function.

Note that ck is just barely superpolynomial in k.

Organization. The rest of this paper is organized as fol-
lows. We discuss topological graphs with no grids with dis-
tinct vertices in Section 2. In Section 3 we prove the bounds
for the number of edges in simple topological graphs with
no natural grids. Convex geometric graphs are considered
in Section 4. We systematically omit floor and ceiling signs
whenever they are not crucial for the sake of clarity of pre-
sentation. We also do not make any serious attempt to op-
timize absolute constants in our statements and proofs. All
logarithms in this paper are base 2.

2. GRIDS ON DISTINCT VERTICES
In this section we prove Theorems 1.9 and 1.8.

2.1 Topological graphs with no k-grid with dis-
tinct vertices

Here we prove Theorem 1.9. We use the following three
results from different papers. A graph is a string graph if it
is an intersection graph of a collection of curves in the plane.

Lemma 2.1 ([5]). Every string graph with m vertices
and εm2 edges contains the complete bipartite graph Kt,t

as a subgraph with t ≥ εc1 m
log m

, where c1 is an absolute
constant.

The pair-crossing number pair-cr(G) of a graph G is the
minimum possible number of unordered pairs of crossing
edges in a drawing of G. The bisection width, denoted by
b(G), is defined for every simple graph G with at least two
vertices. It is the smallest nonnegative integer such that
there is a partition of the vertex set V = V1 ∪̇V2 with 1

3
·

|V | ≤ Vi ≤ 2
3
· |V | for i = 1, 2, and |E(V1, V2)| = b(G).

We will use the following result of Kolman and Matoušek
[11] which relates the pair-crossing number and the bisection
width of a graph.

Lemma 2.2 ([11]). There is an absolute constant c2

such that if G is a graph with n vertices of degrees d1, . . . , dn,
then

b(G) ≤ c2 log n

⎛
⎝√pair-cr(G) +

√√√√ n∑
i=1

d2
i

⎞
⎠ .
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Let G be a topological graph with n vertices and more
than n(log n)c3 log h edges. It is shown in [6] that G has h
pairwise crossing edges. In [7], it is shown that G has h
pairwise crossing edges with distinct vertices. This stronger
version was needed in the proof of an upper bound on the
number of edges in a string graph with a forbidden bipartite
subgraph. Here we need an even stronger version for the
proof of Theorem 1.9.

Theorem 2.3. Let G be a topological graph with n ver-
tices such that the edges of G are colored with each color
class forming a matching. If G does not contain h pairwise
crossing edges of different colors and with distinct vertices,
then the number m of edges of G is at most n(log n)c3 log h.

The proof of Theorem 2.3 is so similar to the proof of the
previous weaker versions that we only outline the proof idea,
showing details only where they differ from the previous
versions in [6] and [7]. The proof is by induction on n and
h. If the intersection graph of the m edges is sparse, i.e.,
there are at most cm2/(log n)4 pairs of intersecting edges for
some small absolute constant c > 0, then we apply Lemma
2.2 and find a partition of the vertices into two subsets with
few edges between them. In this case, we are done by the
induction hypothesis applied to each of these vertex subsets.
If the intersection graph of the edges is dense, i.e., there are
more than cm2/(log n)4 pairs of edges that intersect, then
using Lemma 2.1 we find two large edge subsets E1, E2 with
|E1| = |E2| such that every edge in E1 intersects every edge
in E2. In [7], it is shown that one can pick E′

1 ⊂ E1 and
E′

2 ⊂ E2 with |E′
1| = |E′

2| ≥ |E2|/8 such that the vertices
that are in edges in E′

1 are different from the vertices that
are in edges in E′

2. With the next lemma, with Ai = E′
i

for i = 1, 2, we find subsets E′′
1 ⊂ E′

1 and E′′
2 ⊂ E′

2 with
|E′′

1 | = |E′′
2 | such that every edge in E′′

1 has different color
from every edge in E′′

2 .

Lemma 2.4. Let A1, A2 be two disjoint sets such that
|A1| = |A2| ≥ 2n. Suppose the elements of A1 ∪ A2 are
colored such that no color class has more than n/2 ele-
ments. Then there are A′

1 ⊂ A1 and A′
2 ⊂ A2 with

|A′
1|, |A′

2| ≥ |A1|/4 such that every element of A′
1 has a dif-

ferent color from every element of A′
2.

Proof. Let c1, . . . , ct be the colors. In increasing order
of j, at step j, if there are at least as many elements in A1

of color cj as there are in A2 of color cj , then we place the
elements of color cj which are in A1 in A′

1. If the number of
elements of color cj which are in A2 is more than the number
of elements of color cj in A1, then we place all elements of
color cj which are in A2 in A′

2. We stop this process after j0
colors if there is i such that |A′

i| ≥ |Ai|/2. This process stops
at some step j0, since at least half of the elements considered
are placed in A′

1 or A′
2. Suppose without loss of generality

that |A′
1| ≥ |A1|/2. For j0 < j ≤ t, we also place all elements

of color cj in A′
2. Since at most |A′

1| ≤ |A1|/2+n/2 elements
of A2 are not in A′

2, then |A′
2| ≥ |A2| − |A1|/2 − n/2 =

|A2|/2−n/2 ≥ |A2|/4. By construction, |A′
1|, |A′

2| ≥ |A1|/4,
and no element of A′

1 has the same color as an element in
A′

2. �

Not both E′′
1 and E′′

2 contain h/2 pairwise crossing edges
of distinct colors and distinct vertices, since otherwise to-
gether we would have h pairwise crossing edges of distinct

colors and distinct vertices. The induction hypothesis there-
fore gives an upper bound on the size of E′′

1 , which completes
the proof of Theorem 2.3.

Let h(k) be the minimum h such that if a collection C
of h pairwise intersecting curves is such that each of the
curves is partitioned into one or two subcurves, then there
are k subcurves intersecting k other subcurves, and these
2k subcurves come from distinct curves in C. Note that
h(1) = 2.

Lemma 2.5. For k ≥ 2, we have h(k) ≤ c4k log k for
some absolute constant c4.

Proof. Let h = c4k log k, where c4 = 16c1+1, where c1 is
the absolute constant in Lemma 2.1. For each curve γ ∈ C,
randomly pick one of the at most two subcurves to keep.
For each pair γ, γ′ ∈ C, there is a probability at least 1/4
that the subcurve of γ we pick intersects the subcurve of
γ′ we pick. So the expected number of intersecting pairs of
curves is at least 1

4

(
h
2

)
. So there is a collection C′ consisting

of one subcurve of the at most two subcurves for each curve
such that the number of intersecting pairs of curves in C′

is at least 1
4

(
h
2

)
. Since C′ has cardinality h and at least

1
4

(
h
2

) ≥ 1
16

h2 intersecting subcurves, then by Lemma 2.1,
the intersection graph of C′ contains a complete bipartite
graph with parts of size(

1

16

)c1 h

log h
≥ k,

since we picked c4 sufficiently large. �

Let fk(n) denote the maximum number of edges of a topo-
logical graph with n vertices and no k-grid with distinct ver-
tices. The remainder of this subsection is devoted toward
proving Theorem 1.9, which says that fk(n) ≤ ckn log∗ n. It
will be helpful to consider a related function. Let fk(n, Δ)
denote the maximum number of edges of a topological graph
with n vertices, maximum degree at most Δ, and no k-grid
with distinct vertices.

We collect several useful lemmas before proving Theo-
rem 1.9. For a graph G and vertex sets A and B, let eG(A)
denote the number of edges with both vertices in A and
eG(A, B) denote the number of pairs (a, b) ∈ A×B that are
edges of G.

Lemma 2.6. There is an absolute constant c such that if
Δ = (log n)c log k, then

fk(n) ≤ fk(n, Δ) + kc log log kn.

Proof. Let G = (V, E) be a topological graph with n
vertices, fk(n) edges, and no k-grid with distinct vertices.
Partition V = A∪B, where A consists of those vertices with
degree more than Δ. We construct a sequence of topological
graphs Gi with vertex set A. Let G0 simply be the induced
subgraph of G with vertex set A. Suppose we already have
topological graph Gi. If there is a vertex v ∈ B adjacent
to two vertices a1, a2 ∈ A which are not adjacent, then we
replace the path of length two with edges (a1, v) and (v, a2)
by an edge from a1 to a2, and let Gi+1 be the resulting
topological graph. We eventually stop at some step j and
we have a topological graph Gj on A. Notice that at each
step, we delete two edges from B to A and replace it by one
edge between two vertices in A. For each vertex v ∈ B, the
set Av of vertices in A adjacent to v after constructing Gj
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form a clique in Gj , otherwise v is adjacent to two vertices
a1, a2 ∈ A that are not adjacent in Gj , which contradicts
that we stopped at step j. Note that Gj has j more edges
than the subgraph of G induced by A.

We first provide an upper bound on the number of edges of
Gj . Each edge in Gj corresponds to either an edge or a path
of length two in G. We assign each edge of Gj a color, where
each edge of Gj that is an edge of G gets its own color, and
we color the edges of Gj that form a path of length two in G
by the middle vertex v ∈ B. Note that by construction this
coloring of the edges of Gj has the property that each color
class is a matching. So if there are h(k) pairwise intersecting
edges in Gj with distinct vertices and distinct colors, then
G contains a k-grid with distinct vertices, a contradiction.
By Theorem 2.3 and Lemma 2.5, we have

eG(A) + j = eGj (A) ≤ |A|(log |A|)c3 log h(k)

≤ |A|(log n)c3 log(c4k log k) ≤ |A|(log n)c6 log k

for some absolute constant c6.
As discussed above, for each vertex v ∈ B, the set Av

of vertices in A adjacent to v after constructing Gj form
a clique in Gj . This clique can not have h(k) pairwise in-
tersecting edges with distinct vertices and distinct colors,
otherwise it contains a k-grid with distinct vertices. By
Theorem 2.3, we have(

|Av|
2

)
≤ |Av|(log |Av|)c3 log h(k),

so dividing both sides by |Av| we get

|Av| ≤ 2(log |Av|)c3 log h(k) + 1

and finally

|Av| ≤ h(k)c7 log log h(k)

for some absolute constant c7. Also using Lemma 2.5, we
have

|Av| ≤ kc8 log log k

for some absolute constant c8. The number eG(A, B) of
edges of G with one vertex in A and the other vertex in B
is

2j +
∑
v∈B

|Av| ≤ 2j + |B|kc8 log log k.

Since each vertex in A has degree at least Δ in G, the
number eG(A) + eG(A, B) of edges in G containing at least
one vertex in A is at least |A|Δ/2. So

|A|Δ/2 ≤ eG(A) + eG(A, B)

≤ eG(A) + 2j + |B|kc8 log log k

≤ 2|A|(log n)c6 log k + |B|kc8 log log k

≤ 2|A|(log n)c6 log k + nkc8 log log k

If nkc8 log log k ≤ 2|A|(log n)c6 log k, then we get

Δ ≤ 8(log n)c6 log k,

which contradicts Δ = (log n)c log k with c a sufficiently
large constant. So nkc8 log log k > 2|A|(log n)c6 log k, and the
number of edges in G containing a vertex in A is at most
2kc8 log log kn ≤ kc log log kn. Note that every vertex in B in
G has degree at most Δ, so eG(B) ≤ fk(|B|, Δ) ≤ fk(n, Δ),

where the last inequality follows by adding isolated vertices
to B to get a set of n vertices. Therefore, the number fk(n)
of edges of G is at most fk(n, Δ) + kc log log kn. �

Let dk(n) = maxn′≤n fk(n′)/n′ and dk(n, Δ) =
maxn′≤n fk(n′, Δ)/n′. Lemma 2.6 demonstrates that

dk(n) ≤ dk(n, Δ) + kc log log k (1)

where Δ = (log n)c log k. Note that a triangulated planar
graph with n vertices has 3n− 6 edges, so d1(n) = 3− 6

n
for

n ≥ 3, so dk(n) ≥ 1 for n ≥ 3. By Theorem 2.3, we have

dk(n) ≤ (log n)c3 log 2k (2)

since a set of 2k pairwise crossing edges with distinct ver-
tices in a topological graph contains a k-grid with distinct
vertices. We will improve this bound significantly.

Lemma 2.7. There are absolute constants c9 and c10 > 0
such that for each k, n and Δ with Δ ≥ k and n ≥ Δc9 ,
there is n1 ≤ 2n/3 such that

dk(n1, Δ) ≥ dk(n, Δ)
(
1 − n−c10

)
.

Proof. Let G be a topological graph with at most n ver-
tices, maximum degree at most Δ, and no k-grid with dis-
tinct vertices which has maximum possible average degree
among all such topological graphs. Without loss of gener-
ality, we may suppose that the number of vertices of G is
actually n, and let m = fk(n, Δ). Since each vertex has de-
gree at most Δ, then G does not contain a 4kΔ-grid. Let the
number of crossing pairs of edges of G be εm2, so the under-
lying graph of G has pair-crossing number at most εm2. By
Lemma 2.1, G has an �-grid with � ≥ εc1 m

log m
. Therefore, we

have the inequality εc1 m
log m

≤ 4kΔ, and we get ε ≤ m
− 2

3c1 ,

where we use 4kΔ ≤ m1/6 and log m ≤ m1/6. By Lemma
2.2, there is an absolute constant c2 such that if d1, . . . , dn

is the degree sequence of G, then

b(G) ≤ c2 log n

⎛
⎝√pair-cr(G) +

√√√√ n∑
i=1

d2
i

⎞
⎠

≤ c2 log n
(
ε1/2m + Δ

√
n
)

≤ c2 log n
(
m

1− 1
3c1 + Δ

√
n
)
≤ m1−c10

for some constant c10 > 0.
Therefore, there is a partition V (G) = V1 ∪ V2 such

that |V1|, |V2| ≤ 2
3
n and eG(V1, V2) ≤ m1−c10 . Since

G has m edges in total, there is i ∈ {1, 2} such that

eG(Vi) ≥ |Vi|
n

(
m − m1−c10

)
. Therefore, the subgraph of

G induced by Vi has average degree at least a fraction
1 − m−c10 ≥ 1 − n−c10 of the average degree of G. Let-
ting n1 = |Vi|, we have n1 ≤ 2n/3 and the subgraph of G
induced by Vi also has maximum degree at most Δ and does
not contain a k-grid with distinct vertices, completing the
proof. �

Repeatedly applying Lemma 2.7, we obtain the following
lemma.

Lemma 2.8. Let Δ = (log n)c log k as in Lemma 2.6.

There is a constant c′ such that dk(Δc′) ≥ (1− 1
Δ

)dk(n, Δ) ≥
dk(n, Δ) − 1.
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Proof. Let n0 = n. After one application of Lemma
2.7, we get dk(n1, Δ) ≥ dk(n, Δ)

(
1 − n−c10

)
for some n1 ≤

2n/3. After j applications of Lemma 2.7, we get dk(nj , Δ) ≥
dk(n, Δ)

∏j
i=1

(
1 − n−c10

i−1

)
for some nj ≤ (2/3)jn. Let i0 be

the first value such that ni0 ≤ Δc′ , where c′ is a sufficiently
large constant.

We have

dk(Δc′) ≥ dk(Δc′ , Δ) ≥ dk(ni0 , Δ)

≥ dk(n, Δ)

i0∏
i=1

(
1 − n−c10

i−1

)

≥ dk(n, Δ)

(
1 −

i0∑
i=1

n−c10
i−1

)

≥ dk(n, Δ)

(
1 − n−c10

i0−1

∞∑
i=0

(2/3)c10i

)

≥ dk(n, Δ)

(
1 − n−c10

i0−1

1

1 − (2/3)c10

)

≥ dk(n, Δ)

(
1 − (Δc′)c10 1

1 − (2/3)c10

)

≥ dk(n, Δ)(1 − 1

Δ
).

By (2), we have dk(n) ≤ (log n)c3 log 2k. Since c was chosen
sufficiently large in Lemma 2.6, we have dk(n, Δ) ≤ dk(n) ≤
Δ. Summarizing,

dk(Δc′) ≥ (1 − 1

Δ
)dk(n, Δ) ≥ dk(n, Δ) − 1.

�

The last inequality in Lemma 2.8 follows from (2) and the
fact that the constant c is chosen sufficiently large.

Combining Lemma 2.6, which gives us inequality (1), and
Lemma 2.8 we therefore get that there is an absolute con-
stant C such that

dk((log n)C log k) ≥ dk(n) − kC log log k.

Iterating this inequality until n ≤ k2C log log k, and finally ap-
plying the trivial inequality dk(n) ≤ n/2 if n ≤ k2C log log k,
we get that dk(n) = O(k2C log log k log∗ n), and hence

fk(n) = O(k2C log log kn log∗ n),

completing the proof of Theorem 1.9. �

2.2 Topological graphs with no (k, 1)-grid with
distinct vertices

Let G = (V, E) be a topological graph. For every edge
e ∈ E define X(e) to be set of edges in E that cross e
and share no common vertex with it. Given a set of edges
E′ ⊂ E, the vertex cover number of E′ is the minimum size
of a set of vertices V ′ ⊂ V such that every edge in E′ has at
least one of its endpoints in V ′. Theorem 1.8 will follow from
the next lemma, whose proof is due to Rom Pinchasi [18].

Lemma 2.9. Let k be a fixed integer and let G = (V, E) be
a topological graph on n vertices, such that for every e ∈ E
the vertex cover number of X(e) is at most k. Then there is
a constant ck, such that G has at most ckn edges.

Proof. We use a standard sampling argument. Let m be
the number of edges in G, and let 0 < q < 1 be a constant.

Let G′ be the graph obtained from G by taking every vertex
of G independently with probability q. Call an edge e′ in G′

good if there is no edge f ′ in G that crosses e′ and shares no
vertex with it. Denote by n∗ and m∗ the expected number
of vertices and good edges in G′, respectively. Clearly, n∗ =
qn. The probability that an edge e is good is at least q2(1−
q)k, thus m∗ ≥ q2(1 − q)km. Observe that two good edges
may cross only if they share a vertex. Thus, the good edges
form a planar graph by the Hanani-Tutte Theorem (see,
e.g., [21]). Therefore, q2(1 − q)km ≤ m∗ ≤ 3n∗ = 3qn, and
thus, m ≤ 3

q(1−q)k n. �

Now let G be an n-vertex topological graph with no (k, 1)-
grid with distinct vertices. We claim that for every e ∈ E(G)
the vertex cover number of X(e) is at most 2k. Assume not.
Then there is an edge e ∈ E(G) such that the vertex cover
number of X(e) is at least 2k+1. Pick an edge (u, v) ∈ X(e)
and remove all the other edges in X(e) that are covered by v
or u. This can be repeated k times, for otherwise X(e) can
be covered by at most 2k vertices. The edges we picked along
with the edge e form a (k, 1)-grid with distinct vertices. This
proves Theorem 1.8.

3. NATURAL GRIDS IN GEOMETRIC AND
SIMPLE TOPOLOGICAL GRAPHS

In this section we consider natural grids in geometric and
simple topological graphs and prove Theorems 1.4 and 1.5.

3.1 Proof of Theorem 1.4
In this section we prove Theorem 1.4, which gives an upper

bound on the number of edges of a geometric graph or a
simple topological graph without a natural k-grid.

We use the following three results from three different
papers. Pach et al. [14] proved the following relationship
between the crossing number and the bisection width of a
graph.

Lemma 3.1 ([14]). If G is a graph with n vertices of
degrees d1, . . . , dn, then

b(G) ≤ 7cr(G)1/2 + 2

√√√√ n∑
i=1

d2
i .

Let m be the number of edges in G. Since
∑n

i=1 di = 2m
and di ≤ n for every i, we have

b(G) ≤ 7cr(G)1/2 + 3
√

mn. (3)

The following lemma is tight apart from the constant fac-
tor.

Lemma 3.2 ([7]). For each p there is a constant cp such
that if H is a graph with n vertices, at least cptn edges, and
is an intersection graph of curves in the plane in which each
pair of curves intersect in at most p points, then H contains
the complete bipartite graph Kt,t as a subgraph.

We will only need to use the case p = 1. The last tool we
use is an upper bound on the number of edges of a geometric
graph with no k pairwise disjoint edges.

Lemma 3.3 ([20]). Any geometric graph with n ver-
tices and no k pairwise disjoint edges has at most 29(k−1)2n
edges.
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We now prove Theorem 1.4(i). As the proofs of (i) and
(ii) are so similar, we only give the details for (i) and discuss
how to modify the proof to obtain (ii).

Proof of Theorem 1.4(i): Let gk(n) be the maximum
number of edges of a geometric graph with n vertices
and no natural k-grid. Let G be a geometric graph on
n vertices and m = gk(n) edges with no natural k-grid.
Let c = max(220c1, 144), where c1 is the constant with
p = 1 from Lemma 3.2. We prove by induction on n
that gk(n) ≤ ck2n log2 n. Suppose for contradiction that
gk(n) > ck2n log2 n. Let ε = 10−3 log−2 n. The proof splits
into two cases, depending on whether or not the number of
pairs of crossing edges of G is less than εm2.
Case 1: The number of pairs of crossing edges is less than
εm2. Then the crossing number of G is less than εm2. By
(3), there is a partition V (G) = V1∪V2 with |V1|, |V2| ≤ 2n/3
and the number of edges with one vertex in V1 and one vertex
in V2 is at most

b(G) ≤ 7cr(G)1/2 + 3
√

mn

≤ 7ε1/2m + 3
√

mn = (7ε1/2 + 3
√

n/m)m.

Let n1 = |V1| and n2 = |V2|, so n = n1 + n2. Then we have

m = gk(n) ≤ gk(|V1|) + gk(|V2|) + b(G)

≤ gk(n1) + gk(n2) + (7ε1/2 + 3
√

n/m)m

≤ ck2n1 log n1 + ck2n2 log n2 + (7ε1/2 + 3
√

n/m)m

≤ ck2n log 2n/3 + (7ε1/2 + 3
√

n/m)m

≤ ck2n log n − ck2n log 3/2 + (7ε1/2 + 3
√

n/m)m.

This implies

gk(n) = m ≤ ck2n
log n − log 3/2

1 − 7ε1/2 − 3
√

n/m

< ck2n log n
1 − (log 3/2)(log n)−1

1 − (log−1 n)/4 − 3c−1/2k−1 log−1 n

< ck2n log n,

where we use 3c−1/2k−1 ≤ 1/4. This completes the proof in
this case.
Case 2: The number of pairs of crossing edges is at least
εm2. Consider the intersection graph of the edges where
two edges are adjacent if they cross. Since this intersection
graph has m vertices and at least εm2 edges and each pair of
edges intersect at most once, Lemma 3.2 implies it contains
a complete bipartite graph with parts of size

t ≥ εm

c1
≥ log−2 nm

1000c1
>

c

1000c1
k2n > 29k2n,

where c1 is the constant with p = 1 from Lemma 3.2. There-
fore, G contains edge subsets E1, E2 with |E1| = |E2| = t
and every edge in E1 crosses every edge of E2, i.e., G con-
tains a t-grid. Since t > 29k2n, Lemma 3.3 implies that Ei

contains k disjoint edges for i = 1, 2. These two subsets of
k disjoint edges cross each other and hence form a natural
k-grid, completing the proof. �

To prove Theorem 1.4(ii), essentially the same proof works
as above, except replacing the bound O(k2n) of Tóth [20] on
the number of edges of a geometric graph with no k disjoint
edges by the bound O(n log4k−8 n) of Pach and Tóth [16] on

eu v

w

e′ f

f1

f2

(a) f2 crosses e′

eu v

w

e′ f

f1

f2

(b) f2 and e′ are
disjoint

Figure 2: Illustrations for the proof of Lemma 3.4

the number of edges of a simple topological graph with no
k disjoint edges.

3.2 Natural (2, 1)-grids: proof of Theorem 1.5
Let G = (V, E) be a simple topological graph on n vertices

without a natural (2, 1)-grid. For every e ∈ E assign e
the color red if X(e) has vertex cover number at most 3,
otherwise assign e the color blue. It follows from Lemma 2.9
that G has at most 29n red edges (by picking q = 1/4).

The next lemma is crucial for bounding the number of
blue edges. For F ⊆ E denote by V (F ) the set of vertices
induced by F .

Lemma 3.4. Let e = (u, v) be a blue edge, and let f1 ∈
X(e). Then if there is an edge e′ = (u, w) such that w /∈
V (X(e)) and e′ crosses f1, then e′ crosses every edge f ∈
X(e).

Proof. Assume not. Then there is an edge f ∈ X(e)
such that e′ and f do not cross. Note that e′ and f must be
disjoint since w /∈ V (X(e)). If f and f1 are disjoint, then
e,f , and f1 form a natural (2, 1)-grid. If f and f1 cross, then
e′,f , and f1 form a natural (2, 1)-grid. Thus, f and f1 must
share a vertex, and |V ({f} ∪ {f1}) | = 3. Since e is blue
there must be an edge f2 ∈ X(e) not sharing an endpoint
with f or f1 (and also not sharing an endpoint with e′ since
w /∈ V (X(e))). Therefore f2 must cross both f and f1. If
f2 crosses e′ then f2,e

′, and f form a natural (2, 1)-grid (see
Figure 2(a)). Otherwise, if f2 and e′ are disjoint, then f2,e

′,
and f1 form a natural (2, 1)-grid (see Figure 2(b)). �

Next we remove all the red edges and process the blue
edges in some arbitrary order. Let B be the set of the cur-
rently unmarked and undeleted blue edges. Initially all the
blue edges are in B. Let e = (u, v) be the next edge in B.
Delete all the edges that have one endpoint in V (X(e)∩B)
and the other endpoint in {u, v}. Let Eu be the edges
(u, x) ∈ B such that x /∈ V (X(e) ∩ B) and there is an edge
e′ ∈ X(e) ∩ B that crosses (u, x). Similarly, let Ev be the
edges (v, x) ∈ B such that x /∈ V (X(e) ∩ B) and there is
an edge e′ ∈ X(e) ∩ B that crosses (v, x). Assume, w.l.o.g.,
that |Eu| ≥ |Ev| and remove the edges Ev. Recall that ac-
cording to Lemma 3.4, if there is an edge (u, x) such that
x /∈ V (X(e)), and (u, x) crosses some edge in X(e), then
(u, x) crosses every edge in X(e).

A thrackle is a simple topological graph in which every
pair of edges meet exactly once, either at a vertex or at
a crossing point. It is known that a thrackle on n ver-
tices has at most 3(n − 1)/2 edges [3] and it is a famous
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open problem (known as Conway’s Thrackle Conjecture)
to show that the tight bound is n. Set thrackle(e) =
B ∩ ({e} ∪ X(e) ∪ {(u, x) | ∃e′ ∈ X(e) that crosses (u, x)}).
Mark all the blue edges in thrackle(e), and continue to create
thrackles as long as there are unmarked blue edges.

Lemma 3.5. thrackle(e) is a thrackle.

Proof. By definition e meets every other edge in
thrackle(e). A pair of edges in X(e) cannot be disjoint,
for otherwise they will form a natural (2, 1)-grid with e. Fi-
nally, by Lemma 3.4 every edge in thrackle(e) of the form
(u, x) such that x /∈ X(v) must cross all the edges in X(v).
�

Lemma 3.6. If e1 ∈ thrackle(e) and e2 /∈ thrackle(e) then
e1 and e2 do not cross.

Proof. Assume not and let e1 and e2 be the first such
pair along the process of creating the thrackles. Then,
w.l.o.g. e2 is unmarked when thrackle(e) is created. Clearly
e1 �= e for otherwise e2 ∈ X(e). If e1 ∈ X(e) then e2 does
not share a vertex with e, for otherwise it would have been
added to thrackle(e) or removed. Thus, e,e1, and e2 form
a natural (2, 1)-grid. Otherwise, e1 shares a vertex with e
and there is an edge e′ ∈ X(e) that crosses e1. Note that
e2 cannot share a vertex with e, since if it shares the same
vertex as e1 then they cannot cross, and otherwise it would
have been removed. There are three possible cases to con-
sider (see Figure 3):
Case 1: e2 and e′ are disjoint. Then e2,e

′, and e1 form a
natural (2, 1)-grid.
Case 2: e2 and e′ cross. Then e2,e

′, and e form a natural
(2, 1)-grid.
Case 3: e2 and e′ share a vertex. Since e is blue there must
an edge e′′ ∈ X(e) that do not share a vertex with e′ or
e2. By Lemma 3.4 e′′ must cross e1. If (a) e2 crosses e′′,
then e2,e

′′, and e form a natural (2, 1)-grid. Otherwise, if
(b) e2 and e′′ are disjoint then e2,e

′′, and e1 form a natural
(2, 1)-grid. �

Since any newly created thrackle contains no edges of
a previous thrackle, we obtain a partition of the edges
that were not deleted into thrackles t1, t2, . . . , tj . Let ti =
thrackle ((ui, vi)) and denote by Vi the vertex set of ti. Re-
call that when ti was created at most 2|Vi| edges of the form
(xi, yi) | xi ∈ {ui, vi}∧yi ∈ V (X ((ui, vi))) and at most |Vi|
edges of the form (xi, yi) | xi ∈ {ui, vi}∧yi /∈ V (X ((ui, vi)))
were deleted. The number of edges in ti is at most 3|Vi|/2,
thus, it remains to show that

∑j
i=1 |Vi| = O(n).

To this end we draw a new graph G′ with the same vertex
set V . For every thrackle ti = thrackle ((xi, yi)) we draw a
crossing-free tree Ti with |Vi|−1 edges as follows. First, draw
the edge from xi from yi. Next, for every vertex v ∈ Vi \ Ti

pick one edge e ∈ ti that has v as one of its endpoints.
Follow e from v until it either hits a vertex (necessarily xi

or yi) or crosses an already drawn edge e′. In the first case
draw an edge identical to e. In the second case draw the
segment of e from v almost until the crossing point, then
continue the edge very close to e′ (in one of the directions)
until a vertex is reached. See Figure 4(a) for an example.

It follows from Lemma 3.6 and the construction of G′

that G′ is planar. Note that it is possible for G′ to contain
parallel edges (see Figure 4(b) for an example). However, it
can be shown that they can be eliminated by removing at

e

e1

e′

e2

(a) Case 1: e2

and e′ are dis-
joint

e

e1

e′

e2

(b) Case 2: e2

and e′ cross

e

e1

e′

e2

e′′

(c) Case 3a: e2

and e′ share a
vertex and e2

crosses e′′

e

e1

e′

e2

e′′

(d) Case 3b: e2

and e′ share a
vertex and e2

and e′′ are dis-
joint

Figure 3: Illustrations for the proof of Lemma 3.6

most half of the edges in G′. Recall that the standard proof
using Euler’s polyhedral formula that a planar graph on n
vertices has at most 3n − 6 edges (for n ≥ 3) uses the fact
that the graph has no face of size 2 (a 2-face). The next
lemma will be useful in showing that G′ has not too many
2-faces.

Lemma 3.7. Let ti = thrackle(e) be a thrackle and let p
and q be two points on edges of ti. Then there is a path
on edges of ti between p and q that does not go through any
vertex.

Proof. It is enough to show that there is a path from p
to e. Let ep be the edge that contains p. If ep = e then we
are done. If ep crosses e then the segment of ep between p
and the crossing point is the required path. Finally, if ep

does not cross e, then there is an edge e′ ∈ ti that crosses
both e and ep. The segment of ep from p to the crossing
point of ep and e′ along with the segment of e′ from that
crossing point to the crossing point of e and e′′ create the
required path. �

Let t1, t2, t3 be three different thrackles that yield three
parallel edges c1, c2, c3 in G′ between two vertices u, v. The
closed curve c1 ∪ c2 splits the plane into two regions, one
containing the interior of c3. Then this region must contain
every vertex in V3 \{u, v}. For otherwise, let w ∈ V3 \{u, v}
be a vertex outside that region and let p be some point on
c3. It follows from Lemma 3.7 that there is a path on edges
of t3 between p and w. This path must cross c1 or c2 at
a point different from u and v, hence there are edges from
different thrackles that cross, contradicting Lemma 3.6.
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v4 v2

v3

v1

(a) Constructing G′

(b) G′ might contain parallel
edges

Figure 4: The graph G′

It follows that there are no two adjacent 2-faces (that is,
sharing an edge) in G′. Consider the parallel edges between
two vertices in G′ according to their order around one of the
vertices, and remove every other edge. The remaining graph
has at least half of the edges of G′ and no 2-faces, thus it
has at most 3n edges. Therefore, G′ has at most 6n edges,
and thus the number of edges in all the thrackles is at most
9n and the total number of blue edges is at most 36n. We
conclude that the original graph G has at most 65n edges.

4. NATURAL GRIDS IN CONVEX GEO-
METRIC GRAPHS

For specific values of k or l we are able to provide tighter
bounds in terms of the constant ck,l for the number of edges
in convex geometric graphs avoiding natural (k, l)-grids,
than the ones guaranteed by Theorems 1.5 and Corollary1.6.

Theorem 4.1. An n-vertex convex geometric graph with
no natural (2, 1)-grid has less than 5n edges.

Theorem 4.2. An n-vertex convex geometric graph with
no natural (2, 2)-grid has less than 8n edges.

Theorem 4.3. A convex geometric graph with n ≥ 3k
vertices and no natural (k, 1)-grid has at most 6kn − 12k2

edges.

We mention first some basic notions and facts before mov-
ing to the proofs. Let G be a convex geometric graph. We
denote by dG(v) the degree of a vertex v in G, and by δ(G)
the minimum degree in G. For u, v ∈ V (G), we say that v
and u are consecutive vertices if they appear next to each
other on the convex hull of the vertices of G. For u, v ∈ V (G)
we denote by R(u, v) ⊂ V (G) the set of vertices from u to v

a
vk−1

vkvv1

v2

v3b

Figure 5: An illustration for the proof of Theo-
rem 4.1

in clockwise order, not including u and v. A convex geomet-
ric graph G′ is a geometric minor of G if G′ can be obtained
from G by performing a finite number of the following two
operations:

1. Vertex deletion.

2. Consecutive vertex contraction, i.e., only consecutive
vertices can contract. Recall that the contraction of
two vertices x and y, replaces x and y in G with a
vertex v, such that v is adjacent to all the neighbors
of x and y.

Notice that if two edges e1 and e2 cross in G′, then they
cross in G. Likewise, if e1 and e2 are disjoint in G′, then they
are disjoint in G. Assume that G is a convex geometric graph
with n vertices and at least cn edges. Let G′ be a minimal
geometric-minor of G such that |E(G′)|/|V (G′)| ≥ c. Then
we can conclude that:

1. δ(G′) ≥ c (otherwise vertex deletion can be applied);
and

2. every consecutive pair of vertices v and u must have at
least c − 1 common neighbors (otherwise consecutive
vertex contraction can by applied).

Proof of Theorem 4.1: Suppose that |E(G)| ≥ 5n.
Let G′ be a minimal geometric-minor of G such that
|E(G′)|/|V (G′)| ≥ 5. Note that |V (G′)| ≥ 11. For a vertex
u ∈ V (G′) denote by u1, u2, . . . the neighbors of u in clock-
wise order. Note that u1 immediately follows u in clockwise
order, since a straight-line segment connecting two consec-
utive vertices in G cannot be crossed by any edge of G and
hence we can assume w.l.o.g. that it is an edge of G. Let
v ∈ V (G′) be the vertex such that:

|R(v3, v)| = min
u∈V (G′)

|R(u3, u)|

Since δ(G′) ≥ 5, u3 exists for every u. Since v1 and v are
consecutive vertices they share at least 4 common neighbors.
Hence v1 and v are both adjacent to a vertex a ∈ V (G′), such
that a /∈ {v2, vk−1, vk}, where k = dG′(v). By minimality of
|R(v3, v)|, vk has at least three neighbors in R(vk, v3), See
Figure 5. Thus vk has a neighbor b ∈ R(vk, v3) other than
v and v1. Hence we have a natural (2, 1)-grid with edges
(v, vk−1), (v1, a), and (vk, b) in G′, and hence in G. �

Proof of Theorem 4.2: Assume that |E(G)| ≥ 8n. Let G′

be a minimal geometric-minor of G with |E(G′)|/|V (G′)| ≥
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Figure 6: An illustration for the proof of Theo-
rem 4.2

8. Note that |V (G′)| ≥ 17, δ(G′) ≥ 8, and every pair of
consecutive vertices in G′ share at least 7 common neighbors.
Let (x, x′) and (y, y′) be a pair of disjoint edges such that:

1. x and y are consecutive vertices with x following y in
clockwise order;

2. |R(x, x′)|, |R(y′, y)| ≥ 2; and

3. |R(y′, y)| is maximized subject to (1) and (2) above.

This is possible since consecutive vertices share at least
7 common neighbors. Now let u, v be the next two ver-
tices after x in clockwise order. Since u and v are consec-
utive, we know that they share at least 7 common neigh-
bors. Now u and v can have at most 3 common neigh-
bors in R(v, y′) ∪ {y′}, since otherwise we would contradict
the maximality of |R(y′, y)|. Hence u and v must have two
common neighbors a, b ∈ R(y′, y). See Figure 6. Hence
(x, x′), (y, y′), (u, a), (v, b) forms a natural (2, 2)-grid in G′,
and hence in G. �

Proof of Theorem 4.3: Our proof uses the technique
from [4]. Let k ≥ 1 be fixed. We will prove the theorem
by induction on the number of vertices n. For n = 3k we
need to show that |E(G)| ≤ 6k2, however, there are at most(
3k
2

) ≤ 9k2

2
edges. Assume now that the claim is true when

the number of vertices is smaller than n and let G be an n-
vertex convex geometric graph with no natural (k, 1)-grid.

If there is no edge whose endpoints are separated by at
least 2k vertices along (both arcs of) the boundary of the
n-gon, then |E(G)| ≤ 2kn ≤ 6kn−12k2 since n ≥ 3k. So we
may assume that there exists such an edge e = ab. Assume
w.l.o.g. that e is vertical. Let pn1 , . . . , p1 denote the vertices
on the right-hand side of (a, b) and let q1, . . . , qn2 denote the
vertices on its left-hand side, both in clockwise order. Define
a partial order ≺ on the set of edges that cross (a, b) as
follows: qipj ≺ qi′pj′ ⇔ i < i′ and j < j′ (see Figure 7(a)).
We denote by rank(qipj) the largest integer r such that there
is a sequence of edges qi1pj1 ≺ qi2pj2 ≺ · · · ≺ qir pjr = qipj .

Since G has no natural (k, 1)-grid, every edge that
crosses ab has rank at most k − 1. Next we define
a convex geometric graph G1 with n2 + k + 1 vertices
{a, p∗

k−1, . . . , p
∗
1, b, q1, . . . , qn2} (in clockwise order). Let

G1 be the same as G when restricted to the vertices
{a, b, q1, . . . , qn2}. Then let qip

∗
r be in E(G1) if and only

if there is an edge qipj ∈ E(G) whose rank is r. First we
will show that if there are t pairwise disjoint edges in G1 with
their left endpoints inside an interval (qi, qj), then there are
t pairwise disjoint edges in G with their left endpoints inside
the interval (qi, qj).

a pn1

p2

pj′

pj

p1bq1
q2

qi

qi′

qn2

(a) qipj ≺ qi′pj′

a

pvs

pv

b

qis−1

qu

qus

e′

(b) The second case in
the proof of Proposi-
tion 4.4

Figure 7: Illustrations for the proof of Theorem 4.3

Proposition 4.4. Let qi1p∗
r1 , . . . , qitp

∗
rt

be t pairwise dis-
joint edges in G1 that cross ab. Then there are t pairwise
disjoint edges qu1pv1 , . . . , qutpvt such that

1. ut = it.

2. ux ≥ ix for x = 1, . . . , t − 1.

3. rank(quxpvx) = rx, for x = 1, . . . , t.

Proof. By reverse induction on x. In G we can pick
the edge qitpvt that has rank rt. We know one exists since
qitp

∗
rt

exists in G1. Assume that we have already found
the edges quxpvx for x = t, t − 1, . . . , s > 1 that satisfy
the above. Let qupv be an edge of rank rs−1 such that
qupv ≺ quspvs . If u ≥ is−1, then we can pick qupv as the
next edge. Otherwise, let e′ be an edge of rank rs−1 with
qis−1 as an endpoint. Since e′ and qupv have the same rank,
they must cross, which implies that e′ ≺ quspvs and so we
can pick e′ as the next edge. See Figure 7(b). �

Proposition 4.5. G1 does not contain a natural (k, 1)-
grid.

Proof. Assume that G1 contains a natural (k, 1)-grid.
Then by considering the possible edges involved in such a
grid and using Proposition 4.4 above, one concludes that
there is a natural (k, 1)-grid in G, which is a contradiction.
�

We also define a convex geometric graph G2 with n1+k+1
vertices {a, pn1 , . . . , p1, b, q

∗
1 , . . . , q∗k−1} (in clockwise order).

Let G2 be the same as G when restricted to the vertices
{a, pn1 , . . . , p1, b}. Then let (q∗r , pj) be in E(G2) if and only
if there is an edge (qi, pj) ∈ E(G) whose rank is r. By the
same arguments G2 does not contain a natural (k, 1)-grid.
Let Er denote the edges in G with rank r, 1 ≤ r ≤ k − 1.

Proposition 4.6. |Er| ≤ dG1(p∗
r) + dG2(q∗r ) − 1.

Proof. The edges in Er cannot form a cycle. Indeed,
consider a path qi1pj1 , qi2pj1 , qi2pj2 , . . . and assume w.l.o.g.
that i1 < i2. Then j2 < j1 for otherwise qi1pj1 and qi2pj2

are disjoint. Similarly, we have il > il−1 and jl < jl−1, for
any l > 1, therefore the path can not form a cycle. Since
there are dG1(p

∗
r) + dG2(q∗r ) vertices that are endpoints of

edges in Er, the claim follows. �

Denote by E′
1 the edges in G1 that do not cross ab and by

E′
2 the edges in G2 that do not cross ab (note that ab ∈ E′

i,
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i = 1, 2). Recall that ab has at least 2k vertices on each of
its sides, therefore, |V (G1)|, |V (G2)| ≥ 3k. Then:

|E(G)| = |E′
1| + |E′

2| − 1 +

k−1∑
r=1

|Er|

= |E′
1| + |E′

2| − 1 +

k−1∑
r=1

(
dG1(p∗

r) + dG2(q∗r ) − 1
)

= |E(G1)| + |E(G2)| − k

ind hyp

≤ (6k(n1 + k + 1) − 12k2)

+(6k(n2 + k + 1) − 12k2) − k

= 6kn − 12k2 − k ≤ 6kn − 12k2

This completes the proof of Theorem 4.3. �
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