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Abstract

Let R be a subring of the complex numbers and a be a cardinal. A system L of
linear homogeneous equations with coefficients in R is called a-regular over R if, for
every a-coloring of the nonzero elements of R, there is a monochromatic solution
to L in distinct variables. In 1943, Rado classified those finite systems of linear
homogeneous equations that are a-regular over R for all positive integers a. For
every infinite cardinal a, we classify those finite systems of linear homogeneous
equations that are a-regular over R. As a corollary, for every positive integer s, we
have 2ℵ0 > ℵs if and only if the equation x0 + sx1 = x2 + · · · + xs+2 is ℵ0-regular
over R. This generalizes the case s = 1 due to Erdős.

1 Introduction

One of the first results in Ramsey theory is Schur’s theorem [21], which states that
for every finite coloring of the positive integers, there is a monochromatic solution to the
equation x + y = z. In 1927, van der Waerden [24] proved his celebrated theorem that every
finite coloring of the positive integers contains arbitrarily long monochromatic arithmetic
progressions. These two classical theorems of Schur and van der Waerden were beautifully
generalized by Rado in his 1933 thesis [18] and even further in 1943 [19]. For an m × n
matrix A = (aij) with entries in a subring R of the complex numbers, denote by L = L(A)
the system of linear homogeneous equations

n∑

j=1

aijxj = 0 for 1 ≤ i ≤ m.
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Let a be a cardinal number. The system L is called a-regular over R if, for every a-
coloring of the elements of R, there is a monochromatic solution to L in distinct variables.
The system L is called regular over R if it is a-regular over R for all positive integers a.
The matrix A with column vectors c1, c2, . . . , cn is said to satisfy the columns condition if
there exists a partition {1, 2, . . . , n} = D1 ∪ . . . ∪ Dp such that

∑
i∈D1

ci = 0 and for each

j ∈ {2, 3, . . . , p}, ∑
i∈Dj

ci is a linear combination of {ci : i ∈ ⋃j−1
k=1 Dk}. Rado [19] proved

that the system L(A) is regular over R if and only if the matrix A satisfies the columns
condition and there is a solution to L(A) in distinct variables.

Our main result is Theorem 1, which is an infinite color analogue of Rado’s theorem.
For an infinite cardinal a and subring R of the complex numbers, Theorem 1 classifies those
finite systems of linear homogeneous equations that are a-regular over R. Before jumping
into the main result, we start by describing some well known ℵ0-colorings of the real numbers
that are free of monochromatic solutions in distinct variables to particular systems of linear
homogeneous equations.

There is an ℵ0-coloring of the nonzero real numbers without a monochromatic solution
to the Schur equation x + y = z in distinct variables. For a real nummber r > 1, we first
define the coloring cr : R>0 → Z of the positive real numbers by cr(x) = blogr xc. We have
c2(x) = i if and only if x lies in the interval [2i, 2i+1). It follows that if c2(x) = c2(y) = i, then
c2(x + y) = i + 1. Therefore, c2 is free of monochromatic solutions to x + y = z. If we use ℵ0

more colors to color the negative real numbers, and give 0 any color, then we can extend c2

to an ℵ0-coloring of the real numbers that is free of monochromatic solutions to x + y = z
in distinct variables. If a matrix A satisfies that not all row sums of A are zero, then there
is an r such that cr is free of monochromatic solutions to L(A) and it follows that L(A) is
not ℵ0-regular over R.

If we assume the axiom of choice, which we do until Section 5, then there are other
systems of linear equations that are not ℵ0-regular over R. We note that R is a vector space
over Q. Assuming the axiom of choice, every vector space has a basis. In particular, there is
a well-ordered basis B = {bp}p<2ℵ0 for R as a Q-vector space. Such a basis B is known as a
Hamel basis. Therefore, every real number x has a unique representation

x =
k∑

j=1

qjbpj

with p1 < . . . < pk and qj ∈ Q \ {0} for 1 ≤ j ≤ k. We may view each real number x
as a weighted finite subset of B, the weight being the vector w(x) = (q1, . . . , qk) and the
subset being e(x) = {bp1 , . . . , bpk

}. According to Komjáth [16], Rado proved that there is
an ℵ0-coloring of R that is free of monochromatic 3-term arithmetic progressions. Rado’s
coloring is defined by assigning each real number x its weight w(x). In 1969, Ceder [4] made
the same observation as Rado. Later that year, Ceder [5] showed that there are no linear
homogeneous equations in 3 variables that are ℵ0-regular over R. This follows from the
general observation that for a vector space V over a countable field F , we can assign to
an element x ∈ V its weight w(x), and this countable coloring is free of monochromatic
solutions in distinct variables to every system L of linear homogeneous equations such that
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the only solutions to L with xi ∈ {0, 1} for i = 1, . . . , n satisfy x1 = · · · = xn.

Erdős and Kakutani [11] in 1943 proved that the continuum hypothesis is equivalent to
there being a countable coloring of the real numbers such that each monochromatic subset
is linearly independent over Q. Erdős followed this by proving that the Sidon equation
x1 + x2 = x3 + x4 is ℵ0-regular over R is equivalent to the negation of the continuum
hypothesis. A proof of this result can be found in Davies [6].

Analogous to the columns condition of Rado, we find, for every infinite cardinal a,
necessary and sufficient conditions on the matrix A for the system L(A) to be a-regular over
R. We first need a few definitions, which we borrow from Komjáth [16].

Definition: Let A be an m× n matrix with column vectors c1, . . . , cn.

(1) We call a partition P = {D1, . . . , Dl} of the set [n] = {1, . . . , n} balanced for A if∑
j∈Dk

cj = 0 holds for every k ∈ [l].
(2) A collection {P1, . . . ,Ps} of balanced partitions for A is called separative if for all distinct

u, v ∈ [n], there is a balanced partition Pj with u and v in different sets in Pj.
(3) We call the system L(A) separable if there exists a separative collection of balanced

partitions for A.
(4) For separable L(A), the separation number s(L(A)) is the least positive integer s such

that there exists a separative collection of s balanced partitions for A.

We suppose for the rest of the paper that a is an infinite cardinal. The successor cardinal

of a is denoted by a+, and the sth successor cardinal of a is denoted by a+s.

The following theorem is our main result.

Theorem 1 For an infinite cardinal a and subring R of the complex numbers, a finite system
L of linear homogeneous equations with coefficients in R is a-regular over R if and only if L
is separable and |R| ≥ a+s(L).

We also have the following result, which is similar in character to results of Komjáth
[17] and Schmerl [20].

Theorem 2 For an infinite cardinal a, commutative ring R, and subfield F ⊂ R with |F | ≤
a, there is an a-coloring of R that is free of monochromatic solutions in distinct variables to
all finite systems L of linear homogeneous equations such that the coefficients of L are in F
and L is not a-regular over R.

For each positive integer s, Komjáth [16] gave an example of a system of linear ho-
mogeneous equations that is ℵ0-regular over R if and only if 2ℵ0 > ℵs. Likewise, for each
positive integer s, Corollary 1 gives an example of a single linear homogeneous equation that
is ℵ0-regular over R if and only if 2ℵ0 > ℵs. Corollary 1 follows from Theorem 1 since the
separation number for Equation (1) is s + 1. Corollary 1 generalizes the case s = 1 that
Erdős solved.

Corollary 1 For every positive integer s, the linear homogeneous equation

x1 + sx2 = x3 + · · ·+ xs+3 (1)
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is ℵ0-regular over R if and only if 2ℵ0 > ℵs.

For a system L of linear homogeneous equations with rational coefficients, Komjáth [16]
defines λ(L) to be the least cardinal b such that if V is a rational vector space of dimension
b, then every ℵ0-coloring of V has a monochromatic solution to L in distinct variables. If
no such cardinal b exists, set λ(L) = ∞. We note that the dimension and cardinality of
an uncountable rational vector space are equal. Komjáth proved that if λ(L) ≤ 2ℵ0 , then
L is separable. He also proved that if L is separable, then λ(L) ≤ ℵs(L), where s(L) is the
separation number of L. The following theorem demonstrates that Komjáth’s upper bound
on λ(L) is tight.

Theorem 3 If ℵs ≤ 2ℵ0, then a finite system L of linear homogeneous equations with ratio-
nal coefficients satisfies λ(L) = ℵs if and only if L is separable and s = s(L).

We deduce Theorem 1 and Theorem 3 from results we prove on hypergraph partition
relations. These results are discussed in the next section, and proved in Section 4. The
deduction of Theorem 1 from results on hypergraph partition relations is established in
Section 3. Up until Section 5, we assume the axiom of choice. In Section 5, we investigate
the problem of ℵ0-regularity over R without the axiom of choice.

2 Hypergraph Partition Relations

A hypergraph H = (V, E) consists of a set V and a collection E of subsets of V . The
elements of V are called vertices and the elements of E are called edges. A hypergraph H is
called k-uniform if every edge contains exactly k vertices. The Erdős–Rado arrow notation
b → (d)k

a means that for every a-coloring of the subsets of cardinality k of a set of cardinality
b, there is a monochromatic complete k-uniform hypergraph on d vertices. We write b 6→ (d)k

a

if b → (d)k
a does not hold. Ramsey’s theorem [18] can be written using the Erdős–Rado arrow

notation: we have
ℵ0 → (ℵ0)

k
r

for all positive integers r and k.

Erdős [9], [12] in 1942 proved if a is an infinite cardinal, then

(2a)+ → (a+)2
a, (2)

and

2a 6→ (3)2
a. (3)

In 1943, Erdős and Kakutani [11] proved that if a is an infinite cardinal, then there is
an a-coloring of the edges of the complete graph on a+ vertices without any monochromatic
cycles, but every a-coloring of the edges of the complete graph on a+2 vertices contains a
monochromatic cycle. For G a nonempty family of k-uniform hypergraphs and cardinals a

and b, the partition relation b → (G)k
a is said to hold if, for every a-coloring of the edges

of the complete k-uniform hypergraph on b vertices, there is a monochromatic copy of a
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hypergraph G ∈ G. We write b 6→ (G)k
a if b → (G)k

a does not hold. Letting C denote the
family of cycles, we can restate the Erdős-Kakutani result as b → (C)2

a if and only if b ≥ a+2.

Theorem 4 below classifies b → (G)2
a for every nonempty family G of finite graphs and

cardinals a and b with a infinite. A star Sn is a graph on n + 1 vertices with one vertex
of degree n and the other n vertices of degree 1. We call a graph a galaxy if its connected
components are stars.

Theorem 4 Let a and b be cardinals with a infinite. For a nonempty family G of finite
graphs, the partition relation b → (G)2

a holds if and only if (1), (2), (3), or (4) below are
true.

(1) There exists G = (V, E) ∈ G with |E| ≤ 1 and |V | ≤ b.
(2) b = a+ and there exists a galaxy G ∈ G.
(3) b > a+ and there exists a bipartite graph G ∈ G.
(4) b > 2a.

The forward directions of (3) and (4) of Theorem 4 follow from the Erdős-Hajnal
partition relation (4) below with k = 2 and the Erdős partition relation (2), respectively.

The main new result in Theorem 4 is that if a is an infinite cardinal, then there is an
a-coloring of the edges of the complete graph on a+ vertices such that the only connected
monochromatic subgraphs are stars, which strengthens the Erdős-Kakutani result. We give
a proof of this result in Section 4 as a warmup to the proof of Theorem 5.

Having fully answered the problem for graphs, we now turn our attention to the general
problem for hypergraphs, which requires some terminology. A k-uniform hypergraph H =
(V,E) is called k-partite if there exists a partition V = V1 ∪ . . .∪Vk of the vertex set V such
that every edge of H contains exactly one vertex in each Vi. Call H partite if H is k-partite
for some positive integer k.

We call a hypergraph H = (V, E) an s-hybrid if there is a positive integer k and a
partition V = V1 ∪ . . . ∪ Vk such that every edge of H contains exactly one vertex in each
Vi and, if vi ∈ Vi for 1 ≤ i ≤ s, then at most one edge of E contains the set {v1, . . . , vs}.
We note that a graph is a galaxy if and only if it is a 1-hybrid. Also, any k-partite graph is
vacuously an s-hybrid for s ≥ k.

A polarized partition theorem due to Erdős and Hajnal [10], [16], [20], states that if G
contains a finite k-partite hypergraph, then

a+k → (G)k
a . (4)

For a nonempty family G of hypergraphs and for cardinals a and b, the partition relation
b → (G)<ω

a is said to hold if for every a-coloring of the finite subsets of a set of cardinality
b, there is a monochromatic copy of a hypergraph G ∈ G.

Our main result on hypergraph partition relations is Theorem 5 below.

Theorem 5 Let a be an infinite cardinal and s a positive integer such that a+s ≤ 2a. For a
nonempty family G of finite hypergraphs that does not contain an s-hybrid, we have

a+s 6→ (G)<ω
a .
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3 Reducing Partition Regularity to Hypergraph Partition Relations

In order to make the reduction from partition regularity to hypergraph partition rela-
tions, we next define, for a m× n matrix A, a family H(A) of finite hypergraphs each with
n edges.

Definition: For a m × n matrix A with column vectors c1, . . . , cn, let H(A) be the family
of finite hypergraphs such that H = (W,E) is an element of H(A) with E = {e1, . . . , en} if
and only if

∑
w∈ed

cd = 0 holds for every vertex w ∈ W .

Lemma 1, Corollary 2, and Lemma 2 demonstrate a strong connection between sepa-
rability of L(A) and the existence of a partite hypergraph in H(A).

Lemma 1 A system L(A) of linear homogeneous equations is separable if and only if there
is a partite hypergraph H ∈ H(A).

Proof: We prove a stronger result then the claim of the lemma. We construct a bijection
between separative collections of (not necessarily distinct) balanced partitions for A and
partite hypergraphs in H(A). Let C = {P1, . . . ,Ps} be a separative collection of partitions
of [n] that are balanced for A, with Pi = {Di1, . . . , Dili} for 1 ≤ i ≤ s. We associate
with each set Dij a vertex wij. Let Wi = {wij : j ∈ [li]} and W = W1 ∪ . . . ∪ Ws. Let
E = {e1, . . . , en} with ed = {wij : d ∈ Dij} for d ∈ [n]. Since C is a collection of partitions of
[n], then for each d ∈ [n] and i ∈ [s] there is exactly one j ∈ [li] such that d ∈ Dij (which
is equivalent to wij ∈ ed). Therefore, each edge ed contains exactly one element from each
Wi and H = (W,E) is s-partite with partition W = W1 ∪ . . . ∪Ws. Since each partition Pi

is balanced, then
∑

wij∈ed
cd = 0 for each vertex wij. Since C is separative, then the sets ed1

and ed2 are distinct for 1 ≤ d1 < d2 ≤ n. Hence, the s-partite hypergraph H is an element
of H(A).

We show that the mapping we just described from separative collections of (not nec-
essarily distinct) balanced partitions for A and partite hypergraphs in H(A) is a bijection
by exhibiting its inverse. So suppose H = (W,E) ∈ H(A) is an s-partite hypergraph with
s-partition W = W1 ∪ . . . ∪Ws. Let Wi = {wi1, . . . , wili} for i ∈ [s] and E = {e1, . . . , en}.
For each vertex wij, define the subset Dij = {d : ed ∈ wij} of [n]. Notice that

∑
d∈Dij

cd = 0
follows from the defintion of H(A). Therefore, Pi := Di1 ∪ . . . ∪Dili is a balanced partition
for A. Since the edges ed ∈ E are distinct subsets of W , then the collection C := {P1, . . . ,Ps}
of balanced partitions for A is separative. 2

Notice that the bijection constructed in the proof of Lemma 1 maps a separative
collection of s balanced partitions for A to an s-partite hypergraph in H(A). We therefore
have the following corollary.

Corollary 2 If L is a separable system of linear homogeneous equations, then there is an
s(L)-partite hypergraph H ∈ H(A).

For separable L(A), the following lemma combined with the previous corollary implies
that the minimum s such that there is an s-partite hypergraph in H(A) and the minimum
s′ such that there is an s′-hybrid in H(A) satisfy s = s′ = s(L(A)).
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Lemma 2 If L(A) is a separable system of linear homogeneous equations, then there is no
s-hybrid H ∈ H(A) with s < s(L(A)).

Proof: Suppose for contradiction that there is a positive integer s < s(L(A)) and a k-
partite s-hybrid H = (W,E) ∈ H(A) with k-partition W = W1 ∪ . . . ∪ Wk such that for
every set {w1, . . . , ws} with wi ∈ Wi, there is at most one edge that contains {w1, . . . , ws}.
To each subset Wi there is an associated partition Pi of [|E|] that is balanced for A as in
the proof of Lemma 1. Since s < s(L(A)), then the collection C = {P1, . . . ,Ps} of balanced
partitions for A is not separative. Hence, there are edges ed1 and ed2 with d1 6= d2 such that
ed1 ∩ (

⋃s
i=1 Wi) = ed2 ∩ (

⋃s
i=1 Wi), contradicting the assumption that H is an s-hybrid. 2

For a subset S of a vector space V , we call a system L of linear homogeneous equations
with coefficients in F a-regular over S if, for every a-coloring of the nonzero elements of S,
there is a monochromatic solution to L in distinct variables.

Let 〈A,≺〉 be a well-ordered set of cardinality a and P(A) denote the set of subsets
of A. Let φ : V → P(A) be an injective function. For distinct subsets X and Y of A, let
δ(X,Y ) be the least element of A such that exactly one of X or Y contains δ(X, Y ).

Let B be a basis for a vector space V . For a finite subset e ⊂ B, let s(e) =
∑

b∈e b. Let
S(B) = {s(e) : e is a finite subset of B}.
Theorem 6 Let V be a vector space over a field F , a be an infinite cardinal such that
2a ≥ |V | > a ≥ |F |, and A be a finite matrix with entries in F . The system L(A) of linear
homogeneous equations is a-regular over V if and only if |V | → (H(A))<ω

a .

Proof: Let B = {bp : p < |V |} be a basis for V . We have |V | = |S(B)| = |B| since V is
an uncountable vector space over a field of lesser cardinality. Notice that H = (V, E) with
E = {e1, . . . , en} is a subhypergraph of [B]<ω that is isomorphic to an element of H(A)
if and only if x = (s(e1), . . . , s(en)) is a solution to L(A) in distinct variables. Therefore,
|B| → (H(A))<ω

a is equivalent to L(A) being a-regular over S(B). Since |B| = |V | and
S(B) ⊂ V , then |V | → (H(A))<ω

a implies that L(A) is a-regular over V .

Our next task is to prove the harder direction: if L(A) is a-regular over V , then |V | →
(H(A))<ω

a . We prove this by proving the contrapositive. So suppose that there is an a-coloring
c of the finite subsets of B that realizes |V | 6→ (H(A))<ω

a . We then present an a-coloring
Γc of the nonzero elements of V that is free of monochromatic solutions to L(A) in distinct
variables.

Let A be a set of cardinality a and P(A) be the set of subsets of A. In Section 4.2, we
define the linear ordering ≺∗ of P(A) and the a-coloring C1 of [P(A)]<ω. By Theorem 7(1),
for every color D of C1, there are disjoint subsets P1, . . . , Pk of P(A) such that every edge
of color D contains exactly one vertex in each Pi and every edge T = {t1, . . . , tk} ⊂ P(A)
with tk ≺∗ . . . ≺∗ t1 satisfies tj ∈ Pj for j ∈ [k].

Since B is a basis for V , then for each x ∈ V , there is a unique representation x =∑k
i=1 fibpi

with p1 < . . . < pk. We let w(x) = (f1, . . . , fk) and e(x) = {bp1 , . . . , bpk
} ⊂ B.

Let φ : [B]<ω → P(A) be an injective function. For an element x =
∑k

h=1 fhbph
of V ,
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define σ(x) to be the permutation of [k] such that

φ(bpσ(1)
) ≺∗ · · · ≺∗ φ(bpσ(k)

).

We define the a-coloring Γc of the nonzero elements of V by

Γc(x) = (C1(φ(e(x))), σ(x), w(x), c(e(x))).

Suppose for contradiction that x = (x1, . . . , xn) is a monochromatic solution to L(A)
in distinct variables by coloring Γc. Let (D, σ,w, d) be the color of the monochromatic
solution to L(A). Let w = (f1, . . . , fk) be the weight that each of the xj’s share. Let
xj =

∑k
h=1 fhbph,j be the unique basis representation for xj. Define the finite hypergraph

H(x) = (V (x), E(x)) ∈ H(A) with vertex set V (x) ⊂ B defined by bj ∈ V (x) if πj(xp) 6= 0
for at least one p ∈ {1, . . . , n} and edge set E(x) = {e(x1), . . . , e(xn)}.

By coloring C1 and σ, there are disjoint subsets {B1, . . . , Bk} of B such that every edge
e = {bp1 , . . . , bpk

} of color D in the coloring C1 with p1 < . . . < pk satisfies bph
∈ Bh for

1 ≤ h ≤ k.

Therefore, if b ∈ Bh, then the coefficient of b in xj is fh if b ∈ e(xj) and 0 if b 6∈ e(xj).
Since x is a solution to L(A), then for each b ∈ Bh, we have

0 =
∑

b∈e(xj)

cjfh = fh

∑

b∈e(xj)

cj.

Hence,
∑

b∈e(xj) cj = 0 for all b ∈ B. Therefore the hypergraph H(x), which is colored
monochromatic by coloring c, is an element of H(A). This contradicts that the coloring c is
free of monochromatic hypergraphs in H(A), and completes the proof. 2

We now give a proof of Theorem 1, assuming hypergraph partition relations proved in
the next section.

Proof of Theorem 1:

Let R be a subring of the complex numbers and Ax = 0 be a system of linear equations
over R. Let F be the subfield of C generated by the entries of A, so |F | = ℵ0. Let V ⊂ C be the
smallest vector space over F containing R, so V contains a basis B ⊂ R and |V | = |B| = |R|.
Since S(B) ⊂ R, then as noted in the first paragraph of the proof of Theorem 6, we have
|R| → (H(A))<ω

a is equivalent to L(A) being a-regular over S(B). Moreover, by Theorem
6, |R| → (H(A))<ω

a is equivalent to L(A) being a-regular over V . Since B ⊂ R ⊂ V , then
|R| → (H(A))<ω

a is equivalent to L(A) being a-regular over R. By Lemma 1, L(A) is separable
if and only if H(A) contains a partite hypergraph. By Corollary 2 and Lemma 2, if L(A)
is separable, then the smallest s such that H(A) contains an s-hybrid is s(L) and H(A)
contains a s(L)-partite hypergraph. We complete the proof of Theorem 1 by putting these
results together with the hypergraph partition relation (4) and Theorem 5. 2

Similar to the proof of Theorem 1, Theorem 2 and Theorem 3 follow in a straightforward
manner. We leave the proofs out for brevity.
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4 Graph and Hypergraph Colorings

In Subsection 4.1, we present an a-coloring of the edges of the complete graph on
a+ vertices such that the only monochromatic subgraphs are galaxies. In Subsection 4.2,
we generalize this result, demonstrating that if s is a positive integer satisfying a+s ≤ 2a,
then there is an a-coloring of the finite subset of a set of cardinality a+s such that the only
monochromatic subhypergraphs are s-hybrids. We first need some basic definitions from set
theory.

Let A be a set of cardinalty a, and define the power set P(A) as the set of subsets of
A. The power set P(A) has cardinality 2a. Let S be a subset of P(A) of cardinality a+s,
where s is a positive integer.

Let < denote the well-ordering of the ordinals. For a well-ordered set 〈R,≺〉 and a ∈ R,
define the segment Ra = {b ∈ R : b ≺ a}. The cardinality |R| of a set R is the least ordinal α
such that there exists a bijection φ : S → α. For a set R, let <R denote a well-ordering of R
that is order-isomorphic to the well-ordering < of |R|, that is, there is a bijection φ : R → |R|
such that for all x, y ∈ R, we have x <R y if and only if φ(x) < φ(y). Notice that for a well-
ordered set 〈R, <R〉 and y ∈ R, the inequality |Ry| < |R| holds. For y ∈ S, let φy : Sy → |Sy|
be a bijection.

For a cardinal κ and set S, define

[S]κ = {T ⊂ S : |T | = κ} and [S]<κ = {T ⊂ S : |T | < κ}.

For the well-ordered set 〈A, <A〉 and distinct subsets X,Y ⊂ A, let

δ(X,Y ) = min{a ∈ A : exactly one of X and Y contains a}

and

X ≺∗ Y if δ(X,Y ) ∈ Y.

The linear ordering ≺∗ is called the lexicographic ordering of the power set P(A).

4.1 Coloring with Galaxies

We assume in this subsection that s = 1, so that |S| = a+. We start by defining three
colorings c1, c2, and c3 of [S]2 below. For x = {x0, x1} ∈ [S]2 with x0 <S x1, let

c1(x) = δ(x0, x1) (5)

c2(x) =





0 if x0 ≺∗ x1

1 if x1 ≺∗ x0

(6)

c3(x) = φx1(x0) (7)
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Notice that the set of colors for coloring c1 is A, the set of colors for coloring c2 is
{0, 1}, and the set of colors for c3 is the set of ordinals less than a. Hence, the product
coloring c = c1× c2× c3 given by c(x) = (c1(x), c2(x), c3(x)) is an a-coloring of [S]2. We now
show that the only monochromatic subgraphs in the coloring c are galaxies. Suppose G is a
monochromatic subgraph of color (δ, ε, α) in the coloring c. Define the partition S = S0 ∪S1

by S0 = {y : y ∈ S and δ 6∈ y} and S1 = {y : y ∈ S and δ ∈ y}. Notice that every edge
{x0, x1} that is monochromatic of color δ in coloring c1 with x0 ≺∗ x1 satisfies x0 ∈ S0 and
x1 ∈ S1. Hence, G is bipartite with bipartition {S0, S1}. By coloring c2, every vertex of S1−ε

is larger than its neighbors in G by the well-ordering <S. By the coloring c3, a vertex y is
adjacent in G to at most one other vertex y′ satisfying y′ <S y. Therefore, every vertex of
S1−ε has degree at most 1 in G, and so G must be a galaxy.

4.2 Coloring with s-hybrids

Our first task is to define three colorings, C1, C2, and C3. The coloring C1 colors all the
finite subsets of P(A), but sometimes (it will be clear by context) we consider the coloring
C1 with its domain restricted to the finite subsets of S. The colorings C2 and C3 only color
the finite subsets of S. We will prove that all the monochromatic subhypergraphs in the
coloring C1 are partite. Each of the colorings C1, C2, C3 use at most a colors, and we will
prove that the only monochromatic subhypergraphs in the a-coloring C = C1 × C2 × C3 of
the finite subsets of S are s-hybrids.

Let T = {t1, . . . , tk} be a finite subset of P (A) listed in decreasing lexicographic order:
tk ≺∗ . . . ≺∗ t1. Let C1(∅) = 0 and otherwise let C1(T ) be the |T | × |T | matrix C1(T ) = (δij)
such that δij = δ(ti, tj) if i 6= j and δij = 0 if i = j. Notice that the colors of C1 are 0 or
finite matrices whose entries are 0 or elements of A. Therefore, C1 is an a-coloring.

If T is a subset of S, then we next assign color C2(T ) and C3(T ) to T . Let C2(T ) =
C3(T ) = 0 if k ≤ s. To define C2(T ) and C3(T ) when k > s, we first recursively define a
listing T (1), . . ., T (k) of the elements of T and a family

S ⊃ S(T, 1) ⊃ . . . ⊃ S(T, k)

of subsets of S. Let T (1) be the largest element of T by well ordering <S and S(T, 1) denote
the segment ST (1). Once T (j − 1) and S(T, j − 1) have been defined, let T (j) denote the
largest element of T \ {T (1), . . . , T (j − 1)} in the well ordering <S(T,j−1) of S(T, j − 1) and
let S(T, j) be the segment S(T, j − 1)T (j).

Let C2(T ) be the permutation π of [k] such that tπ(i) = T (i) for i ∈ [k]. Since the colors
of C2 are 0 or finite permutations, then C2 is an ℵ0-coloring.

Notice that
|S(T, k)| < . . . < |S(T, 1)| < |S|,

so the set S(T, s) has cardinality at most a.

Let C3(T ) be the image of the set {T (s + 1), . . . , T (k)} by a bijection φT (1),...,T (s) :
[S(T, s)]ω → |S(T, s)|. Notice that the image of φT (1),...,T (s) consists of ordinals less than a,
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so C3 is an a-coloring. Also, if T and T ′ are distinct finite subsets of S each with at least s
elements and T (i) = T ′(i) for i ∈ [s], then C3(T ) 6= C3(T

′) since φT (1),...,T (s) maps T and T ′

to distinct ordinals less than a.

For the following theorem, we use the colorings C1, C2, and C3 that we just defined.

Theorem 7 Assume a is an infinite cardinal and s is a positive integer such that a+s ≤ 2a.
Let A be a set of cardinality a, and S be a subset of the power set P(A) with cardinality a+s.

(1) In the a-coloring C1 of [P(A)]<ω, the monochromatic subhypergraphs are partite. More-
over, for every monochromatic subhypergraph H = (V, E) in the coloring C1 of [P(A)]<ω,
there are disjoint subsets P1, . . ., Pk of P(A) such that every edge of H contains exactly
one vertex in each Pi and every edge T = {t1, . . . , tk} ∈ E with tk ≺∗ . . . ≺∗ t1 satisfies
tj ∈ Pj for j ∈ [k].

(2) There is an a-coloring C of [S]<ω such that every monochromatic subhypergraph is a
s-hybrid.

Proof:

(1) Every monochromatic subhypergraph in the coloring C1 is uniform since the empty
set has color 0, and every k-set with k ≥ 1 is a k×k matrix. For k = 0 or 1, every k-uniform
hypergraph is trivially k-partite. Let k ≥ 2 and ∆ = (δij) be one of the k × k matrices that
is one of the colors of C1. For j ∈ [k], define the subset Pj of P(A) by x ∈ Pj if and only if
δij 6∈ x for i < j and δjh ∈ x for j < h ≤ k. For i, j ∈ [k] with i < j, every element of Pi

contains δij and no element of Pj contains δij. Hence, the sets P1, . . ., Pk are pairwise disjoint.
From the definition of the coloring C1, every edge in a monochromatic subhypergraph of color
∆ has a vertex in each Pj for each j ∈ [k]. Hence, a monochromatic subhypergraph in the
a-coloring C1 is partite. Moreover, if T = {t1, . . . , tk} with tk ≺∗ . . . ≺∗ t1 is an edge of color
∆, then tj ∈ Pj for j ∈ [k].

(2) Let C be the product coloring C = C1 × C2 × C3, where C1, C2, and C3 are as
previously defined, and the domain of C1 is restricted to the finite subsets of S. Since each
Ci for i ∈ {1, 2, 3} uses at most a colors, then the product coloring C uses at most a colors.

By the coloring C1, every monochromatic subhypergraph is k-partite for some positive
integer k. If k ≤ s, then a k-partite hyerpgraph is a s-hybrid. So we may assume k > s.

By the colorings C1 and C2, for every color D = (∆, π, α) of C, there is a positive
integer k and pairwise disjoint subsets S1, . . ., Sk of S such that every finite subset T of
S that is colored D by C satisfies |T | = k and T (i) ∈ Si for i ∈ [k]. By the coloring C3,
every s-tuple (v1, . . . , vs) with vi ∈ Si satisfies that at most one edge e of color D satisfies
{v1, . . . , vs} ⊂ e. Hence, the only monochromatic subhypergraphs are s-hybrids. 2

For a hypergraph H and cardinal b, the hypergraph bH consists of b disjoint copies of
H.

Lemma 3 Let a and b be infinite cardinals such that a < b and b is a regular cardinal. If
H is a k-uniform hypergraph such that b → ({H})k

a, then b → ({bH})k
a.

Proof: We have b = b × b, so every a-coloring of the edges of the complete k-uniform
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hypergraph has at least b monochromatic copies of H. Since b > a and b is regular, then
there are b monochromatic copies of H all of the same color. Hence, we have b → (bH)k

a. 2

For a hypergraph H = (V,E) and vertex v ∈ V , define the neighborhood hypergraph
N(H, v) = (V ′, E ′) by

V ′ = {w : w ∈ V \ {v} and there is an edge e ∈ E such that {v, w} ⊂ e}
and

E ′ = {e \ {v} : v ∈ e ∈ E}.
We define the infinite k-uniform hypergraph H(k, a) recursively. The 1-uniform hyper-

graph H(1, a) = (V, E) has a+ vertices and E = {{v} : v ∈ V }. For integer k ≥ 2, define the
k-uniform hypergraph H(k, a) which consists of a+ disjoint copies of the k-uniform hyper-
graph which consists of a root vertex v whose neighborhood hypergraph is H(k − 1, a).

Lemma 4 Let k be a positive integer and a an infinite cardinal. For every a-coloring of the
finite subsets of a set of cardinality a+ there is a monochromatic copy of H(k, a).

Proof: The proof is by induction on k. For k = 1, the result follows immediately from the
transfinite pigeonhole principle. The induction hypothesis is that the lemma is true for k.
Let v be any of the a+ vertices, and consider the edges of size k + 1 containing v. By the
induction hypothesis, there is a monochromatic hypergraph where every edge contains v and
the neighborhood hypergraph of v is isomorphic to H(k, a). Combining this with Lemma 3,
for every a-coloring of the finite subsets of a set of cardinality a+ there is a monochromatic
copy of H(k + 1, a). By induction on k , we have verified the lemma. 2

Every 1-hybrid k-uniform graph on at most a+ vertices is a subhypergraph of H(k, a).
Hence, Corollary 3 follows immediately from Lemma 4 and Theorem 7.

Corollary 3 For every infinite cardinal a and family G of hypergraphs, we have a+ → (G)<ω
a

if and only if G contains a 1-hybrid hypergraph on at most a+ vertices.

We next prove Erdős and Hajnal’s polarized partition relation (4). A proof of this result
can also be found in the papers of Schmerl [20] and Komjáth [16]. The complete k-partite
hypergraph P (k; n) = (V, E) is defined by V = V1 ∪ . . . ∪ Vk with |Vi| = n for 1 ≤ i ≤ k,
and (v1, . . . , vk) ∈ E if vi ∈ Vi for 1 ≤ i ≤ k, and there are no other edges. Notice that every
k-partite hypergraph on n vertices is a subhypergraph of P (k; n).

Lemma 5 Let k and n be positive integers and a an infinite cardinal. Every a-coloring of
the edges of the complete k-uniform hypergraph on a+k vertices contains a monochromatic
P (k; n).

Proof: The proof is by induction on k. For k = 1, this result follows immediately from
the transfinite pigeonhole principle. The induction hypothesis is that the lemma is true for
k. Consider an a-coloring of the complete (k + 1)-uniform hypergraph K

(k+1)

a+(k+1) on a+(k+1)

vertices. Partition the a+(k+1) vertices into two sets, X and Y , such that |X| = a+(k+1) and

|Y | = a+k. For each x ∈ X, consider the edges of K
(k+1)

a+(k+1) that include x and k vertices from
Y . By the induction hypothesis, there is a monochromatic (k+1)-hypergraph such that each
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edge contains x and the neighborhood of x is a copy of P (k; n) with vertices in Y . Make a
pigeonhole for each copy of P (k; n) with vertices in Y and color of the a colors. There are
a+k such pigeonholes. Place a vertex x ∈ X in a pigeonhole if the neighborhood of x in the
color of the pigeonhole contains the copy of P (k; n) of the pigeonhole. Since there are a+(k+1)

such vertices x ∈ X and only a+k pigeonholes, then there are n vertices in one pigeonhole.
These n vertices, along with the vertices of the copy of P (k; n) of the pigeonhole, are the
vertices of a monochromatic P (k + 1; n) in the color of the pigeonhole. By induction on k,
we have verified the lemma. 2

5 Regularity without the axiom of choice

In this section we study infinite color regularity over R without the axiom of choice. Fi-
nite color regularity over R without the axiom of choice was studied by Fox and Radoičić [13]
and also by Alexeev, Fox, and Graham [1].

We first define the axioms we will be using. In 1942 Bernays [3] formulated the axiom
known as the principle of dependent choice.

Definition: Principle of dependent choices If E is a binary relation on a nonempty
set A and for every a ∈ A there exists b ∈ A with aEb, then there exists a sequence
a1, a2, . . . , an, . . . such that anEan+1 for every n < ω.

The principle of dependent choice is usually denoted by DC. The axiom of choice implies
DC, but not conversely (Theorem 8.2 in [15]). As usual, ZF is short for Zermelo-Fraenkel
system of axioms, and ZFC is short for Zermelo-Fraenkel system of axioms with the axiom
of choice.

Definition: Axiom LM Every set of real numbers is Lebesgue measurable.

Axiom LM is not consistent with ZFC. However, In 1970, assuming the existence of an
inaccessible cardinal, Solovay proved the following consistency result.

Theorem 8 (Solovay, [23]) The system of axioms ZF + DC + LM is consistent.

We call a system
n∑

i=1

aijxi = 0 for 1 ≤ j ≤ m

of linear homogeneous equations homothetic if
∑n

i=1 aij = 0 for 1 ≤ j ≤ m. Rado [19] first
proved that if L is a system of linear homogeneous equations that is not homothetic, then
there is a countable coloring of the real numbers without a monochromatic solution to L
in distinct variables. The following theorem classifies those systems of linear homogeneous
equations that are ℵ0-regular in ZF+DC+LM.

Theorem 9 In ZF+DC+LM, a system L of homogeneous linear equations is ℵ0-regular over
R if and only if L is homothetic and there is a solution to L in distinct variables.

This classification is considerably different from the classification in ZFC given by
Theorem 1. For example, x1 + x2 = 2x3 is ℵ0-regular over R in ZF+DC+LM but not ℵ0-
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regular over R in ZFC. The proof of Theorem 9 follows from a result of Ceder [5].

If S ⊂ Rn, then a homothetic copy of S is a set aS +b = {as+b : s ∈ S} where a, b ∈ R
and a 6= 0. Notice that a system L of linear homogeneous equations is homothetic if and
only if for every solution (x1, . . . , xn) of L, we have (ax1 + b, . . . , axn + b) is also a solution
of L for all a and b in R. Hence the solution space of a system L of linear equations is closed
under taking homothetic copies if and only L is homothetic. The last ingredient of the proof
of Theorem 9 is the following theorem of Ceder [5].

Theorem 10 (Ceder 1969) If S is a finite subset of Rn, then every countable coloring of
Rn with each color class Lebesgue measurable contains a monochromatic homothetic copy of
S.

Since the set of solutions to a linear homogeneous system of equations is closed by
homothetic copies, then Theorem 9 follows from Theorem 10.
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