Rainbow Solutions to the Sidon Equation
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Abstract
We prove that for every 4-coloring of {1,2,...,n}, with each color class having cardinality
more than "T“, there exists a solution of the equation z +y = z+ w with z, y, z and w belonging

to different color classes. The lower bound on a color class cardinality is tight.

1 Introduction

Let N denote the set of positive integers, and for 7,7 € N, ¢ < j, let [4, j] denote the set {i,i+1,...,7}
(with [n] abbreviating [1,n] as usual). One of the earliest results in Ramsey theory [8] is Schur’s
theorem (1916) [17]: for every k € N and sufficiently large n € N, every k-coloring of [n] contains a
monochromatic solution of the equation z +y = z. Another classical result in combinatorial number
theory is due to van der Waerden (1927) [21]: for all m,k € N, there is an integer ng = no(m, k),
such that every k-coloring of [n], n > ng, contains a monochromatic m-term arithmetic progression
(abbreviated as AP(m) throghout). This statement was further generalized to sets of positive upper
density in the celebrated work of Szemerédi [19] (see also [20]). Canonical versions of van der
Waerden’s theorem were discovered by Erdés and others [7].

More than seven decades after Schur’s result, Alekseev and Savchev [1] considered what Bill
Sands calls an un-Schur problem [9]. They proved that for every equinumerous 3-coloring of [3n]
(i.e., a coloring in which different color classes have the same cardinality), the equation z +y = z has
a solution with z, y and z belonging to different color classes. Such solutions will be called rainbow
solutions. Esther Klein and George Szekeres asked whether the condition of equal cardinalities for
three color classes can be weakened [18]. Indeed, Schonheim [16] proved that for every 3-coloring of
[n], such that every color class has cardinality greater than n/4, the equation z + y = z has rainbow
solutions. Moreover, he showed that n/4 is optimal.

Inspired by the un-Schur problem, Jungi¢ et al. [10] sought a rainbow counterpart of van der
Waerden’s theorem. Namely, given positive integers m and k, what conditions on k-colorings of [n]
guarantee the existence of an AP(m), all of whose elements have distinct colors? If every integer in
[n] is colored by the largest power of three that divides it, then one immediately obtains a k-coloring
of [n] with & < |logzn + 1] and without a rainbow AP(3). So, while Szemerédi’s theorem states
that a large cardinality in only one color class ensures the existence of a monochromatic AP(m),
one needs all color classes to be “large” to force a rainbow AP(m). In [10], it was proved that
every 3-coloring of N with the upper density of each color class greater than 1/6 yields a rainbow
AP(3). Using some tools from additive number theory, they obtained similar (and stronger) results
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for 3-colorings of Zj, and Zj, some of which were recently extended by Conlon [5]. The more difficult
interval case was studied in [11], where it was shown that every equinumerous 3-coloring of [3n]
contains a rainbow AP(3), that is, a rainbow solution to the equation z +y = 2z. Finally, Axenovich
and Fon-Der-Flaass [2] cleverly combined the previous methods with some additional ideas to obtain
the following theorem, conjectured in [10].

Theorem 1 For every n > 3, every partition of [n] into three color classes R, B, and G with
min{|R|, |B|, |G|} > r(n), where

[ (n+2)/6] ifn#2 (mod6)
r(n) = { (n+4)/6 ifn=2 (mod6), (1)

contains a rainbow AP(3).

The colorings

R ifi=1 (mod 6) R ifi <™ andiis odd
c(i):=¢ B ifi=4 (mod 6) and ¢(i):=4 B ifi> 222 and i is even
G otherwise G otherwise

show that Theorem 1 is the best possible for the cases n # 2 (mod 6) and n = 2 (mod 6), respec-
tively. It is interesting to note that similar statements about the existence of rainbow AP(k) in
k-colorings of [n], k > 4, do not hold [2, 6]. For example, the equinumerous 4-coloring A : [n] —
{R,B,G,Y}

ifi=1 (mod4)andi<4m; orifi=3 (mod4) and i > 4m

ifi=2 (mod4)andi<4m;orifi=0 (mod4)andi>4m

ifi=3 (mod4)andi<4m; orifi=0 (mod4) and i <4m

ifi=1 (mod4)andi>4m; orifi=2 (mod4) and i > 4m,
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for every i € [n], n = 8m (m € N), contains no rainbow AP(4).

There are many directions and generalizations one can consider, such as searching for rainbow
counterparts of other classical theorems in Ramsey theory [8, 12], increasing the number of colors or
the length of a rainbow AP, or proving the existence of more than one rainbow AP. Some positive
and negative results in these directions were obtained in [3, 4, 10].

In this paper, we study one such direction and consider the existence of rainbow solutions
to other linear equations, imitating Rado’s theorem about the monochromatic analogue. Rado [15]
called a rational matrix A (or a system Az = 0) k-partition regular if there exists an n for which
every k-coloring of [n] has a monochromatic solution to the system of linear homogeneous equations
Az = 0. Furthermore, A is called partition regular if it is k-partition regular for all k. Rado’s
“columns condition” completely determines the matrices (or systems) which are partition regular. A
special case of this theorem states that a single linear homogeneous equation ) ;~, a; =0, a; € Z is
partition regular if and only if some nonempty subset of the a;s sums to zero.

In particular, “the Sidon equation” x4y = z + w, a classical object in additive number theory
[13, 14] is partition regular. In this note, we prove a rainbow analogue of this result.

Theorem 2 For every n > 4, every partition of [n] into four color classes R, B, G, and Y, with
min{|R|,|B|,|G|,|Y|} > 2L, contains a rainbow solution of x +y = z + w. Moreover, this result is
tight.

One should contrast Theorem 2 with the aforementioned result of Conlon et al. [6], which
states that there nevertheless exist equinumerous 4-colorings of [n] with no rainbow AP(4), i.e., with
no rainbow solution of the system z +y =z + w, z + w = 2z.



2 Proof of Theorem 2

We prove Theorem 2 for n > 5. Given partition of [n] into four color classes R, B, G, and Y, with
min{|R|, |B, |G|, |¥|} > %, let ¢ : [n] = {R,G,B,Y} be the corresponding coloring of [n], i.e.,
R = |[n]N{i: c(i) = R}|, and similarly for B, G, and ). Suppose that there is no rainbow solution
of the equation x + y = z + w.

We say that there is a string s = cic2...c € {R,G,B,Y}™ at a position 7 if ¢(i) = ¢,
c(i+1)=co,...,c(i+m—1) =¢,. We say that there is a string s in the coloring c if there is s at
some position ¢. We call a string bichromatic if it contains exactly two colors. A bichromatic string
is complete if it cannot be extended (on either side) and still be bichromatic. Notice that since each

color is used at least once, there are at least three complete bichromatic strings.

Since ¢ does not contain a rainbow solution of z + y = z 4+ w, then there are no integers a,
b, d, such that a, b+ d, b, a + d form a rainbow solution. In what follows, this observation will be
denoted as the Q-property.

A particular color is called dominant if every bichromatic string contains that color. Clearly,
if such a color exists, it will be unique. The first step in our proof is to establish the following claim.

Lemma 1 ¢ contains a dominant color.

Proof: Consider the first two complete bichromatic strings, i.e., those with the least initial position.
They share a common color. Without loss of generality, assume that the first bichromatic string
contains colors R and B, and the second bichromatic string contains colors R and Y. In particular,
R and B, as well as R and Y, occur next to each other. There exists at least one element of [n]
colored by G, and this element is contained in a bichromatic string. If the other color in the string
is B (Y), then G and B (Y') appear next to each other within this string. Since R and Y (B) are
consecutive, we have a contradiction by the Q-property with d = 1. Therefore, every bichromatic
string that contains G also contains R.

Finally, suppose there is a bichromatic string with colors B and Y. Then B and Y appear next
to each other, and since G and R appear next to each other as well, we obtain a contradiction with
the Q-property for d = 1. We conclude that every bichromatic string contains R, and, therefore, R
is the dominant color. O

Now, we can assume that R is the dominant color in c. Let d be the minimum distance between
two differently colored non-red integers, that is

d =min{|z — y| : ¢(z) # c(y) and z,y ¢ R}.

Note that because R is the dominant color, we have d > 2. Without loss of generality, assume that
there exist two elements of [n], distance d apart, that are colored by B and Y respectively. By the
Q-property, there do not exist two elements of [n], distance d apart, that are colored by R and G
respectively. Next, we prove that every complete bichromatic string with colors R and G (B) has a
special structure.

Lemma 2 Let X € {G,B}. Every complete bichromatic string with colors R and X is d-periodic
with ezactly one element colored by X within every substring of length d.

Proof: Consider a complete bichromatic string s of length m at a position ¢, with colors R and
G. The underlying interval I = [i,7 + m — 1] is the disjoint union of I, 0 < k < d — 1, where



Iy ={j €i,i+m—1]| j = k(mod d)}. By the Q-property, for every 0 < k < d — 1, either all
elements of I are colored by G or all elements of I, are colored by R.

Assume that i # 1. The case i+m—1 # n is symmetric and handled similarly. Let g denote the
smallest element of I colored by G. If g—d > i then {g,g—d} C I for some k € {0,1,...,d—1}. So,
¢(g—d) = G, which contradicts our choice of g. Thus, g—d < i. Since s is complete, c(i—1) € {B,Y}
and g — (i — 1) < d. Therefore, g —d = i — 1. Now, since ¢(g — d) € {B,Y}, ¢(g) = G and all
the integers between g — d and g are colored by R, we conclude that all the elements of I, for
k = g(mod d), are colored by G, while for all other values of k € {1,...,d}, all the elements of I}
are colored by R.

Hence, from the above argument we see that every complete bichromatic string with colors R
and G has the following structure: it is d-periodic with exactly one element colored by G within
every substring of length d. Moreover, since ¢(g —d) € {B,Y} and g —d =i — 1, it follows that we
can assume, without loss of generality, that there exist two elements of [n], distance d apart, that
are colored by G and, say, Y, respectively. The previous argument then implies that every complete
bichromatic string with colors R and B is d-periodic with exactly one element colored by B within
every substring of length d. O

In particular, since R is the dominant color, we obtain:
Corollary 1 Strings GG and BB do not appear in c.
Now, the following claim is clear:

Lemma 3 String YY appears in c.

Proof: Suppose that YY does not appear in ¢. Then, by Corollary 1, at least one in every
pair of consecutive integers in [n] would be colored by R. Therefore, |R| > [%] > 23!, and
min{|Y1,|G],|B} < [V + 1G] + |B] = n —|R| < "% So min{|Y|,|G|,|B,|R[} < ™, which

contradicts our assumption. O
Lemma 4 d = 2.

Proof: Indeed, suppose that d > 3. By Lemma 2, we have |R| > (d — 1)(|G| + |B| — 1). Then for
n>5n=[R|+ Bl +|G|+ Y| > (d—1)(Z2 + 22 — 1) + 22 > p, which is a contradiction. O

Lemma 2 and Lemma 4 imply the following claim:
Corollary 2 Let X € {G,B}. There exist two integers in [n|, with difference 2, that are colored

by X and Y, respectively. Furthermore, elements of every bichromatic string with colors R and X
alternate in color.

Lemma 5 Strings BRG and GRB do not appear in c.

Proof: Since (by Lemma 3) there is a string of at least two consecutive Y's and since R is the
dominant color in ¢, there are two integers in [n], distance two apart, that are colored by Y and R.
The claim now follows from the Q-property. O



Lemma 6 At least one of the strings GRG and BRB appears in c.

Proof: Suppose that there is no GRG nor BRB in c¢. Let us consider four consecutive integers 1,
i+1,i+2,i+ 3 in [n]. If ¢( +1) = G, then c(i) = ¢(i + 2) = R, by the dominance of color R
and Corollary 1. Furthermore, ¢(i + 3) € {R,Y}, by Lemma 5. If ¢(i) = G, then ¢(i + 1) = R, by
the dominance of color R and Corollary 1. Since ¢(i) = G and c(i + 1) = R belong to a bichromatic
string with colors R and G (which alternates in color by Corollary 2), if we assume that GRG does
not appear in ¢, then ¢(i + 2) =Y, by Lemma 5. It follows that ¢(i + 3) € {R,Y }.

Therefore, at most one integer in every string of length four can be colored by B or G. We
obtain |G| + |B| < [2], and for n > 5, min{|R|, |G|, |B|,|¥|} < min{|G],|B|} < 23 < 2HL This

violates our condition on the minimum of color class cardinalities. O

By Lemma 6 we can assume that GRG appears in ¢. By Lemma, 3 there exists p, the smallest
positive integer with the property that there is i € [n] such that c¢(i) € {G, B} and at least one of
the following is true:

(@) cli+p) =cli+p+1)=Y;cli+p—1)=R;c(i+j) € {R, Y} foralll <j <p-—1 with
Re{c(i+j),ci+j+1)}for1<j<p-—2

(b) c(i—p)=cli—p—1)=Y;¢c(i—p+1)=R; c(i—j) € {R, Y} foralll <j <p-—1 with
R e {c(i — ),c(z—]—l)}for1<]<p 2.

Next, suppose that there is 7 € [n] such that c¢(¢) = B and that, say, (a) is true. Let m be such that
cfi+p+j)=Yforalll <j<mand, ifi+p+m+1€n],cli+p+m+1)=R. Let k € [n]
be such that c¢(k) = c(k + 2) = G. We note that k ¢ [i,4 +p+m + 1]. Suppose k >i+p+m+ 1.
If ¢c(k — p) = R, then i, i + p, k — p, k contradict the Q-property. If ¢(k — p) € {B,G,Y}, then
ck—p+1)=Randi,i+p+1,k—p+1, k+ 2 contradict the Q-property.

Now, suppose that there is no i € [n] such that ¢(i) = B and that either (a) or (b) is true.
Thus, there is 7 € [n] such that ¢(i) = G and that, say, (a) is true. Let m be as above and let £ be
an element from B such that between £ and [i,7 + p + m + 1] there are no other elements from B.
Suppose this time that £ < i. If ¢(¢ + p) = R, then £, £ + p, i, i + p contradict the Q-property. If
c(l+p)e{G, Y}, thenc({+p+1)=Rand ¢, L+p+1,i,i+p+ 1 contradict the Q-property (if
c(+p) =Y, then ¢(¢ + p+ 1) = R, because of the minimality of p and the assumption from the
beginning of this paragraph).

In order to finish the proof of Theorem 2, we present a 4-coloring of [n] with the minimum size
of a color class equal to L”T‘HJ and no rainbow solution of z +y = z + w:

ifi=1 (mod 6)
ifi=3 (mod 6)
ifi=5 (mod 6)
otherwise

c(i) :==
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3 Concluding remarks

It is curious to note that the minimal “density” for the color classes is % in Theorem 2, as well as in
Theorem 1. It is also interesting to note that a dominant color exists when one studies the existence
of rainbow solutions to equations z +y = 2z or  + y = z in the 3-colorings of [n] [2, 10, 11]. For



what other systems of equations does a rainbow-free coloring, under certain cardinality constraints,
must have a dominant color?

The question of rainbow partition reqularity is an interesting one. It would be exciting to provide
a complete rainbow analogue of Rado’s theorem (which classified the partition regular matrices [15]).
Theorem 2 is a small step in this direction.

We say a vector is rainbow if every entry of the vector is colored differently. A matrix A with
rational entries is called rainbow partition k-regular if for all n and every equinumerous k-coloring
of [kn] there exists a rainbow vector  such that Az = 0. We say that A is rainbow regular if there
exists k1 such that A is rainbow partition k-regular for all k& > k;. For example, Theorem 2 shows
that the following matrix is rainbow partition 4-regular:

A=(11 -1 -1).

We let the rainbow number of A, denoted by r(A), be the least k for which A is rainbow
partition k-regular. It is not difficult to see that every 1 x n matrix A with nonzero entries is
rainbow partition regular if and only if not all the entries in A are of the same sign. It would be
interesting to study the rainbow number r(A). Furthermore, we somewhat boldly conjecture the
following characterization of rainbow regularity.

Conjecture 1 Matriz A with integer entries is rainbow regular if and only if the rows of A are
linearly independent and there exists a vector u with positive integer entries such that Au = 0.

Jungié¢ et al. [10] prove that for every k > 3, I_%J <r(A) < k(gi, where A is the following
(k—1) x (k+ 1) matrix:
1 -2 1 0 O 0 0 O
0 1 -2 1 0 0 0 O
0 0 1 -21 0 0 O
0 0 0 0 O 1 -2 1
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