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Abstract

The crossing number cr(G) of a graph G is the minimum number of crossings over all drawings
of G in the plane. In 1993, Richter and Thomassen [RT93] conjectured that there is a constant
c such that every graph G with crossing number k has an edge e such that cr(G− e) ≥ k− c

√
k.

They showed only that G always has an edge e with cr(G − e) ≥ 2

5
cr(G) − O(1). We prove

that for every fixed ǫ > 0, there is a constant n0 depending on ǫ such that if G is a graph with
n > n0 vertices and m > n1+ǫ edges, then G has a subgraph G′ with at most (1 − 1

24ǫ
)m edges

such that cr(G′) ≥ ( 1

28
− o(1))cr(G).

1 Introduction

The crossing number cr(G) of a (simple) graph G is the minimum possible number of crossings in
any drawing of G in the plane. A famous result of Ajtai et al. [ACNS82] and Leighton [L84] states
that if G is a graph with n vertices and m ≥ 4n edges, then

cr(G) ≥ m3

64n2
. (1)

For graphs with n vertices and m ≥ 103
16 n edges, Pach et al. [PRTT04] improved Inequality (1) by

a constant factor to

cr(G) ≥ 1024

31827

m3

n2
. (2)

It is well known that for every positive integer k, there is a graph G and an edge e of G such
that cr(G) = k but G − e is planar. In 1993, Richter and Thomassen [RT93] conjectured that
there is a constant c such that for every nonempty graph G with crossing number k, there is an
edge e of G such that cr(G − e) ≥ k − c

√
k. They showed only that G always has an edge e with

cr(G− e) ≥ 2
5cr(G)−O(1). Salazar [S00] proved that for every graph G with no vertices of degree

3, there is an edge e of G such that cr(G − e) ≥ 1
2cr(G) − O(1). Pach and G. Tóth [PT00] showed

for every connected graph G with n vertices, m ≥ 1 edges, and every edge e of G, that the decay
is bounded by

cr(G − e) ≥ cr(G) − m + 1.

This, combined with Inequality (2), is better than Richter-Thomassen’s bound for graphs with n
vertices and m ≥ 8.1n edges. By Inequality (1), it also confirms the Richter-Thomassen conjecture
for dense graphs, that is, for graphs with Ω(n2) vertices.
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In this paper, we show that from every graph G that is not too sparse, we can delete a constant
fraction of the edges such that the the crossing number of the remaining subgraph G′ is at least a
constant fraction of the crossing number of G.

Theorem 1 For every ǫ > 0, there is a constant n0 depending on ǫ such that if G is a graph with
n > n0 vertices and m > n1+ǫ edges, then G has a subgraph G′ formed by deleting at least ǫm/24
edges from G such that

cr(G′) ≥
(

1

28
− o(1)

)

cr(G).

To prove Theorem 1, we derive in Sections 3 and 4 new lower bounds on the crossing number
that improve on Inequality (1) for graphs with highly irregular degree patterns.

2 Drawing edges with the embedding method

We use the embedding method along the lines of Leighton [L83], Richter and Thomassen [RT93],
Shahrokhi et al. [SSSV97], and Székely [S04a]. The embedding method generates a planar drawing
(embedding) D(G) of a graph G based on a drawing D(H) of a subgraph H ⊂ G. The drawing
D(G) respects D(H) on the edges of H and for every edge e = (v,w) ∈ G \ H, the drawing of e
follows “infinitesimally close” to a path between v and w in the drawing D(H). We can distinguish
two categories of crossings that involve edges of G\H in the drawing D(G). A first category crossing
arises infinitesimally close to a crossing in D(H). A second category crossing arises infinitesimally
close to a vertex in D(H).

We illustrate the embedding method with a bound on the minimum decay of the crossing
number after deleting one edge. This improves on the Richter-Thomassen bound for graphs with
m ≥ 7.66n edges.

Proposition 1 For every connected graph G with n vertices and m edges, there is an edge e of G
such that

cr(G − e) ≥ p

p + 2

(

cr(G) − m +
n

2

)

,

where p = ⌈ m
n−1 − 1⌉.

The proof of Proposition 1 follows immediately from Proposition 2 and Lemma 1 below. Nag-
amochi and Ibaraki [NI92] proved the following lemma, which is a slight variant of Mader’s theorem,
and shows that every graph with n vertices and m edges has a pair of adjacent vertices with at
least m

n−1 edge-disjoint paths between them.

Lemma 1 (Mader, Nagamochi and Ibaraki) If G is a graph with m edges and n vertices, then
there is an edge e = (v,w) of G such that there are at least m

n−1 − 1 edge-disjoint paths between v
and w in G − e.

Proof: Delete maximal spanning forests F1, F2, . . ., Fj one after the other until all edges are
deleted. If e = (v,w) is an edge of Fj , then there is a path between v and w in Fi for every i,
1 ≤ i ≤ j. Hence, there are at least j − 1 edge-disjoint paths between v and w that do not pass
through e. Since each Fi is a forest, it has at most n − 1 edges, and so we have m ≤ j(n − 1).
Substituting, there are at least m

n−1 − 1 edge-disjoint paths between v and w in G − e. �
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Proposition 2 Let G be a connected graph with n vertices and m edges, and e = (v,w) be an edge
of G such that there are p ≥ 1 edge-disjoint paths between v and w in G − e. Then

cr(G) ≤
(

1 +
2

p

)

cr(G − e) + m − n

2
.

Proof: Let D be a drawing of G − e in the plane with cr(G − e) crossings. Let P1, P2, . . ., Pp be
p edge-disjoint paths between v and w. Consider the drawing Dj of G in the plane that respects
the drawing D of G− e and the edge e follows infinitesimally close to the path Pj between v and w
with all loops (and self-crossings) deleted. Let kj be the number of first category crossings in Dj .
Since the paths P1, P2, . . ., Pp are edge-disjoint, the drawings D1, D2, . . ., Dp of G jointly have
at most two first category crossings at each crossing of D: at most two crossings between edges of
G − e and different drawings of e, as depicted in Figure 1(a). Hence,

p
∑

j=1

kj ≤ 2cr(G − e).

Therefore, there is an index j, 1 ≤ j ≤ p, such that kj ≤ 2cr(G − e)/p.

Pj

Pj′

(a) (b) (c) (d)

u
Pj

Figure 1: Drawings of edge e along two edge-disjoint path Pj and Pj′ may give two first category
crossings at a crossing of D (a). If a path Pj traverses a vertex u (b), then the edge e drawn along
Pj can choose between two possible routes around u (c–d).

At each internal vertex u of a path Pj , the drawing of e in Dj can take two possible routes,
as depicted in Figure 1 (c–d). The two possible routes have a total of deg(u) − 1 second category
crossings at u. We draw e along the route with fewer second category crossings, and so there are
at most 1

2(deg(u) − 1) crossing at vertex u. Hence, the total number of second category crossings
is at most m − n

2 . Therefore, in the drawing Dj of G, there are at most (1 + 2
p)cr(G − e) + m − n

2
crossings. �

The following theorem establishes Theorem 1 for all graphs with n vertices of degree d1, . . . , dn

such that cr(G) ≥ 7
16

∑n
i=1 d2

i . For graphs that do not satisfy this condition, we alter the proof in
Sections 3 and 4.

Theorem 2 For every ǫ, 0 < ǫ < 1, there is a positive constant n(ǫ) such that for every G with
n > n(ǫ) vertices, with a degree sequence d1, . . . , dn, and m > n1+ǫ edges, there is a subgraph G′ of
G with at most (1 − ǫ

8 )m edges such that

4cr(G′) ≥ cr(G) − 3

8

n
∑

i=1

d2
i .
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Proof: Erdős and Simonovits [ES82] proved that for every integer r > 1, there is a constant cr

such that every graph G with n vertices and m > crn
1+ 1

r edges contains a cycle of length 2r. This
implies that for 0 < ǫ < 1, there is a positive integer r satisfying 1

ǫ < r ≤ 2
ǫ so that every sufficiently

large graph G with m > n1+ǫ edges contains a family C of edge-disjoint cycles of length 2r that
cover at least half of the edges of G. Let G′ be a subgraph of G formed by deleting an arbitrary
edge ej from each cycle Cj ∈ C. The remaining edges of cycle Cj form a path Pj . Hence, the
number of edges of G \ G′ is at least ǫ

8m. Let us denote the vertices of G by vi, i = 1, 2, . . . , n,
such that the degree of vi is di in G and d′i in G′. Let hi = di − d′i, which is the number of edges
incident to vi in G \ G′.

Consider a drawing D′ of G′ in the plane with cr(G′) crossings. We generate a drawing D of G
based on D′ by applying the embedding method. In particular, for every edge ej of cycle Cj ∈ C,
we draw ej along the path Pj . Since the paths Pj with Cj ∈ C are edge-disjoint, D has at most 4
crossings at every crossing of D′. Therefore, the total number of crossings of D′ and first category
crossings of D is at most 4cr(G′).

Next we estimate the number of second category crossings. Each of the hi edges incident to
vi in G \ G′ is drawn, in a neighborhood of vi, close to one of the d′i edges incident to vi in G′.
The vertex vi with degree d′i in G′ is an internal node of at most ⌊(d′i − hi)/2⌋ paths Pj . For every
such path Pj , the edge ej is drawn along one of two possible routes, as depicted in Figure 1(c-d),
with the minimum number of crossings with the edges of G incident to the vertex vi. Every edge
ej ∈ G\G′ passing though a small neighborhood of vi has at most ⌊(d′i +hi−1)/2⌋ second category
crossings with edges of G incident to vi. Each pair of edges passing through a small neighborhood
of vi cross at most once. So the total number of second category crossings at vi is at most

⌊

d′i − hi

2

⌋

·
⌊

d′i + hi − 1

2

⌋

+

(⌊d′i − hi/2⌋
2

)

<
3

8
d′2i ≤ 3

8
d2

i .

Summing over all vertices, we have at most
∑n

i=1
3
8d2

i second category crossings.
Hence, we have

cr(G) ≤ 4cr(G′) +
3

8

n
∑

i=1

d2
i . � �

3 The sum of degree squares and the crossing number

The bisection width, denoted by b(G), is defined for every simple graph G with at least two vertices.
b(G) is the smallest nonnegative integer such that there is a partition of the vertex set V = V1∪∗V2

with 1
3 · |V | ≤ Vi ≤ 2

3 · |V | for i = 1, 2, and |E(V1, V2)| ≤ b(G). Extending the Lipton-Tarjan
separator theorem [LT79], Gazit and Miller [GM90] established an upper bound on the bisection
width in terms of the sum of degree squares.

Theorem 3 (Gazit and Miller) Let G be a planar graph with n vertices of degree d1, d2, . . . , dn.
Then

b2(G) ≤ 5 + 2
√

6

4
·

n
∑

i=1

d2
i .

Pach, Shahrokhi, and Szegedy [PSS96] used Theorem 3 to relate the bisection width with the
crossing number.
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Theorem 4 (Pach, Shahrokhi, and Szegedy) Let G be a graph with n vertices of degree d1, d2, . . . , dn.
Then

40cr(G) ≥ b2(G) − 5

2
·

n
∑

i=1

d2
i (G).

Pach, Spencer and Tóth [PST00] have further exploited the connection between the bisection
width and the crossing number. They have established lower bounds on the crossing number of
graphs with some monotone graph property in terms of the number of edges and vertices of the
graph. A simplified version of their proof method yields the following bounds.

Lemma 2 Let G(V,E) be a graph with n vertices of degree d1, d2, . . . , dn, and m ≥ 8n7/5 log2/5 n
edges. Then

cr(G) ≥ 1

24

n
∑

i=1

d2
i .

This bound is better than the classical lower bound (1) due to Ajtai et al. [ACNS82] and
Leighton [L84] for graphs of irregular degree patterns and m = O(n3/2) edges. Consider the
complete bipartite graph Ka,b with n = a + b vertices and m = ab edges, where a ≤ b. For this
graph, our Lemma 2 gives cr(G) = Ω(ab2), which is a tighter than the classical Ω(m3/n2) = Ω(a3b)
bound for (8+o(1))b2/5 log2/5 b ≤ a ≤

√
b, where the o(1) term goes to 0 as b → ∞. Similar bounds

have also been deduced by Pach, Solymosi, and Tardos [PST06].

Proof of Lemma 2. We decompose the graph G by the following recursive algorithm into induced
subgraphs such that every subgraph is either a singleton or its squared bisection width is at least
five times the sum of its degree squares. In an induced subgraph H ⊆ G, we denote by degH(v)
the degree of a vertex v ∈ V (H).

1. Let S0 = {G} and i = 0.

2. Repeat until |V (H)| = 1 or b2(H) ≥ 5
∑

v∈H deg2
H(v) for every H ∈ Si.

Set i := i + 1 and Si+1 := ∅. For every H ∈ Si, do

– If b2(H) ≥ 5
∑

v∈H deg2
H(v) or |V (H)| ≤ (2/3)i|V |, then let Si+1 := Si+1 ∪ {H};

– otherwise split H into graphs H1 and H2 along an edge separator of size b(H), and
let Si+1 := Si+1 ∪ {H1,H2}.

3. Return Si.

First, we show that the algorithm is correct. In every round, every graph H ∈ Si that does not
satisfy the end condition has at most |V (H)| ≤ (2/3)i ·|V | vertices. The algorithm terminates in t ≤
log(3/2) n rounds, and it returns a set St of induced subgraphs. By Theorem 4 and the end condition

of the decomposition algorithm, for every H ∈ St we have 40cr(H) ≥ (5/2)
∑

v∈H deg2
H(v). So

40cr(G) ≥ 40
∑

H∈St

cr(H) ≥ 5

2
·

∑

H∈St

∑

v∈H

deg2
H(v) ≥ 5

2
·
∑

v∈V

deg2
H(v,t)(v), (3)

where H(v, i) denotes the graph H ∈ Si containing vertex v ∈ V .
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Next, we count the number of edges deleted during the recursive decomposition. Following
an argument of [PST00], we count separately the edges deleted in each step of the decomposition
algorithm. Let S′

i = {H : H ∈ Si,H 6∈ Si+1}, that is, S′
i consists of those subgraphs in Si that are

decomposed at step i. Notice that |S′
i| < (3

2 )i+1 since every subgraph of Si that splits has more
than (2/3)i+1|V | vertices. Let Vi = {v : v is a vertex of a graph H ∈ S′

i}.
In step i, when some of the subgraphs in Si are decomposed in Si+1, the total number of deleted

edges is at most
∑

H∈S′
i

√

5
∑

v∈H

deg2
H(v).

Using the Cauchy-Schwartz inequality, we have

∑

H∈S′
i

√

5
∑

v∈H

deg2
H(v) ≤

√

5|S′
i|
√

∑

v∈Vi

deg2
H(v,i)(v) ≤

√

5

(

3

2

)i+1√
∑

v∈Vi

deg2
H(v,i)(v).

Since |V (H)| ≤ (2
3 )i|V | for each subgraph H ∈ S′

i, we conclude that

√

5

(

3

2

)i+1√
∑

v∈Vi

deg2
H(v,i)(v) ≤

√

5

(

3

2

)i+1√

max
v∈Vi

degH(v,i)(v) ·
∑

v∈Vi

degH(v,i)(v)

≤
√

5

(

3

2

)i+1
√

(

2

3

)i

n(2m) ≤
√

15mn.

Since the algorithm terminates in at most log n/ log(3/2) steps, the total number of edges
deleted throughout the decomposition algorithm is at most

√
15

log(3/2)

√
mn log n < 7

√
mn log n.

If we increase the degree of a vertex by one, the degree square increases by at most 2n−1 < 2n.
By putting back the deleted edges, the sum of degree squares increases by less than 28m1/2n3/2 log n.
From Inequality (2), we have

8cr(G) ≥ 8 · 1024

31827
· m3

n2
≥ 28m1/2n3/2 log n, (4)

if m ≥ 8n7/5 log2/5 n. Summing Inequalities (3) and (4), we obtain

24cr(G) ≥
∑

v∈V

deg2
H(v,t)(v) + 88m1/2n3/2 log n ≥

n
∑

i=1

d2
i .

This completes the proof of Lemma 2. �

We are now ready prove Theorem 1 for the case that m ≥ 8n7/5 log2/5 n.

Theorem 5 For every ǫ > 0, there is a constant n0 depending on ǫ such that if G is a graph with
n > n0 vertices and m > 8n7/5 log2/5 n edges, then G has a subgraph G′ formed by deleting at least
m/20 edges from G such that cr(G′) ≥ 1

13cr(G).
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Proof: Combining Theorem 2 and Lemma 2, we obtain

cr(G) ≤ 4cr(G′) +
3

8

n
∑

i=1

d2
i ≤ 4cr(G′) + 9cr(G′) = 13cr(G′).

� �
4 Proof of Theorem 1

Theorem 5 leaves us with the case that n1+ǫ ≤ m < 8n7/5 log2/5 n. Instead of Lemma 4, we employ
the following bounds.

Lemma 3 Let G be a graph with n vertices of degree d1, d2, . . . , dn, and m edges. For any δ,
0 < δ < 1, let ∆ = ∆(δ) be the integer such that

∑n
i=1 min(di,∆) < 2δm but

∑n
i=1 min(di,∆ +

1) ≥ 2δm. The crossing number of G is bounded by the sum of truncated degree squares. If
m ≥ 45(1 − δ)−2n log2 n, then

cr(G) ≥ 1

16

n
∑

i=1

(min(di,∆))2.

Lemma 4 Let G be a graph with n vertices and m edges, and let d1 ≤ d2 ≤ . . . ≤ dn denote the
degree sequence sorted in monotone increasing order. Let ℓ be the integer such that

∑ℓ−1
i=1 di < 4m/3

but
∑ℓ

i=1 di ≥ 4m/3. The crossing number of G is bounded by a prefix sum of the degree squares.
If m = Ω(n log2 n), then

cr(G) ≥
(

1

64
− o(1)

) ℓ
∑

i=1

d2
i .

Proof of Lemma 3. Run the recursive decomposition algorithm described in the previous section
on graph G. We have shown that during the algorithm at most (

√
15/ log 3

2)
√

mn log n edges are
deleted. This is less than (1 − δ)m if m ≥ 45(1 − δ)−2n log2 n.

We are now ready to estimate
∑

v∈V deg2
H(v,t)(v). Since the number of edges decreased by at

most (1 − δ)m, the sum of degrees decreased by at most (2 − 2δ)m. The sum of degree squares
decreases maximally if the highest degrees are truncated to at most ∆, and so we have

∑

v∈V

deg2
H(v,t)(v) ≥

n
∑

i=1

(min(di,∆))2 . (5)

This completes the proof of Lemma 3. �

Proof of Lemma 4. We extend the argument of the previous proof with δ = 5
6 . If dℓ ≤ ∆, then the

right hand side of (5) must clearly be at least
∑ℓ

i=1 d2
i and our proof is complete. Let us assume

that ∆ < dℓ. Refer to Figure 2.
Recall that

∑n
i=1 di = 2m. We have assumed that

∑n
i=ℓ+1 di ≤ 2m

3 <
∑n

i=ℓ di, and for δ = 5
6 we

have
∑n

i=1 min(di,∆) < 5m
3 ≤ ∑n

i=1 min(di,∆ + 1). It follows that (n − ℓ + 1)(∆ + 1) > m
3 . Since

∆ < n and n = o(m), we conclude that (n − ℓ)∆ > (1 − o(1))m
3

Observe that (n − ℓ)dℓ ≤
∑n

i=ℓ+1 di ≤ 2m
3 , and so m ≥ 3

2 (n − ℓ)dℓ. Furthermore, observe that
∑ℓ

i=1 max(0, di−∆) ≤ ∑n
i=1 max(0, di−∆) ≤ n+

∑n
i=1 max(0, di−(∆+1)) ≤ n+ m

3 = (1+o(1))m
3 .
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n

n − 1

ℓ

dℓ

∆

i

di

Figure 2: The monotone increasing degree sequence of a graph G.

Putting these simple observations together, we obtain

n
∑

i=ℓ+1

(min(di,∆))2 = (n − ℓ)∆2 >

(

1

3
− o(1)

)

m∆ ≥
(

1

2
− o(1)

)

(n − ℓ)dℓ∆

≥
(

1

6
− o(1)

)

dℓm ≥
(

1

2
− o(1)

)

dℓ

ℓ
∑

i=1

max(0, di − ∆)

≥
(

1

2
− o(1)

) ℓ
∑

i=1

(max(0, di − ∆))2.

We can now estimate the right hand side of Inequality (5).

n
∑

i=1

(min(di,∆))2 =

ℓ
∑

i=1

(min(di,∆))2 +

n
∑

i=ℓ+1

(min(di,∆))2

≥
ℓ

∑

i=1

(min(di,∆))2 +

(

1

2
− o(1)

) ℓ
∑

i=1

(max(0, di − ∆))2

≥
(

1

2
− o(1)

) ℓ
∑

i=1

(min(di,∆))2 + (max(0, di − ∆))2

≥
(

1

4
− o(1)

) ℓ
∑

i=1

d2
i .

Comparing the above inequality with Inequalities (3) and (5), we obtain cr(G) ≥ ( 1
64−o(1))

∑ℓ
i=1 d2

i .
�

We can now prove Theorem 1 in general. Order the vertices v1, v2 . . . vn of G such that their
degree sequence d1, d2, . . . , dn monotone increases. Let ℓ be the integer such that

∑ℓ−1
i=1 di < 4m

3 but
∑ℓ

i=1 di ≥ 4m
3 . Consider the graph G0 induced by the vertices v1, v2, . . . , vℓ. Notice that G0 has at
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least m
3 edges. We choose a family C of edge-disjoint cycles of length at most 4

ǫ from G0 so that at
least half of the edges of G0 are covered by cycles of C. Let G′ be a subgraph of G formed by deleting
an edge ej from each cycle Cj ∈ C. We have deleted at least 1

2 · ǫ
4 · m

3 = ǫ
24m edges. Let m′ be the

number of edges of G′ and d′i be the degree of vi in G′. We have d′i ≤ di for 1 ≤ i ≤ ℓ and d′i = di

for i > ℓ. It follows that
∑ℓ−1

i=1 d′i < 4m′

3 . By Lemma 4, we have cr(G′) ≥
(

1
64 − o(1)

)
∑ℓ

i=1 d′2i . If
we apply the embedding method to draw graph G based on the drawing of G′ with cr(G′) crossings
and drawing each ej along Pj , we obtain

cr(G) ≤ 4cr(G′) +
3

8

ℓ
∑

i=1

d′2i .

Hence, we have cr(G) ≤ 4cr(G′) + 3
8 (64 + o(1))cr(G′) = (28 + o(1))cr(G′). �
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