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ABSTRACT

We write H — G if every 2-coloring of the edges of graph H contains a monochromatic
copy of graph G. A graph H is G-minimal if H — G, but for every proper subgraph
H' of H, H +# G. We define s(G) to be the minimum s such that there exists a
G-minimal graph with a vertex of degree s. We prove that s(Kj) = (k — 1)? and
$(Kap) = 2min(a,b) — 1. We also pose several related open problems. © 2005 John
Wiley € Sons, Inc.
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1. INTRODUCTION

In this paper, we only consider finite simple graphs. The complete graph and the cycle
on n vertices are denoted K,, and C),, respectively.

We write H — (G;r) if every r-coloring of the edges of H contains a monochromatic
copy of G, and H — G if H — (G;2). A graph H is G-minimal if H — G, but for every
proper subgraph H’ of H, H' / G. For example, K is K3-minimal because Kg — K3,
and no proper subgraph H' C Kg has the property that H — K.

The Ramsey number R(G) is the minimum positive integer n such that K, — G.
In 1967, Erdés and Hajnal [5] asked whether there exists a Kg-free graph H such that
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H — K3. Ron Graham [10] answered this question by showing that Kg — C5 (the graph
formed by taking the edges of a C5 out of a Kjg) is Ks-minimal. The problem of Erdés
and Hajnal opened up the area of research of finding graphs H such that H — G for a
given graph G.

It is easy to prove by induction that a graph H satisfies H — G if and only if there
exists a subgraph H' of H such that H’ is G-minimal.

Given graphs G1,Ga, ..., Gy, their product Gy ® Go ® -+ ® G, consists of vertex
disjoint copies of G1,Ga,...,G,, and all possible edges between the vertices of G; and
G, with ¢ # j. Galluccio et al. [9] and Szabé [18] proved that for all positive integers k,
Cort1 @ K3 is Kg-minimal. For k = 1 and 2, these graphs are Kg and Graham’s graph
Kg — C5, respectively.

Noting that the K3-minimal graphs of the form Cyy41 ® K3 all have minimum degree
5, it is natural to investigate whether there are Ks-minimal graphs of minimum degree
less than 5. This question motivates the following definition.

Definition.  Let s(G) be the least nonnegative integer s such that there exists a
G-minimal graph with a vertex of degree s.

In Section 3, we first show that 26(G) — 1 < s(G) < R(G) — 1, where 6(G) denotes the
minimum degree of G. We then prove s(Kj) = (k — 1) and s(K, ) = 2min(a,b) — 1.
An important part of the proof that s(Kj) = (k — 1)? relies on a natural generalization
of a famous theorem of Jaroslav Nesetfil and Vojtéch Rédl, which we prove in Section 2.

In the Conclusion, we consider associated Ramsey numbers and multicolored general-
izations.

2. GENERALIZATION OF A THEOREM OF NESETRIL & RODL

The cligue number w(G) of a graph G is the number of vertices in the largest complete

subgraph of G. We write F' Ind, (G;r) if every r-coloring of the edges of graph F' contains
a monochromatic induced copy of G.

Theorem 1 (Neset¥il & R6dl, [13]). For every positive integer r and graph G,
there exists a graph F with w(F') = w(G) and F ind, (G;r).

While Theorem 1 only considers edge colorings, our generalization of Theorem 1 will
simultaneously consider both edge and vertex colorings.

For a graph G, let F(G,r) denote the family of graphs F with w(F) = w(G) and
r 24 (G;r). Theorem 1 is equivalent to F(G,r) being nonempty for every graph G
and positive integer r. Let F(G, k,r) denote the family of graphs F' with w(F) = w(G),
and for every k-coloring of the vertices of F' and every r-coloring of the edges of F', there
exists an induced copy of G with all its edges the same color and all its vertices the same
color.
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Theorem 2. For every non-bipartite graph G without isolated vertices and for all
positive integers k, r, we have

f(G,r(k;— 1)) C F(G k1),

Proof. Let F € F(G, r(k'gl)), and consider a k-coloring c of the vertices of F' and an
r-coloring C' of the edges of F. Since both vertices of each edge of F' are colored, there

are (kgl) possible pairs of colors for the vertices of each edge. Therefore, the k-coloring

c of the vertices of F' and the r-coloring C' of the edges of F' determines a new r(kgl)-
coloring C” of the edges of F, where the new color of each edge is given by its color
in C and the colors of its endpoints in c. Since F € F(G,r(*")), there is an induced
monochromatic copy of G in this new coloring C’ of the edges of F. So, all edges in the
original r-coloring of this copy of G must have been the same color, and all edges must
have had the same pair of colors for its endpoints. Because G is non-bipartite, there
does not exist a 2-coloring of the vertices of G such that the two vertices of each edge
are different colors. Therefore, all vertices in this copy of G are the same color. Hence,
every k-coloring of the vertices of F' and r-coloring of the edges of F' contains an induced
copy of G that has all its vertices the same color and all its edges the same color. [

In the proof of Theorem 1, Nesetiil and Rodl showed that if G is bipartite, then
there exists a bipartite graph F' € F(G,r). If F = (V, E) is bipartite with bipartition
V =V, UV;, and if we color every vertex in V; red and every vertex in V5 blue, then no
edge has both of its vertices the same color. Hence, the non-bipartiteness assumption in
Theorem 2 is necessary.

Corollary 1 follows from Theorem 1.

Corollary 1. For every graph G and for all positive integers k and r, F(G,k,r) is
nonempty.

Proof. 1f G is an empty graph on n vertices, then by the pigeonhole principle, the
empty graph on k(n — 1) + 1 vertices is our desired F. If G has an edge, then let [
denote the number of isolated vertices of G and let (G; denote the graph formed by
removing the isolated vertices from G. Let the graph H be the disjoint union of Gy,
! disjoint edges, and a C5. Note that H is not bipartite and has no isolated vertices,
F(H,k,r) C F(G,k,r), and w(H) = w(G). It follows from Theorem 2 that F(G,k,r) is
nonempty. [}

3. THE MINIMUM DEGREE OF A G-MINIMAL GRAPH

In this section we study the function s(G) defined in the introduction. The neighborhood
Ny (v) of a vertex v in a graph H is the set of vertices adjacent to v.
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Theorem 3. For all graphs G, we have
25(G) —1<s(G) < R(G)—1.

Proof. Assume for contradiction that there exists a G-minimal graph H with a vertex
v of degree less than 20(G) — 1. Partition the neighborhood Ny (v) = RU B such that
|R| < §(G) —1 and |B| < 6(G) — 1. Color the edge (v,w) red if w € R and blue if
w € B. No matter how the remaining edges of H are colored, v is never a vertex of a
monochromatic copy of G, since v has degree less than §(G) in each color. Thus, H is
not G-minimal, a contradiction. Therefore, s(G) > 2§(G) — 1.

For the upper bound on s(G), we know by definition that Kpg) — G, so Kg(q) has
a G-minimal subgraph. Since every vertex of Kp(g) has degree R(G) — 1, the minimum
degree of a vertex in a subgraph of Kp(¢) is at most R(G)—1. Hence, s(G) < R(G)—1. g

We prove in Subsection 3.2. that the lower bound s(G) > 2§(G) — 1 is tight when G
is a complete bipartite graph.

3.1. Complete Graphs

In this subsection, we prove that s(Kj) = (k — 1)?. We say a 2-coloring c of the edges of
a graph T satisfies Property k if the following two conditions are satisfied:

(1) ¢ does not contain a monochromatic copy of K.

(2) Let T" = K1 ®T. Every 2-coloring of the edges of T” with the subgraph 7' maintaining
the same coloring ¢ contains a monochromatic copy of Kj.

Let t(k) denote the smallest integer ¢ such that there exists a graph T on t vertices with a
2-coloring of its edges that satisfies Property k. If v is a vertex of a Ki-minimal graph H,
then the graph induced by Ny (v) has a coloring that satisfies Property k. We therefore
have the following lemma.

Lemma 1. For all positive integers k, we have
s(Kx) > t(k).
In fact, we will prove the following stronger result.
Theorem 4. For all positive integers k, we have
s(Ky) =t(k) = (k — 1)~

Throughout the rest of the paper, we use ¢ to denote the edge-coloring of K(j_)2
consisting of k — 1 disjoint blue copies of K;_; and all the other edges colored red. In
the following lemma, we find ¢(k).
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Lemma 2. For all positive integers k, we have
t(k) = (k — 1)

Proof. We first prove that the lower bound t(k) > (k — 1)? holds for all positive
integers k. Let T be a graph on ¢t < (k — 1) vertices. Suppose we are given a fixed
coloring ¢ of the edges of T" with the colors red and blue, without any monochromatic
K;. Let T" = K; ®T, and let v be the vertex added to T to obtain T”. We now construct
a coloring of the edges of T’ with the subgraph T maintaining the same coloring ¢ and
containing no monochromatic K.

If there are no blue Kj_1’s in the coloring ¢ of T', then color every edge from v to
a vertex in T blue. This coloring shows that ¢ does not have Property k. Otherwise,
choose the vertices of a monochromatic blue K;_; from the t vertices of T. Pick out
k — 1 vertices (if possible) from the remaining ¢ — (k — 1) vertices such that the graph
induced by those k& — 1 vertices is a monochromatic blue Kj_;. Continue picking out
monochromatic blue copies of K;_1 until there are no more monochromatic blue copies of
Kj._1 among the remaining vertices. Let j be the number of remaining vertices, and let b
be the number of blue copies of Kj_; that were picked out. So, we have t = b(k — 1) + j.

For every vertex in T that was picked out in one of the b disjoint monochromatic
blue copies of Ki_1, we color the edge from that vertex to v red. For the remaining j
vertices, we color the edges from those vertices to v blue. Since the j remaining vertices
do not contain a monochromatic blue Kj_1, v is not a vertex of a monochromatic blue
K}. Since j > 0 and t < (k — 1)?, then b < k — 1. Assume for contradiction that there
are k — 1 vertices of the b disjoint blue copies of Kj 1 that form a monochromatic red
Kj_1. By the Pigeonhole Principle, at least two of these k — 1 vertices lie in the same
monochromatic blue Kj_1, and so the edge between them must be blue, a contradiction.
Therefore, v is not in a monochromatic red K. Hence, ¢ does not have Property k, and
since ¢ was arbitrary, we have t(k) > (k — 1)

We now show that (k) < (k—1)? holds for all positive integers k by showing that the
coloring ¢ of K(;_1)2 has Property k. It is clear that the coloring ¢ does not have any
monochromatic Ky, since the blue edges consist of disjoint copies of Kj_1, and the red
subgraph is a complete (k — 1)-partite graph. Therefore, the coloring ¢ satisfies condition
(1) of Property k.

Adjoin a vertex v to the vertices of K(;_1)2 to form K(;_1)2; and consider a coloring
¢ in which the K(;_1)2 subgraph keeps the coloring ¢. If the graph induced by the
blue neighborhood of v contains a monochromatic blue Kj_1, then adjoining v to this
monochromatic blue Kj_; forms a monochromatic blue K. Thus, if ¢ does not have a
monochromatic blue Ky, then v is adjacent by a red edge to at least one vertex from each
of the k — 1 disjoint monochromatic blue K_’s, and these k — 1 vertices along with v
are the vertices of a monochromatic red K. Therefore, the coloring ¢ satisfies condition
(2) of Property k. Since ¢ has Property k, we have t(k) < (k—1)2, which shows that the
lower bound proved earlier is tight. 1

We say two r-colorings c¢1,¢o : E — {0,...,7 — 1} of the edges of a graph H = (V| E)
are isomorphic if there exist bijections ¢ : V' — V and 7: {0,...,r—1} — {0,...,r—1}
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such that both of the following hold:
(1) (v,w) € E if and only if (¢(v), p(w)) € E.
(2) If (v,w) € E then 7(c1(v,w)) = ca(d(v), p(w)).

Let ¢ be a 2-coloring of the edges of a graph H. We write F' — (G, H®) if every
2-coloring of the edges of F' contains a monochromatic G or a coloring of H isomorphic
to c.

We say the graph F is Ramsey for (G,H¢) if F /4 G but F — (G,H¢). We say
that the pair (G, H¢) is Ramsey if there exists F' that is Ramsey for (G, H¢). Trivially,
(G, H) is not Ramsey if the coloring ¢ of H contains a monochromatic copy of G. This
new notation will be useful in proving our main result, s(K) = (k — 1)2.

Theorem 5. If the graphs H; € f(Kk,l,Q(i_l)(k_l)ﬂ) for 1 <i <k —1, then the
product graph F = H; ® Hy ® - -- ® Hy_ is Ramsey for (Kk,K(Ekfl)z).

Proof. We first prove that F 4 K. If (v,w) is an edge of F, v is a vertex in H;,
and w is a vertex in H;, then color (v,w) blue if ¢ = j and red otherwise. Since each H;
does not contain a Ky, we know that there is no monochromatic blue Ky, in this coloring.
Since the red subgraph in this coloring of F' is a complete (k — 1)-partite graph, we know
that there is no red Ky in this coloring. Hence, F' /4 Kj.

Next, we prove that F' — (K, K(Ek,l)z) Assume we have a coloring of the edges of
F with the colors red and blue without a monochromatic K. Since H; € F(Kj_1,1,2),
there must exist a monochromatic Kj_1 in H;. We may assume without loss of generality
that this monochromatic Kj_1 is blue. Denote the vertices of this monochromatic blue
K1 by v%j), where 1 < j < k — 1. Now, we color each vertex vy of Hy one of 2¢71
colors determined by the colors of the k — 1 edges from vy to {v%j )};?;11. If two vertices
vy and v have the same color, then the edges (vg, v%j)) and (v}, v%j)) are the same color
for 1 < j < k—1. Since Hy € F(Kj_1,2"71,2), there are k — 1 vertices vgj) with
1 < j <k —1 of the same color whose edges form a monochromatic Kj_1.

Assume for contradiction that the edges of this monochromatic Kj_1 in Hy with
vertices {véj)};?;ll are red. If one of the edges (v%jl),véh)) is red, then all the edges
(v%jl), véj)) with 1 < j < k—1 are red because of how the vertex coloring of Hs is defined.
In this case, {v%j 1)}U {Uéj )};?;11 are the vertices of a monochromatic red K}, contradicting
the assumption that the given coloring of F' did not contain a monochromatic K. So,
all the edges (v%j/),véj)) such that 1 < 7/ < k—1and 1 < j <k —1 are blue. In this
case, {v%j ) 5;11 U {vi} are the vertices of a monochromatic blue K}, contradicting the
assumption that the given coloring of F' did not contain a monochromatic K. Therefore,

the edges of this monochromatic Kj_; with vertices {véj )};?;11 must be blue. If any edge
(v%jl),véjz)) is blue, then the edges (vgjl),véj)) are all blue for 1 < j < k — 1. In this
case, {U%j 1)} U {véj ) ;“;11 are the vertices of a monochromatic blue K}, contradicting the
assumption that the given coloring of F' did not contain a monochromatic K. So all the
edges (vijl),véﬁ)) with1<j; <k—-1land1<j, <k-—1arered.
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We will induct on 4 from 3 to k— 1. Color each vertex v; of H; one of 20~ D(*=1) ¢colors
determined by the color of the edges from v; to vl(j) withl<l<i—land1<j<k-1.
If two vertices v; and v} have the same color, then the edges (vi,vl(])) and (UZ/-,’UZ(J)) are
the same color for 1 < j < k—1and 1 <1 <i— 1. Since H; € F(Ky_1,207 D=1 2)
then there are k — 1 vertices v( 7 Wwith 1 < j <k —1 of the same color whose edges form
a monochromatic K;_;. By the same argument that proved that the monochromatic

K1 with vertices {Uéj)}kfl had to be blue, we have that the monochromatic Kj_; with

vertices {v; j)}k_l has to be blue. Likewise, the edges (v (31)71)1(3'2)) with 1 <j; <k-1,
1§j2§k71 and 1 <[ <7 —1 must all be red.

So, for each i with 1 <1i <k —1, {v(j)}’?_l are the vertices of a monochromatic blue

Kj_1. Moreover, if 4,1, j1,j2 € {1,...,k—1} andz#l then the edge (v, (]1) (jz)) is red.
So, the elements of the set V' = {vz(]) 24,7 €{1,...,k—1}} are the vertices of a complete
graph on (k — 1)2 vertices with the coloring & Therefore, F — (K, K(Ek_l)z). 1

Now we prove Theorem 4.

Proof of Theorem 4: By Corollary 1, there exist graphs H; € F(Kp_1,20- D=1 9)
for1 <i<k—1. Let F be the product graph Hy ®H2 ®---® Hi_1 and V be the vertex
set of F. By Theorem 5, F' is Ramsey for (Kj, K (k 1)2) Let F} be the supergraph of
F obtained from F' by adjoining a vertex vg with nelghborhood N F1 (US) = S for each
subset S C V with |S| = (k — 1)2. Since F is Ramsey for (K, K 1)2 ) and the edge-
coloring ¢ of K(j_1)2 has Property k, then 1 — K} and I has a Kg-minimal subgraph
F5 that contains a vertex of F} not in F. Therefore, F5 has minimum degree at most
(k —1)2, and s(K}j) < (k — 1)2. This upper bound on s(K}) matches the lower bound
s(Ky) > t(k) = (k — 1) proved in Lemma 1 and Lemma 2. Hence, s(Kj) = t(k) =
(k—1)% "

3.2. Bipartite Graphs

For each complete bipartite graph K, 5, we find another complete bipartite graph K, ,
that is K, p-minimal.

Theorem 6. Let a and b be positive integers such that a < b. Let m = 2a — 1 and
n=20b- 1)(2a 1) + 1. Then K, ,, is K, p-minimal.

Proof. We first show that K,,, — K,3. Let Vi and V5 denote the independent
sets of vertices in K, , that are disjoint and of size m and n, respectively. Consider a
2-coloring of the edges of K, , with colors red and blue. For each vertex v of degree
2a — 1, either the number of blue edges adjacent to v is at least a or the number of red
edges adjacent to v is at least a. Therefore, for every 2-coloring of the edges of K, .,
and for each vertex v € Va, there is at least one subset S(v) C V4 with |S(v)| = a such
that the edges from S(v) to v are all the same color. There are (2“_1) possible subsets

S(v). Since there are 2(b— 1) (2‘1 1) + 1 vertices in V3, then by the Pigeonhole Principle
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there exists vy, ..., v9p—1 with S(v;) = -+ = S(vep—1) := S. Since there are 2b — 1 such
vertices, at least b of these vertices have only red edges adjacent to the vertices in S or at
least b of these vertices have only blue edges adjacent to the vertices in S. Then these b
vertices along with the vertices in S' are the vertices of an induced monochromatic K p.

Now we show that Ky, , —e /4 K. We first note that for every pair of edges eq, ez
of K, there exists an isomorphism of K, that maps e; to ex. Thus, K, ,, — e is well-
defined without specifying e. We give a 2-coloring of K, ,, — e without a monochromatic
Kqp. Let w denote the only vertex of K, ,, —e that has degree 2a —2. Color ¢ —1 of the
edges that are adjacent to w red and the other a — 1 edges that are adjacent to w blue.
So, w is not a vertex of a monochromatic K, since the degree of w in a monochromatic
subgraph is at most a — 1. For each subset S C V; with |S| = a, pick out b — 1 vertices
of V5 to have red edges adjacent to the vertices of S and blue edges adjacent to the
vertices of V3 — S, and then pick out b — 1 vertices of V5 to have blue edges adjacent to
the vertices of S and red edges adjacent to the vertices of V3 — S. We have colored all
the edges of K, ,, — e, and there are no monochromatic K, in this coloring. Therefore,
Ky —e 4 Kqp. Hence, Ky, 5, is K, p-minimal. [

As a corollary of the previous theorem, we have s(K,;) < 2min(a,b) — 1. Since the
minimum degree of K, ; is min(a, b), then the upper bound on s(K, ;) matches the lower
bound s(K,p) > 2min(a,b) — 1 in Theorem 3.

Corollary 2. For all positive integers a and b, we have
$(Kq4p) = 2min(a,b) — 1.

Every bipartite graph H on v vertices is the subgraph of K, ,_, for some positive

integer a with a < §. If H is a subgraph of K,y o, n = 2(a —v — 1)(2’1;1) + 1, and

m = 2a — 1, then K, ,, has a H-minimal subgraph. We therefore arrive at the following
corollary of Theorem 6.

Corollary 3. If H is a bipartite graph with v vertices then
s(H)y<wv-—1.

We proved in Corollary 2 that the lower bound s(G) > 26(G) — 1 is tight for complete
bipartite graphs. The following question asks for which graphs is the lower bound tight.

Question 1. For which graphs G does s(G) = 2§(G) — 17

4. CONCLUSION

While this paper determines the exact values of s(G) if G is complete or complete bipar-
tite, the exact value of s(G) is open in most cases.
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We have also introduced a new question in Ramsey theory: Which pairs (G, H¢) are
Ramsey?

A famous result of Erdés [3] is the probabilistic lower bound R(K,) > 2% on the
Ramsey number for the complete graph on n vertices. Theorem 7 follows from Erdés’
probabilistic lower bound on Ramsey numbers for complete graphs and a theorem of
Promel and Rédl [17].

Theorem 7 (Promel and R6dl, [17]). Let &k be a fixed positive constant such that
k1 < % Then there exists a constant ko > 0 such that for all positive integers n, if H is
a graph with at most kon vertices, ¢ is a 2-coloring of the edges of H, and m = [2F17],
then K, is Ramsey for (K, H¢).

The Promel-R6dl theorem gives evidence to support the following conjecture.

Conjecture 1. For every 2-coloring c of a graph H without a monochromatic Ky, the
pair (K, H®) is Ramsey.

We next introduce new Ramsey-type numbers. If (G,H¢) is Ramsey, then we define
the dichromatic Ramsey number b(G, H) to be the least v such that there exists a
graph F with v vertices that is Ramsey for (G, H®). If (G,H°) is not Ramsey, we define
b(G, H®) = 0. Define S(G) to be the minimum positive integer v such that there exists
a G-minimal graph F' with exactly v vertices and minimum degree 6(F) = s(G). For all
graphs G, we have S(G) > R(G), since no G-minimal graph has less than R(G) vertices.
For complete bipartite graphs K, ; with b > a, the following theorem shows that both
S(Kap) and R(K, ) have lower and upper bounds which are expressed as an exponential
function in a multiplied by a linear factor in b.

Theorem 8. For all positive integers a and b with a < b, we have

20— 1
a

1 a+b

) +20 2 S(Kap) 2 R(Kap) > (2mV/ab) = (— )27

2(b — 1)(

Y which we

showed was K, ;-minimal. The lower bound is due to Fan Chung and Ron Graham [1]. g
Since every K| k—minir}ml graph has a proper subgraph which is Ramsey for (K, K (Ek—1)2 ),
then S(K}y) > b(Ky, ngil)z) + 1, which makes the next conjecture seem plausible.

Proof. 'The upper bound is the number of vertices in K,, 2(b-1)(*7)

Conjecture 2. For all positive integers k, we have
S(K,) = 290,

Conjecture 2 would imply that S(K}) grows considerably faster than the Ramsey
number R(K}).
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4.1. Multicolored Generalizations

In this section, we consider the natural generalization to r-colorings. Most of the results
in this paper carry over to r colors, and the proofs are straightforward generalizations.
We outline these multicolored results below.

We say that H is (G;r)-minimal if H — (G;r) but H' 4 (G;r) for every proper
subgraph H' of H. Let s(G;r) denote the least nonnegative integer s such that there
exists a (G;r)-minimal graph H with a vertex of degree s. Several of the results we
obtained on s(G) for 2 colors generalize naturally to r colors. We omit the proofs of
these multicolored generalizations, as they are essentially the same proofs as those used
for 2 colors.

Theorem 9. For all graphs G, we have
ré(G) —r+1<s(G;r) < R(G;r) — 1.

The proof of Theorem 6 can be easily generalized to prove s(K, ;) = rmin(a, b)—r+1
for all positive integers a, b, and r.

Theorem 10. Let a and b be positive integers such that a < b. Let m =ra —r +1
and n =r(b— 1)(m_ar+1) + 1. Then K,, , is K, p-minimal.

While we proved s(Kj) = (k — 1), it is still an open problem to determine s(Kj;7)
for r > 2.
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