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Abstract

A string graph is the intersection graph of a collection of continuous arcs in the plane. We show
that any string graph with m edges can be separated into two parts of roughly equal size by the
removal of O(m3/4

√
log m) vertices. This result is then used to deduce that every string graph with

n vertices and no complete bipartite subgraph Kt,t has at most ctn edges, where ct is a constant
depending only on t. Another application shows that locally tree-like string graphs are globally
tree-like: for any ε > 0, there is an integer g(ε) such that every string graph with n vertices and
girth at least g(ε) has at most (1 + ε)n edges. Furthermore, the number of such graphs is at most
(1 + ε)nT (n), where T (n) = nn−2 is the number of labeled trees on n vertices.

1 Introduction

A large part of computational geometry deals with representation and manipulation of various geomet-
ric objects. Special attention is paid to pairs of objects that are in contact with each other: detecting
intersections among line segments, for example, belongs to the oldest and best studied chapter of com-
putational geometry, already addressed in the first monograph devoted to the subject [37]. Yet, even
in the special case of segments, little is known about elementary structural properties of the arising
intersection patterns. The recognition of such intersection patterns (intersection graphs) is known to
be NP-hard [21], [22].

Given a collection C = {γ1, . . . , γn} of arcwise connected sets in the plane, their intersection graph
G = G(C) is a graph on the vertex set C, where γi and γj (i 6= j) are connected by an edge if and only
if γi ∩ γj 6= ∅. It is easy to show that every such intersection graph can be obtained as an intersection
graph of a collection of (simple) continuous curves in the plane. Therefore, the intersection graphs of
arcwise connected sets in the plane are often called string graphs.

Given a graph G = (V, E) with vertex set V and edge set E, a weight function w : V → R≥0 is a
nonnegative function on the vertex set such that the sum of the weights is at most 1. The weight of
a subset S ⊆ V , denoted by w(S), is defined as

∑
v∈S w(v).

A separator in a graph G = (V, E) with respect to a weight function w is a subset S ⊆ V for which
there is a partition V = S ∪ V1 ∪ V2 such that w(V1), w(V2) ≤ 2/3 and there is no edge between V1

and V2. If the weight function is not specified, it is assumed that w(v) = 1
|V | for every vertex v ∈ V .
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The Lipton-Tarjan separator theorem [26] states that for every planar graph G with n vertices and
for every weight function w for G, there is a separator of size O(n1/2). This has been generalized in
various directions: to graphs embedded in a surface of bounded genus [16], graphs with a forbidden
minor [1], intersection graphs of balls in Rd [29], intersection graphs of Jordan regions [11], and
intersection graphs of convex sets in the plane [11]. Our main result is a separator theorem for string
graphs.

Theorem 1.1 For every string graph G with m edges and for every weight function w for G, there is
a separator of size O

(
m3/4

√
log m

)
with respect to w.

We do not believe that the bound on the separator size in Theorem 1.1 is tight. In fact, as in [14],
we make the following conjecture.

Conjecture 1.2 Every string graph with m edges has a separator of size O(
√

m).

This conjecture is known to be true in several special cases: (1) for intersection graphs of convex
sets in the plane with bounded clique number [11], (2) for intersection graphs of curves, any pair
of which has a bounded number of intersection points [11], and (3) for outerstring graphs, that is,
intersection graphs of collections C of curves with the property that there is a suitable curve γ such
that each member of C has one endpoint on γ, but is otherwise disjoint from it [12].

Separator theorems have many important applications (see, e.g., [25] and [27]). Despite the ap-
parent weakness of the bound in Theorem 1.1, it is still strong enough to yield some interesting
corollaries.

For any graph H, a graph G is called H-free if it does not have a (not necessarily induced) subgraph
isomorphic to H. Given H and a positive integer n, the extremal number ex(H, n) is defined as the
maximum number of edges over all H-free graphs on n vertices. The study of this parameter is a
classical area of Turán type extremal graph theory; see [3]. The problem of investigating the same
maximum restricted to intersection graphs of arcwise connected sets, convex bodies, segments, etc.,
was initiated in [34]. For partial results in this directions, see [34], [38], [11].

In the present paper, we use Theorem 1.1 to prove that for any bipartite graph H, there is a
constant cH such that every H-free intersection graph of n arcwise connected sets in the plane has at
most cHn edges. Clearly, it is sufficient to prove this statement for balanced complete bipartite graphs
H = Kt,t, as every bipartite graph with t vertices is a subgraph of Kt,t.

Theorem 1.3 For any positive integer t, every Kt,t-free string graph with n vertices has at most
tc log log tn edges, where c is an absolute constant.

A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most d. Every
d-degenerate graph has chromatic number at most d + 1. Theorem 1.3 implies that every Kt,t-free
intersection graph of arcwise connected sets in the plane is 2tc log log t-degenerate. Thus, we obtain

Corollary 1.4 For any positive integer t, the chromatic number of every Kt,t-free intersection graph
of n arcwise connected sets in the plane is at most 2tc log log t + 1.
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In [11], it was shown that every Kt,t-free intersection graphs of n curves, no pair of which has more
than a fixed constant number of points in common, has at most ctn edges, where the dependence on
t is exponential. In this case, our separator based approach gives a tight bound. In Section 6, we
establish the following result.

Theorem 1.5 Let k and t be positive integers. There exists a constant Ck depending only on k, such
that the maximum number of edges of any Kt,t-free intersection graph G of n curves in the plane,
no pair of which has more than k points in common, is at most Cktn. Apart from the value of the
constant Ck, this bound cannot be improved.

A collection of curves in the plane is called a collection of pseudo-segments if no two of them has
more than one point in common. The girth of a graph is the length of its shortest cycle. Kostochka
and Nešetřil [19] proved that for any ε > 0, there is a positive integer g(ε) such that the intersection
graph of any collection of pseudo-segments with girth at least g(ε) has at most (1 + ε)n edges. Using
our separator theorem, Theorem 1.1, this statement can be extended to all string graphs.

Theorem 1.6 For any ε > 0, there is a positive integer g(ε) such that every string graph on n vertices
with girth at least g(ε) has at most (1 + ε)n edges.

In particular, this theorem implies that there exists a positive integer g0 such that every string
graph with girth at least g0 has chromatic number at most 3. It would be interesting to determine the
smallest such integer g0.

We mention another application of Theorem 1.1. The bandwidth of a graph G with n vertices is
the minimum b for which there is a labeling of the vertices of G by distinct integers such that the
labels of adjacent vertices differ by at most b. Chung [6] showed that every tree with n vertices and
maximum degree ∆ has bandwidth O(n/ log∆ n). Böttcher, Pruessmann, Taraz, and Würfl [4] used
the separator theorem for planar graphs to extend this result to show that every planar graph with
n vertices and maximum degree ∆ has bandwidth O(n/ log∆ n). Replacing the separator theorem for
planar graphs by Theorem 1.1 in the proof of this result and using the bound in Theorem 1.3, we
obtain the following extension to all string graphs with a forbidden bipartite subgraph.

Corollary 1.7 Every Kt,t-free string graphs with n vertices and maximum degree ∆ has bandwidth at
most ctn/ log∆ n, where ct only depends on t.

In the next section, we prove an inequality bounding the pair-crossing number of a string graph
by the number of short paths in the graph. We use this to deduce an upper bound on the bisection
width of a string graph, and to obtain a proof of our separator theorem, Theorem 1.1, for the uniform
weight function w ≡ 1/|V |. We then give a different proof for the full version of the separator theorem
in Section 3. In Section 4, we apply the (weak) separator theorem to prove a qualitative version of
Theorem 1.3, which states that Kt,t-free string graphs with n vertices have at most ctn edges. The
proof of Theorem 1.3 is given in Section 5. In Section 6, we prove Theorem 1.5 and a similar result
for intersection graphs of convex sets in the plane. In Section 7, we deduce Theorem 1.6 and two
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other results that can be obtained similarly. In the concluding remarks, we discuss the strength of the
constant factor dependence on t in Theorem 1.3 and the asymptotic number of string graphs with a
forbidden bipartite subgraph. Throughout the paper, we systematically omit floor and ceiling signs,
whenever they are not crucial for the sake of clarity of the presentation. All logarithms in this paper
are base 2 unless otherwise noted.

2 Crossing number, bisection width, and separators for string graphs

A topological graph is a graph drawn in the plane with vertices as points and edges as curves connecting
its vertices. These curves are disjoint from the vertices except for their endpoints. The pair-crossing
number pcr(G) of a graph G is the minimum number of pairs of edges that intersect in a drawing of
G. The length of a path in a graph is the number of its edges. We prove the following upper bound
on the pair-crossing number of string graphs.

Lemma 2.1 If G is a string graph, then pcr(G) is at most the number of paths of length 2 or 3 in G.

Proof. Let C be a collection of curves whose intersection graph is G. For each curve γ ∈ C, let
p(γ) be an arbitrary point on γ. For each pair q = {γ, γ′} of distinct intersecting curves in C, let
α(q) denote a curve which starts at p(γ), goes along γ until it comes to an intersection point of γ and
γ′, and then continues along γ′ until it ends at p(γ′). Note that this provides a drawing of G in the
plane, in which the vertices are the points p(γ) and the edges are the curves α(q). Suppose that two
edges α(q1) and α(q2) in this drawing intersect. Since α(qi) lies along the union of the two curves qi

is composed of, one of the curves in q1 intersects one of the curves in q2. If q1 and q2 have a curve
γ in common, then we obtain a path of length two in G with middle vertex γ. Otherwise, q1 and q2

consist of distinct curves, and one of the curves in q1 intersects one of the curves in q2, which gives
rise to a path of length three in G with these intersecting curves as the two middle vertices. 2

The crossing number cr(G) of a graph G is the minimum number of edge crossings in any drawing
of G. It is a challenging open problem [35] to determine whether pcr(G) = cr(G) holds for every graph
G. We can prove a similar inequality for intersection graphs of convex sets in the plane, replacing
pair-crossing number by crossing number.

Lemma 2.2 If G is an intersection graph of convex sets in the plane, then cr(G) is at most four times
the number of paths of length 2 or 3 in G.

Proof. Let C be a collection of convex sets in the plane whose intersection graph is G. For each
convex set γ ∈ C, let p(γ) be an arbitrary point in γ. For each pair q = {γ, γ′} of convex sets in
C that intersects, let α(q) be a curve which is a polygonal path consisting of two segments, the first
segment starts at p(γ) and ends at an intersection point of γ and γ′, and the second segment starts
at this intersection point and ends at p(γ′). Note that this provides a drawing of G in the plane, the
vertices are the points of the form p(γ) and the edges are the curves α(q). Just as in Lemma 2.1, the
number of pairs of crossing edges in this drawing is at most the number of paths of length 2 or 3 in G.
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Since each edge in this drawing is a union of two segments, and pairs of segments can cross at most
once, each pair of crossing edges has at most four crossings. 2

The bisection width b(G) of a graph G = (V, E) is the least integer for which there is a partition
V = V1 ∪V2 such that |V1|, |V2| ≤ 2|V |/3 and the number of edges between V1 and V2 is b(G). For any
graph G, let ssqd(G) =

∑
v∈V (G)(deg(v))2. Pach, Shahrokhi, and Szegedy [33] used the Lipton-Tarjan

separator theorem to show that

b(G)2 = O (cr(G) + ssqd(G)) .

Kolman and Matoušek [18] use a result of Leighton and Rao [24] on multicommodity flows to obtain
the following analogous result for pair-crossing number.

Lemma 2.3 (Kolman and Matoušek [18]) Every graph G on n vertices satisfies

b(G) ≤ c log n
(√

pcr(G) +
√

ssqd(G)
)

,

where c is an absolute constant.

Noting that ssqd(G) is twice the number of paths of length 1 or 2 in G, we have the following
corollary of Lemmas 2.1 and 2.3.

Corollary 2.4 Let G be a string graph on n vertices and p denote the number of paths of length at
most 3 in G. Then the bisection width of G satisfies

b(G) = O(p1/2 log n).

Replacing Lemma 2.1 by Lemma 2.2 and Lemma 2.3 by the result of Pach, Shahrokhi, and Szegedy,
we have that for G an intersection graph of convex sets in the plane, b(G) = O(p1/2). This bound and
Corollary 2.4 (up to the logarithmic factor) cannot be improved. Indeed, for the complete graph on
n vertices, which is an intersection graph of segments, the number of paths of length at most three is
Θ(n4) while the bisection width is Θ(n2).

Every graph G = (V, E) has a separator with at most b(G) vertices. Indeed, let V = V1 ∪ V2 be
a vertex partition with |V1|, |V2| ≤ 2|V |/3 and b(G) edges between V1 and V2. Let V0 denote those
vertices in V1 which are adjacent to a vertex in V2, so |V0| ≤ b(G). Since V = V0 ∪ (V1 \ V0) ∪ V2 is a
vertex partition, |V1 \ V0|, |V2| ≤ 2|V |/3, and there are no edges between V1 \ V0 and V2, then V0 is a
separator for G.

Let m denote the number of edges of G and ∆ ≥ 1 denote the maximum degree of G. The number
of paths of length 2 in G is

∑
v∈V (G)

(
deg(v)

2

) ≤ ∆−1
2

∑
v∈V (G) deg(v) = m(∆ − 1). Each edge of G is

the middle edge of at most (∆− 1)2 paths of length 3 in G, so the number of paths of length 3 in G

is at most m(∆ − 1)2. Putting these bounds together, the number of paths of length at most 3 is at
most m + m(∆− 1) + m(∆− 1)2 ≤ m∆2.

From Corollary 2.4 and the discussion in the previous two paragraphs, we get the following sep-
arator theorem for string graphs. We may assume that the string graph has no isolated vertices, so
log n and log m are within a constant factor of each.
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Theorem 2.5 Every string graph with m ≥ 2 edges and maximum degree ∆ has a separator of size

O
(
∆m1/2 log m

)
.

We can quickly deduce an unweighted version of Theorem 1.1 from this result. Indeed, let G be a
string graph with m edges and ∆ = m1/4/

√
log m. Let V0 consist of those vertices of degree at least

∆ together with the vertices of a smallest separator in the remaining induced subgraph. The number
of vertices of degree at least ∆ is at most 2m/∆ = 2m3/4

√
log m. The remaining induced subgraph

has at most m edges and maximum degree at most ∆, so Theorem 2.5 implies it has a separator of
size O

(
∆m1/2 log m

)
= O(m3/4

√
log m). The set V0 is a separator for G of size O(m3/4

√
log m). 2

3 Proof of Theorem 1.1

The bisection width bw(G) of a graph G = (V,E) with respect to a weight function w is the least
integer for which there is a partition V = V1 ∪ V2 such that w(V1), w(V2) ≤ 2/3 and the number of
edges between V1 and V2 is bw(G). Note that b(G) = bw(G) if w is the uniform weight function defined
by w(v) = 1

|V | for all v ∈ V .
By iterating Lemma 2.3, we obtain the following result.

Theorem 3.1 Let G be a topological graph with n vertices and maximum degree d, and assume that
every edge of G intersects at most D other edges. For any weight function w, we have

bw(G) = O
((√

dD + d
)√

n log n
)

.

Proof. The maximum degree is d, so the number of edges of G is at most dn/2. Since each edge of
G intersects at most D other edges, the pair-crossing number of G is at most dn

2
D
2 = dDn/4.

Let A0 denote the vertex set of G. By Lemma 2.3, there is a partition A0 = A1 ∪ B1 such that
|A1|, |B1| ≤ 2

3n, and the number of edges with one vertex in A1 and the other in B1 is at most

c log n
(√

pcr(G) +
√

ssqd(G)
)
≤ c log n

(√
dDn/4 +

√
d2n

)
.

Without loss of generality, we may assume that w(A1) ≥ w(B1).
After i iterations, we have a vertex subset Ai with at most

(
2
3

)i
n vertices. By Lemma 2.3 applied to

the subgraph G[Ai] of G induced by Ai, there is a partition Ai = Ai+1∪Bi+1 such that |Ai+1|, |Bi+1| ≤
2
3 |Ai| ≤

(
2
3

)i+1
n, and the number of edges with one vertex in Ai+1 and the other in Bi+1 is at most

c log n
(√

pcr(G[Ai]) +
√

ssqd(G[Ai])
)

≤ c log

((
2
3

)i

n

)


√
dD

(
2
3

)i

n/4 +

√
d2

(
2
3

)i

n




≤
(

2
3

)i/2

c(
√

dD + d)
√

n log n.

Without loss of generality, we may assume that w(Ai+1) ≥ w(Bi+1).
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We stop the iterative process with i0 if w(Ai0) ≤ 2
3 . Since w(Ai0) + w(Bi0) = w(Ai0−1) > 2/3, we

have 1/3 < w(Ai0) ≤ 2/3. Let X = Ai0 and Y = A0 \ Ai0 = B1 ∪ . . . ∪ Bi0 . By construction, the
number of edges of G with one vertex in X and the other vertex in Y is less than

∞∑

i=0

(
2
3

)i/2

c
(√

dD + d
)√

n log n ≤ 6c
(√

dD + d
)√

n log n.

Thus, A0 = X ∪ Y is a partition of the vertex set demonstrating that the bisection width of G with
respect to w is O

((√
dD + d

)√
n log n

)
. 2

We next prove a separator theorem for string graphs of maximum degree ∆.

Theorem 3.2 Let C be a collection of curves in the plane whose intersection graph G has m edges
and maximum degree ∆, and let w be a weight function on G. Then G has a separator of size
O

(
∆m1/2 log m

)
with respect to w.

Proof. By slightly perturbing the curves in C, if necessary, we can assume that no three curves in
C share a point in common. We may also assume without loss of generality that every element of C

intersects at least one other element.
For each pair of intersecting curves, pick an arbitrary point of intersection, and let P be the set

of these m points. Define the topological graph T on the vertex set P by connecting a pair of points
of P with an edge if and only if they are consecutive points of P along a curve in C. The number of
vertices of T is m. Since no three curves in C have a point in common, the maximum degree of the
vertices of T is at most four. Each curve in C gives rise to a path in the topological graph T with at
most ∆ vertices and at most ∆ − 1 edges. Since each curve in C intersects at most ∆ other curves,
each edge of T crosses at most ∆ curves, besides the one it is contained in. Each of these at most
∆ curves contains at most ∆− 1 edges of T . Therefore, each edge of T intersects altogether at most
∆(∆− 1) < ∆2 other edges.

For any γ ∈ C, let d(γ) denote the number of points of P on γ, i.e., the number of curves in C

that intersect γ. To each vertex v of T that is the intersection of two elements γ1, γ2 ∈ C, assign the
weight

w′(v) =
w(γ1)
d(γ1)

+
w(γ2)
d(γ2)

.

Notice that w′(P ) = w(C) = 1.
We now apply Theorem 3.1 to the topological graph T and to the weight function w′. Recall that

T has m vertices, maximum degree at most four, and every edge intersects at most ∆2 other edges. So
there is a partition P = P1 ∪ P2 with w′(P1), w′(P2) ≤ 2/3 and the number of edges with one vertex
in P1 and the other in P2 is

O
(
(∆2m)1/2 log m

)
= O

(
∆m1/2 log m

)
.

Let C0 consist of those curves in C that contain an edge of the topological graph T with one vertex in P1

and the other in P2. There are O
(
∆m1/2 log m

)
such edges, therefore we have |C0| = O

(
∆m1/2 log m

)
.
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For i ∈ {1, 2}, let Ci consist of those curves of C all of whose intersection points in P belong to
Pi. Note that, by construction, w(Ci) ≤ w′(Pi) ≤ 2/3 and the sets C0, C1, C2 are pairwise disjoint.

No curve in C1 intersects a curve in C2 as otherwise their intersection point lies in both P1 and P2,
which are disjoint. To show that every curve in C belongs to exactly one of the sets C0, C1, C2, it is
enough to notice that any curve γ ∈ C which contains a point in P1 and one in P2 must belong to C0.
Indeed, such a curve gives rise to a path in T , and hence contains an edge from P1 to P2. Therefore,
C0 is a separator with respect to w of the desired size. 2

Just as we deduced the unweighted version of Theorem 1.1 from Theorem 2.5, Theorem 1.1 follows
from Theorem 3.2.

4 H-free string graphs have linearly many edges

In this section, we show how to quickly deduce from our separator theorem a qualitative version of
Theorem 1.3.

A weaker version of Theorem 1.3, established in [34], states that every Kt,t-free string graph on
n vertices has at most n logc′t n edges. Combining this theorem with Theorem 1.1, we obtain the
following corollary.

Corollary 4.1 For every Kt,t-free string graph G on n vertices and for every weight function w for
G, there is a separator of size n3/4 logc′′t n with respect to w, where ct is a constant depending only on
t.

A family of graphs is hereditary if it is closed under taking induced subgraphs. The following
lemma of Lipton, Rose, and Tarjan [25] shows that if all members of a hereditary family of graphs
have small separators, then the number of edges of these graphs is at most linear in the number of
vertices. Another proof with a slightly better bound can be found in [11].

Lemma 4.2 (Lipton, Rose, Tarjan [25]) Let ε > 0, and let F be a hereditary family of graphs such
that every member of F with n vertices has a separator of size O(n/(log n)1+ε). Then every graph in
F on n vertices has at most cF n edges, where cF is a suitable constant.

Clearly, the family of Kt,t-free string graphs is hereditary. Therefore, Corollary 4.1 combined with
Lemma 4.2 immediately implies that every Kt,t-free string graph on n vertices has at most ctn edges,
where ct only depends on t. 2

5 Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3. (A proof disregarding the dependence of the constant
on t was given in Section 4.)

The first ingredient of the proof of Theorem 1.3 is a weaker upper bound on the number of edges of
a Kt,t-free string graph on n vertices. Pach and Sharir [34] proved that every Kt,t-free string graph on
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n vertices has at most n logct n edges. Their proof shows that we may take ct = 2ct for some absolute
constant c. We first show how to modify their proof technique, in combination with other extremal
results on string graphs, to show that the result also holds with ct = c log t.

Lemma 5.1 Every string graph G with n vertices and more than n logc1 log t n edges has Kt,t as a
subgraph, where c1 is an absolute constant.

To prove this lemma, we need the following two auxiliary results. The first of these results, from
[13], shows that every n-vertex string graph with positive constant edge density contains a balanced
complete bipartite graph with Ω(n/ log n) vertices.

Lemma 5.2 ([13]) Every string graph with n vertices and εn2 edges has Kt,t as a subgraph with
t = εc3n/ log n for some absolute constant c3.

The following lemma guarantees that topological graphs on n vertices with sufficiently many edges
contain s pairwise crossing edges with distinct vertices. The same result was proved in [12], except that
the s pairwise crossing edges were allowed to share endpoints. As we will need the slightly stronger
version for the proof of Theorem 1.3, we include its proof here.

Lemma 5.3 There is an absolute constant c2 such that every topological graph with n ≥ 2 vertices
and more than n(log n)c2 log s edges has s pairwise crossing edges with distinct vertices.

We will use the following lemma, which shows that for every graph G with n vertices and m À n

edges, almost all induced subgraphs of G have roughly m/4 edges.

Lemma 5.4 Let G be a graph with n vertices and m ≥ n edges. Let H be an induced subgraph of G

taken uniformly at random and X be the random variable denoting number of edges of H. For every
λ > 0,

P[|X −m/4| ≥ λ
√

mn/2] ≤ 1/λ2.

Proof. The proof uses the Second Moment Method (see, e.g., Section 4 of [2]).
We first show that the expected value of the random variable X is m/4. We pick a vertex to be in H

with probability 1/2 independently of the other vertices. For each edge e of G, let Xe be the indicator
random variable of the event that e is an edge of H. That is, Xe = 1 if e is an edge of H and Xe = 0
otherwise. We have E[Xe] = 1/4, and by linearity of expectation, E[X] =

∑
e∈E(G) E[Xe] = m/4.

We next compute the variance of the random variable X. Since X =
∑

e∈E(G) Xe, we have

Var[X] =
∑

e∈E(G)

Var[Xe] +
∑

e6=e′
Cov[Xe, Xe′ ],

where the variance is defined by Var[X] = E[X2]−E[X]2 and the covariance is defined by Cov[Xe, Xe′ ] =
E[XeXe′ ]−E[Xe]E[Xe′ ]. Since Xe is an indicator random variable, we have Var[Xe] = E[X2

e ]−E[Xe]2 =
E[Xe] − E[Xe]2 = 3/16. The covariance of independent variables is 0. In particular, if e and e′ do
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not share a vertex, then Cov[Xe, Xe′ ] = 0. If e and e′ share a vertex, then XeXe′ = 1 if and
only if the three vertices of e or e′ are all vertices of H. Hence, in this case, E[XeXe′ ] = 1/8 and
Cov[Xe, Xe′ ] = E[XeXe′ ]−E[Xe]E[Xe′ ] = 1/8− 1/16 = 1/16. Let d1, . . . , dn be the degree sequence of
G. The number of pairs of distinct edges that share an edge, by counting over the vertex in common
of the two edges, is precisely

∑n
i=1

(
di
2

)
. Putting this together and using linearity of expectation,

Var[X] =
∑

e∈E(G)

Var[Xe] +
∑

e 6=e′
Cov[Xe, Xe′ ] =

3
16

m +
2
16

n∑

i=1

(
di

2

)

=
1
16

(
m +

n∑

i=1

d2
i

)
≤ 1

16

(
m +

2m

n
n2

)
=

1
16

(m + 2mn) ≤ mn/4,

where the first inequality uses the convexity of the function f(y) = y2 together with the inequalities
0 ≤ di ≤ n and the equation

∑n
i=1 di = 2m. The desired inequality is just Chebyshev’s inequality

substituting in the above upper bound on the variance of X. 2

The next statement is an easy consequence of Lemma 5.4.

Lemma 5.5 Let G1 and G2 be graphs on the same vertex set V of cardinality n and denote the number
of edges of Gi by mi. If mi ≥ 64n for i = 1, 2, then there is a partition V = V1 ∪ V2 such that the
subgraph Gi[Vi] of Gi induced by Vi has at least mi/8 edges, for i = 1, 2.

Proof. Let λ = 2. Pick V1 ⊂ V uniformly at random, and let V2 = V \ V1. For each i = 1, 2,
since λ

√
min/2 ≤ mi/8, Lemma 5.4 implies that the probability that the number of edges of Gi[Vi] is

less than mi/8 is at most 1/4. Hence, with probability at least 1/2, for each i = 1, 2, the number of
edges of Gi[Vi] is at least mi/8. Since this event occurs with positive probability, there is a partition
V = V1 ∪ V2 such that the number of edges of Gi[Vi] is at least mi/8, for i = 1, 2. 2

We have now established the necessary lemmas to present the proof of Lemma 5.3. Our proof is
similar to the proof of Theorem 11 from [12], but it also guarantees that the s pairwise crossing edges
have distinct vertices.

Proof of Lemma 5.3: Let P (n, s) denote the maximum number of edges of a topological graph on
n vertices with no s pairwise crossing edges with distinct vertices. We will prove by induction on n

and s the upper bound
P (n, s) ≤ n(log n)c2 log s,

which implies Lemma 5.3. For n ≤ 2, the inequality follows from P (n, s) ≤ (
n
2

)
and for s = 1 from

P (n, 1) = 0. These are our base cases. The induction hypothesis is that if s′ ≤ s and n′ ≤ n are
positive integers and (n′, s′) 6= (n, s), then P (n′, s′) ≤ n′(log n′)c2 log s′ . Let G = (V, E) be a topological
graph with n vertices, m = P (n, s) edges, and no s pairwise crossing edges with distinct vertices. Let
F be the intersection graph of the edges of G, and x denote the number of edges of F , i.e., G has x

pairs of crossing edges. Let y = 100c2 log4 n, where c is the absolute constant from Lemma 2.3.
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Case 1: x < m2/y. Note that x is an upper bound on the pair-crossing number of G. By Theorem
2.3, there is a partition V = V1∪V2 into nonempty subsets such that |V1|, |V2| ≤ 2

3 |V | and the number
of edges with one vertex in V1 and the other in V2 satisfies

e(V1, V2) = b(G) ≤ c log n
(√

pcr(G) +
√

ssqd(G)
)

.

Note that ssqd(G) ≤ 2m
n n2 = 2mn because the function f(z) = z2 is convex, the degrees of the

vertices in G lie between 0 and n, and the sum of the degrees of the vertices in G is 2m. If m <

2ny = 200c2n log4 n, then we are done. Thus, we may assume that m ≥ 2ny and it follows that√
x +

√
ssqd(G) ≤ 2my−1/2. Hence, e(V1, V2) ≤ c log n · 2my−1/2 = m

5 log n . For i = 1, 2, the subgraph
of G induced by Vi also has no s pairwise crossing edges with distinct vertices. Hence,

m ≤ P (|V1|, s) + P (|V2|, s) +
m

5 log n
.

Using the induction hypothesis, the inequality |V1|, |V2| ≤ 2n/3, and that c2 is a sufficiently large
constant, we have

P (n, s) = m ≤
(

1− 1
5 log n

)−1

(P (|V1|, s) + P (|V2|, s))

≤
(

1− 1
5 log n

)−1 (
|V1|(log |V1|)c2 log s + |V2|(log |V2|)c2 log s

)

≤
(

1− 1
5 log n

)−1

n (log(2n/3))c2 log s < n(log n)c2 log s,

which completes this case.
Case 2: x ≥ m2/y. So F , the intersection graph of the edges of G, has at least m2/y edges. Since

F is a string graph, Lemma 5.2 implies that there is an absolute constant c3 such that F contains Kt,t

as a subgraph with

t = y−c3m/ log m = 100−c3c−2c3(log n)−4c3m/ log m ≥ m(log n)−c′ ,

for some absolute constant c′. Hence, there are two edge subsets E1, E2 of G, each of size at least
t, such that every edge in E1 crosses every edge in E2. Applying Lemma 5.5, there are edge subsets
E′

1 ⊂ E1 and E′
2 ⊂ E2, each of cardinality at least t/8, such that the vertices of the edges in E′

1 are
distinct from the vertices in E′

2. Since G has no s pairwise crossing edges with distinct vertices, there
is i ∈ {1, 2} such that E′

i does not contain s/2 pairwise crossing edges. Hence,

m(log n)−c′/8 ≤ t/8 ≤ |E′
i| ≤ P (n, ds/2e) ≤ n(log n)c2 logds/2e,

which implies m ≤ n(log n)c2 log s since c2 was chosen to be a sufficiently large absolute constant. This
completes the proof. 2

Having gathered the required lemmas, we now prove Lemma 5.1. A Jordan region is a closed
region of the plane, bounded by a simple closed Jordan curve. In other words, a Jordan region is
homeomorphic to the closed unit disk.
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Proof of Lemma 5.1. Let s be the smallest positive integer such that (1/16)c3(2s)/ log 2s ≥ t, where
c3 is the absolute constant from Lemma 5.2. Let ct = c2 log s = Θ(log t), where c2 is the absolute
constant from Lemma 5.3.

Suppose G is a string graph with n vertices and more than n(log n)ct edges. Let C = {C1, . . . , Cn}
be a collection of n Jordan regions whose intersection graph is the string graph G and which has
the property that any two intersecting Jordan regions in C intersect in their interiors (it is easy to
see that, by slightly fattening compact connected sets, every string graph is the intersection graph of
such a collection of Jordan regions). Fix distinct points pi in the interior of Ci for i = 1, . . . , n. For
each intersecting pair Ci, Cj ∈ C with i < j, let pij be a point in Ci ∩ Cj such that all the points in
{p1, . . . , pn}∪{pij : Ci∪Cj 6= ∅} are distinct, and let γij be a simple (nonintersecting) curve contained
in Ci ∪ Cj such that

1. γij has endpoints pi and pj ;

2. γij does not contain any other p`;

3. γij can be split into two subcurves γ0
ij and γ1

ij such that γ0
ij is contained in Ci and has endpoints

pi and pij and γ1
ij is contained in Cj and has endpoints pij and pj .

The points {p1, . . . , pn} are the vertex set and curves {γij : Ci ∩ Cj 6= ∅} are the edge set of a
topological graph T with n vertices and more than n(log n)ct edges. Since ct = c2 log s, by Lemma 5.3,
there are at least s pairwise intersecting edges in T with distinct vertices. Each edge consists of two
subcurves and these 2s subcurves have at least

(
s
2

) ≥ 1
16(2s)2 intersecting pairs. By Lemma 5.2, the

intersection graph of these 2s subcurves contains Kh,h with h = (1/16)c3(2s)/ log 2s ≥ t. It follows
from the construction that G contains Kt,t. 2

The second ingredient of the proof of Theorem 1.3 is our separator theorem, Theorem 1.1, which,
together with Lemma 5.1, implies that every Kt,t-free string graph has m < n(log n)ct edges and hence
a separator of size O(m3/4

√
log m) < O(n3/4 log3ct/4+1/2 n). Thus, for n0 = 2O(ct log ct) ≤ tc

′ log log t

(where c′ is an absolute constant), every Kt,t-free string graph with n ≥ n0 vertices has a separator of
size n7/8. This fact, together with the following lemma from [11] (which is a more precise version of
Lemma 4.2), immediately implies Theorem 1.3.

Lemma 5.6 ([11]) Let φ(n) be a monotone decreasing nonnegative function defined on the set of
positive integers, and let n0 and C be positive integers such that

φ(n0) ≤ 1
12

and
∞∏

i=0

(
1 + φ

(d(4/3)in0e
)) ≤ C.

If F is an nφ(n)-separable hereditary family of graphs, then every graph in F on n ≥ n0 vertices has
fewer than Cn0

2 n edges.
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6 Stronger versions of Theorem 1.3

First we establish Theorem 1.5, that is, we show how to improve considerably Theorem 1.3 for in-
tersection graphs of collections of curves in which every pair of curves intersects in at most a fixed
constant number k of points.

In [11], we proved the following lemma.

Lemma 6.1 The intersection graph of a collection of curves with x crossings has a separator of size
O(
√

x).

If each pair in a collection of curves intersects in at most k points, then the number m of edges of
the intersection graph is at least x/k, and we obtain a separator of size O(

√
km). In [14], the following

result was established, which is an analogue of Lemma 5.2 for families of curves in which each pair
intersects in at most a constant number k of points.

Lemma 6.2 Let G be the intersection graph of a collection of n curves in the plane, any pair of
which intersects in at most k points. If G has at least εn2 edges, then it contains a complete bipartite
subgraph Kt,t with t ≥ ckε

cn, where c is an absolute constant and ck is a constant that only depends
on k.

We now have the necessary tools to prove Theorem 1.5. This theorem states that for positive
integers k and t, there exists a constant Ck depending only on k, such that any Kt,t-free intersection
graph G of n curves in the plane, no pair of which has more than k points in common, has at most
Cktn edges.

Proof of Theorem 1.5. Suppose that G has εn2 edges. By Lemma 6.2, we have t ≥ ckε
cn,

that is, ε ≤ (
c−1
k

t
n

)1/c. Thus, according to Lemma 6.1, G has a separator of size O(
√

km) <

O

(√
k

(
c−1
k

t
n

)1/c · n2

)
< c′k(t/n)c1n, where c1 = 1/(2c) > 0 and c′k only depends on k.

Letting φ(n) = c′k(t/n)c1 and n0 = (12c′k)
1/c1t, Lemma 5.6 implies that G has at most Cktn edges

for some constant Ck only depending on k. 2

We similarly prove the following result.

Theorem 6.3 Every Kt,t-free intersection graph G of n convex sets in the plane has O(t3n) edges.

Proof. Suppose that G has εn2 edges. In [15], it was shown that every intersection graph of n convex
sets in the plane with εn2 edges contains a complete bipartite subgraph Kt,t with t ≥ cε2n for some
absolute constant c > 0. Hence, ε ≤ (

t
cn

)1/2. A separator lemma from [11] states that every Ks-free
intersection graph of convex sets in the plane with m edges has a separator of size at most c′

√
sm for

some absolute constant c′. Hence, G has a separator of size c′
√

2tm ≤ 2c′
√

tε1/2n ≤ 2c′c−1/4t3/4n3/4.

Letting φ(n) = 2c′c−1/4t3/4n−1/4 and n0 = 244c′4c−1t3, Lemma 5.6 implies that G has O(t3n) edges.
2
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7 Proof of Theorem 1.6 and related results

Theorem 1.6 is a direct corollary of Theorem 1.1 and the following lemma, which shows that all graphs
of large girth that belong to a hereditary family of graphs with small separators are quite sparse.

Lemma 7.1 Let α > 0, and let F be a hereditary family of graphs such that every member of F with
n vertices has a separator of size O(n/(log n)1+α). Then for each ε > 0 there is a positive integer
g = gF (ε) such that every graph in F on n vertices and girth at least g has at most (1 + ε)n edges.

The aim of this section is to prove Lemma 7.1 and to discuss some of its consequences. The
similarity between Lemma 7.1 and 4.2 is no coincidence; their proofs are very similar.

Before turning to the proof, we briefly outline its main idea. Consider a hereditary family F of
graphs in which every graph has a small separator. We show that every graph G in F with n vertices
has an induced subgraph with at most 3

4n vertices, whose average degree is not much smaller than the
average degree of G. We repeatedly use this fact until we find an induced subgraph of G with fewer
than g vertices, whose average degree is not much smaller than that of G. But if the girth of G is
at least g, then this induced subgraph of G with fewer than g vertices is a forest and so has average
degree less than 2. If g is chosen sufficiently large, we conclude that G has average degree at most
2 + 2ε and hence at most (1 + ε)n edges.

Now we work out the details of the proof of Lemma 7.1. Given a nonnegative function f defined
on the set of positive integers, we say that a family F of graphs is f-separable, if every graph in F

with n vertices has a separator of size at most f(n).

Lemma 7.2 Let φ(n) be a monotone decreasing nonnegative function defined on the set of positive
integers, g be a positive integer, and ε > 0 be such that

φ(g) ≤ 1
12

and
∞∏

i=0

(
1 + φ

(d(4/3)ige)) ≤ 1 + ε.

If F is an nφ(n)-separable hereditary family of graphs, then every graph in F on n vertices with girth
at least g has fewer than (1 + ε)n edges.

Proof. Let G0 = (V, E) be a member of the family F with n vertices, girth at least g, and average
degree d. If n < g, then G0 is a forest and hence has at most n− 1 edges. We may therefore assume
that n ≥ g. By definition, there is a partition V = V0 ∪ V1 ∪ V2 with |V0| ≤ nφ(n), |V1|, |V2| ≤ 2

3n,
such that no vertex in V1 is adjacent to any vertex in V2.

Let d′ and d′′ denote the average degree of the vertices in the subgraphs of G0 induced by V0 ∪ V1

and V0∪V2, respectively. Every edge of G0 is contained in at least one of these two induced subgraphs.
Hence,

d′(|V0|+ |V1|) + d′′(|V0|+ |V2|) ≥ 2|E| = d|V |,
so

d′
|V0|+ |V1|
|V |+ |V0| + d′′

|V0|+ |V2|
|V |+ |V0| ≥ d

|V |
|V |+ |V0| .
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Since |V | = |V0|+ |V1|+ |V2|, then |V0|+|V1|
|V |+|V0| + |V0|+|V2|

|V |+|V0| = 1 and the left hand side of the above inequality
is a weighted mean of d′ and d′′. Consequently, d′ or d′′ is at least

d
|V |

|V |+ |V0| ≥ d
1

1 + φ(n)
.

Suppose without loss of generality that d′ is at least as large as this number, and let G1 denote
the subgraph of G induced by V0 ∪ V1. By assumption, we have that φ(n) ≤ 1

12 and |V0| ≤ nφ(n).
Therefore, G1 has |V0|+ |V1| ≤ 1

12n + 2
3n = 3

4n vertices.
Proceeding like this, we find a sequence of induced subgraphs G0 ⊃ G1 ⊃ G2 ⊃ . . . with the

property that, if Gi has ni ≥ g vertices and average degree di, then Gi+1 has at most 3
4ni vertices and

average degree at least 1
1+φ(ni)

di. We stop with Gj if the number of vertices of Gj is less than g.
Since Gj is an induced subgraph of G, it also has girth at least g. The number of vertices of Gj is

less than g, so Gj must be a forest and therefore has average degree less than 2. The above argument
also shows that the average degree of Gj is at least 1

1+εd, so d < 2(1 + ε), and the number of edges of
G is dn/2 < (1 + ε)n, completing the proof. 2

Taking logarithms and approximating ln(1+x) by x, we obtain that
∏∞

i=0(1+φ(d(4/3)ige)) 6= ∞ if
and only if

∑∞
i=0 φ(d(4/3)ie) 6= ∞ if and only if

∑∞
i=0 φ(2i) 6= ∞. (For a formal proof of the elementary

fact that
∏∞

i=1(1 + ai) with each ai > 0 converges if and only if
∑∞

i=1 ai converges, see, e.g., Theorem
3 of Section 3.7 in [20].) Therefore, Lemma 7.2 has the following corollary.

Corollary 7.3 Let F be an nφ(n)-separable hereditary family of graphs, where φ(n) is a monotone
decreasing nonnegative function such that

∑∞
i=0 φ(2i) 6= ∞. Then for each ε > 0 there is gF (ε) such

that every graph in F on n vertices and girth at least g has at most (1 + ε)n edges.

Since
∑∞

i=1 1/i1+α converges for all α > 0, Lemma 7.1 is an immediate consequence of Corollary
7.3.

The condition that a connected graph has large girth means that the graph is locally “tree-like.”
In general, this local condition does not imply that the graph also has some global tree-like properties.
For instance, in 1959 Erdős [9] proved the existence of graphs with arbitrarily large girth and chromatic
number. However, according to Lemma 7.1, if every member of a hereditary family F of graphs has
a small separator, then the condition that a connected graph in F has large girth does imply that
the graph is globally tree-like. Indeed, if ε < 1/2, then every graph in F with girth at least gF (ε) is
2-degenerate and hence has chromatic number at most 3.

Furthermore, any graph G in F on n vertices with girth at least max(gF (ε/3), 3/ε) can be turned
into a forest by the removal of at most εn edges. Indeed, we may assume that G has minimum degree
at least 2 since we can remove vertices of degree less than 2 as they are in no cycles. Also, G has
e(G) ≤ (1 + ε/3)n edges. Let d1, . . . , dn denote the degree sequence of G. We have

∑
i di − 2 =

2e(G)− 2n ≤ 2
3εn. Delete di − 2 edges from each vertex i, so the remaining subgraph G0 has vertices

of degree at most 2. The number of edges deleted so far is at most 2
3εn. The connected components

of G0 are trees and cycles of length at least the girth of G, which is at least 3/ε. Hence, the number
of cycles of G0 is at most ε

3n. Delete one edge from each of these cycles. The total number of edges
deleted is at most εn, and the remaining subgraph is a forest.
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We end this section by presenting two other corollaries of Lemma 7.1. The separator theorem for
graphs with an excluded minor [1], together with Lemma 7.1, imply the following.

Corollary 7.4 For any ε > 0 and positive integer t, there exists a positive integer g(ε, t) such that
every Kt-minor-free graph on n vertices with girth at least g(ε, t) has at most (1 + ε)n edges.

A well-known result of Thomassen [39] (see also Chapter 8.2 in [7]) states that for any positive
integer t, there exists another integer g(t) such that every graph with minimum degree at least 3 and
girth at least g(t) contains Kt as a minor. Obviously, Corollary 7.4 implies Thomassen’s result. In
fact, it can be shown by a simple argument that the two statements are equivalent. In the special
case of planar graphs and, more generally, for graphs with bounded genus, the statement easily follows
from Euler’s polyhedral formula.

The separator theorem for intersection graphs of balls in Rd [29] together with Lemma 7.1 imply

Corollary 7.5 For any ε > 0 and positive integer d, there exists a positive integer g(ε, d) such that
every intersection graph of balls in Rd with girth at least g(ε, d) has at most (1 + ε)n edges.

8 Concluding remarks: a conjecture and counting string graphs

Theorem 1.3, with a much worse dependence of the coefficient of n on t, can also be deduced from
the following result of Kuhn and Osthus [23]: For any graph H and any positive integer t, there is a
constant c(H, t) such that every graph with n vertices and at least c(H, t)n edges contains an induced
subdivision of H or Kt,t as a subgraph. Let H0 be the graph obtained from the complete graph K5 by
replacing each edge by a path of length two. Using the nonplanarity of K5, it is easy to see that no
subdivision of H0 is a string graph. Since the family of string graphs is closed under taking induced
subgraphs, no string graph contains an induced subdivision of H0. Thus, the result of Kuhn and
Osthus implies that any Kt,t-free string graph on n vertices has at most c(H0, t)n edges. However,

this proof only shows that c(H0, t) < 2222
ct log t

, for some absolute constant c.
The dependence of the coefficient of n on t in Theorem 1.3 could be further improved if we could

prove Conjecture 1.2. Indeed, Conjecture 1.2 combined with Lemmas 5.2 and 5.6 would imply the
following.

Conjecture 8.1 Every Kt,t-free string graph with n vertices has O((t log t)n) edges.

Conjecture 8.1, if true, would be tight up to the constant factor. According to a construction in
[10] and [36], there are string graphs with n vertices and (1− o(1))n2/2 edges, in which the size of the
largest balanced bipartite subgraph is O(n/ log n).

Another consequence of Conjecture 1.2 would be that, together with Lemma 5.2, it would imply
that every Kt-free string graph with n vertices has chromatic number at most (log n)c log t for some
absolute constant c. This was shown in [12] for intersection graphs of curves in which each pair of
curves intersects in at most a fixed constant number of points. It is not even known if every triangle-free
string graph with n vertices has chromatic number no(1).
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A family of graphs is small if it contains at most n!αn labeled graphs on n vertices, for some
constant α. For example, a classical result of Cayley asserts that the number of labeled trees on n

vertices is nn−2, so the family of trees is small. A family F of graphs is addable if G ∈ F if and only
if all connected components of G are in F , and if G1, G2 ∈ F and vi is a vertex of Gi for i ∈ {1, 2}
implies that the graph obtained from the disjoint union of G1 and G2 by adding the edge {v1, v2} is
also in F . It was shown by McDiarmid, Steger, and Welsh [28] that if F is small and addable, then
there is a constant α = α(F ) such that the number of graphs in F on n vertices is n!α(1+o(1))n.

Norine, Seymour, Thomas, and Wollan [30] showed that all proper minor closed graphs are small,
which answered a question of Welsh. Norine and Dvořák [8] recently found a much simpler proof with
a divide-and-conquer approach using the separator theorem [1] for graphs with a forbidden minor.
They show that if F is an f(n)-separable hereditary family of graphs with f(n) ≤ cn/ (log n log log n)2

for some constant c, then F is small.
It was shown by Pach and Tóth [36] that the number of string graphs on n vertices is 2(

3
4
+o(1))(n

2).
The above result of Norine and Dvořák [8] together with Theorems 1.1 and 1.3 show that if H is
bipartite, then the family of H-free string graphs is small. It is easy to check that if H is 2-connected,
then the family of H-free string graphs is addable. We thus get the following corollary.

Corollary 8.2 If H is a 2-connected bipartite graph, then there is a constant c = c(H) such that the
number of labeled H-free string graphs on n vertices is n!c(1+o(1))n.

Notice that every tree is a string graph. In the other direction, we have the following result, which
says that there are not many more string graphs of large girth than trees on a given number of vertices.
It can be proved by the same divide-and-conquer approach.

Corollary 8.3 For each ε > 0, there is g = g(ε) such that the number of labeled string graphs on n

vertices with girth at least g is at most (1+ ε)nT (n), where T (n) = nn−2 is the number of labeled trees
on n vertices.

Acknowledgment. We would like to thank Benny Sudakov for the simple proof of Lemma 5.4, and
the referee for helpful comments.
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