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ABSTRACT

We write H → G if every 2-coloring of the edges of graph H contains a monochromatic
copy of graph G. A graph H is G-minimal if H → G, but for every proper subgraph
H ′ of H, H ′ 6→ G. We define s(G) to be the minimum s such that there exists a
G-minimal graph with a vertex of degree s. We prove that s(Kk) = (k − 1)2 and
s(Ka,b) = 2 min(a, b) − 1. We also pose several related open problems. c© 2005 John
Wiley & Sons, Inc.
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1. INTRODUCTION

In this paper, we only consider finite simple graphs. The complete graph and the cycle
on n vertices are denoted Kn and Cn, respectively.

We write H → (G; r) if every r-coloring of the edges of H contains a monochromatic
copy of G, and H → G if H → (G; 2). A graph H is G-minimal if H → G, but for every
proper subgraph H ′ of H, H ′ 6→ G. For example, K6 is K3-minimal because K6 → K3,
and no proper subgraph H ′ ⊂ K6 has the property that H ′ → K3.

The Ramsey number R(G) is the minimum positive integer n such that Kn → G.
In 1967, Erdős and Hajnal [5] asked whether there exists a K6-free graph H such that
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H → K3. Ron Graham [10] answered this question by showing that K8 −C5 (the graph
formed by taking the edges of a C5 out of a K8) is K3-minimal. The problem of Erdős
and Hajnal opened up the area of research of finding graphs H such that H → G for a
given graph G.

It is easy to prove by induction that a graph H satisfies H → G if and only if there
exists a subgraph H ′ of H such that H ′ is G-minimal.

Given graphs G1, G2, . . . , Gn, their product G1 ⊗ G2 ⊗ · · · ⊗ Gn consists of vertex
disjoint copies of G1, G2, . . . , Gn and all possible edges between the vertices of Gi and
Gj with i 6= j. Galluccio et al. [9] and Szabó [18] proved that for all positive integers k,
C2k+1 ⊗K3 is K3-minimal. For k = 1 and 2, these graphs are K6 and Graham’s graph
K8 − C5, respectively.

Noting that the K3-minimal graphs of the form C2k+1⊗K3 all have minimum degree
5, it is natural to investigate whether there are K3-minimal graphs of minimum degree
less than 5. This question motivates the following definition.

Definition. Let s(G) be the least nonnegative integer s such that there exists a
G-minimal graph with a vertex of degree s.

In Section 3, we first show that 2δ(G) − 1 ≤ s(G) ≤ R(G) − 1, where δ(G) denotes the
minimum degree of G. We then prove s(Kk) = (k − 1)2 and s(Ka,b) = 2min(a, b) − 1.
An important part of the proof that s(Kk) = (k − 1)2 relies on a natural generalization
of a famous theorem of Jaroslav Nešetřil and Vojtěch Rödl, which we prove in Section 2.

In the Conclusion, we consider associated Ramsey numbers and multicolored general-
izations.

2. GENERALIZATION OF A THEOREM OF NES̆ETR̆IL & RÖDL

The clique number ω(G) of a graph G is the number of vertices in the largest complete
subgraph of G. We write F

ind−−→ (G; r) if every r-coloring of the edges of graph F contains
a monochromatic induced copy of G.

Theorem 1 (Nes̆etr̆il & Rödl, [13]). For every positive integer r and graph G,
there exists a graph F with ω(F ) = ω(G) and F

ind−−→ (G; r).
While Theorem 1 only considers edge colorings, our generalization of Theorem 1 will

simultaneously consider both edge and vertex colorings.
For a graph G, let F(G, r) denote the family of graphs F with ω(F ) = ω(G) and

F
ind−−→ (G; r). Theorem 1 is equivalent to F(G, r) being nonempty for every graph G

and positive integer r. Let F(G, k, r) denote the family of graphs F with ω(F ) = ω(G),
and for every k-coloring of the vertices of F and every r-coloring of the edges of F , there
exists an induced copy of G with all its edges the same color and all its vertices the same
color.
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Theorem 2. For every non-bipartite graph G without isolated vertices and for all
positive integers k, r, we have

F(G, r

(
k + 1

2

)
) ⊂ F(G, k, r).

Proof. Let F ∈ F(G, r
(
k+1
2

)
), and consider a k-coloring c of the vertices of F and an

r-coloring C of the edges of F . Since both vertices of each edge of F are colored, there
are

(
k+1
2

)
possible pairs of colors for the vertices of each edge. Therefore, the k-coloring

c of the vertices of F and the r-coloring C of the edges of F determines a new r
(
k+1
2

)
-

coloring C ′ of the edges of F , where the new color of each edge is given by its color
in C and the colors of its endpoints in c. Since F ∈ F(G, r

(
k+1
2

)
), there is an induced

monochromatic copy of G in this new coloring C ′ of the edges of F . So, all edges in the
original r-coloring of this copy of G must have been the same color, and all edges must
have had the same pair of colors for its endpoints. Because G is non-bipartite, there
does not exist a 2-coloring of the vertices of G such that the two vertices of each edge
are different colors. Therefore, all vertices in this copy of G are the same color. Hence,
every k-coloring of the vertices of F and r-coloring of the edges of F contains an induced
copy of G that has all its vertices the same color and all its edges the same color.

In the proof of Theorem 1, Nes̆etr̆il and Rödl showed that if G is bipartite, then
there exists a bipartite graph F ∈ F(G, r). If F = (V, E) is bipartite with bipartition
V = V1 ∪ V2, and if we color every vertex in V1 red and every vertex in V2 blue, then no
edge has both of its vertices the same color. Hence, the non-bipartiteness assumption in
Theorem 2 is necessary.

Corollary 1 follows from Theorem 1.

Corollary 1. For every graph G and for all positive integers k and r, F(G, k, r) is
nonempty.

Proof. If G is an empty graph on n vertices, then by the pigeonhole principle, the
empty graph on k(n − 1) + 1 vertices is our desired F . If G has an edge, then let l
denote the number of isolated vertices of G and let G1 denote the graph formed by
removing the isolated vertices from G. Let the graph H be the disjoint union of G1,
l disjoint edges, and a C5. Note that H is not bipartite and has no isolated vertices,
F(H, k, r) ⊂ F(G, k, r), and ω(H) = ω(G). It follows from Theorem 2 that F(G, k, r) is
nonempty.

3. THE MINIMUM DEGREE OF A G-MINIMAL GRAPH

In this section we study the function s(G) defined in the introduction. The neighborhood
NH(v) of a vertex v in a graph H is the set of vertices adjacent to v.
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Theorem 3. For all graphs G, we have

2δ(G)− 1 ≤ s(G) ≤ R(G)− 1.

Proof. Assume for contradiction that there exists a G-minimal graph H with a vertex
v of degree less than 2δ(G) − 1. Partition the neighborhood NH(v) = R ∪ B such that
|R| ≤ δ(G) − 1 and |B| ≤ δ(G) − 1. Color the edge (v, w) red if w ∈ R and blue if
w ∈ B. No matter how the remaining edges of H are colored, v is never a vertex of a
monochromatic copy of G, since v has degree less than δ(G) in each color. Thus, H is
not G-minimal, a contradiction. Therefore, s(G) ≥ 2δ(G)− 1.

For the upper bound on s(G), we know by definition that KR(G) → G, so KR(G) has
a G-minimal subgraph. Since every vertex of KR(G) has degree R(G)− 1, the minimum
degree of a vertex in a subgraph of KR(G) is at most R(G)−1. Hence, s(G) ≤ R(G)−1.

We prove in Subsection 3.2. that the lower bound s(G) ≥ 2δ(G) − 1 is tight when G
is a complete bipartite graph.

3.1. Complete Graphs

In this subsection, we prove that s(Kk) = (k− 1)2. We say a 2-coloring c of the edges of
a graph T satisfies Property k if the following two conditions are satisfied:
(1) c does not contain a monochromatic copy of Kk.
(2) Let T ′ = K1⊗T . Every 2-coloring of the edges of T ′ with the subgraph T maintaining
the same coloring c contains a monochromatic copy of Kk.
Let t(k) denote the smallest integer t such that there exists a graph T on t vertices with a
2-coloring of its edges that satisfies Property k. If v is a vertex of a Kk-minimal graph H,
then the graph induced by NH(v) has a coloring that satisfies Property k. We therefore
have the following lemma.

Lemma 1. For all positive integers k, we have

s(Kk) ≥ t(k).

In fact, we will prove the following stronger result.

Theorem 4. For all positive integers k, we have

s(Kk) = t(k) = (k − 1)2.

Throughout the rest of the paper, we use c̄ to denote the edge-coloring of K(k−1)2

consisting of k − 1 disjoint blue copies of Kk−1 and all the other edges colored red. In
the following lemma, we find t(k).
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Lemma 2. For all positive integers k, we have

t(k) = (k − 1)2.

Proof. We first prove that the lower bound t(k) ≥ (k − 1)2 holds for all positive
integers k. Let T be a graph on t < (k − 1)2 vertices. Suppose we are given a fixed
coloring c of the edges of T with the colors red and blue, without any monochromatic
Kk. Let T ′ = K1⊗T , and let v be the vertex added to T to obtain T ′. We now construct
a coloring of the edges of T ′ with the subgraph T maintaining the same coloring c and
containing no monochromatic Kk.

If there are no blue Kk−1’s in the coloring c of T , then color every edge from v to
a vertex in T blue. This coloring shows that c does not have Property k. Otherwise,
choose the vertices of a monochromatic blue Kk−1 from the t vertices of T . Pick out
k − 1 vertices (if possible) from the remaining t − (k − 1) vertices such that the graph
induced by those k − 1 vertices is a monochromatic blue Kk−1. Continue picking out
monochromatic blue copies of Kk−1 until there are no more monochromatic blue copies of
Kk−1 among the remaining vertices. Let j be the number of remaining vertices, and let b
be the number of blue copies of Kk−1 that were picked out. So, we have t = b(k− 1)+ j.

For every vertex in T that was picked out in one of the b disjoint monochromatic
blue copies of Kk−1, we color the edge from that vertex to v red. For the remaining j
vertices, we color the edges from those vertices to v blue. Since the j remaining vertices
do not contain a monochromatic blue Kk−1, v is not a vertex of a monochromatic blue
Kk. Since j ≥ 0 and t < (k − 1)2, then b < k − 1. Assume for contradiction that there
are k − 1 vertices of the b disjoint blue copies of Kk−1 that form a monochromatic red
Kk−1. By the Pigeonhole Principle, at least two of these k − 1 vertices lie in the same
monochromatic blue Kk−1, and so the edge between them must be blue, a contradiction.
Therefore, v is not in a monochromatic red Kk. Hence, c does not have Property k, and
since c was arbitrary, we have t(k) ≥ (k − 1)2.

We now show that t(k) ≤ (k−1)2 holds for all positive integers k by showing that the
coloring c̄ of K(k−1)2 has Property k. It is clear that the coloring c̄ does not have any
monochromatic Kk, since the blue edges consist of disjoint copies of Kk−1, and the red
subgraph is a complete (k−1)-partite graph. Therefore, the coloring c̄ satisfies condition
(1) of Property k.

Adjoin a vertex v to the vertices of K(k−1)2 to form K(k−1)2+1 and consider a coloring
c̄′ in which the K(k−1)2 subgraph keeps the coloring c̄. If the graph induced by the
blue neighborhood of v contains a monochromatic blue Kk−1, then adjoining v to this
monochromatic blue Kk−1 forms a monochromatic blue Kk. Thus, if c̄′ does not have a
monochromatic blue Kk, then v is adjacent by a red edge to at least one vertex from each
of the k − 1 disjoint monochromatic blue Kk−1’s, and these k − 1 vertices along with v
are the vertices of a monochromatic red Kk. Therefore, the coloring c̄ satisfies condition
(2) of Property k. Since c̄ has Property k, we have t(k) ≤ (k− 1)2, which shows that the
lower bound proved earlier is tight.

We say two r-colorings c1, c2 : E → {0, . . . , r − 1} of the edges of a graph H = (V, E)
are isomorphic if there exist bijections φ : V → V and τ : {0, . . . , r− 1} → {0, . . . , r− 1}
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such that both of the following hold:
(1) (v, w) ∈ E if and only if (φ(v), φ(w)) ∈ E.
(2) If (v, w) ∈ E then τ(c1(v, w)) = c2(φ(v), φ(w)).

Let c be a 2-coloring of the edges of a graph H. We write F → (G,Hc) if every
2-coloring of the edges of F contains a monochromatic G or a coloring of H isomorphic
to c.

We say the graph F is Ramsey for (G,Hc) if F 6→ G but F → (G,Hc). We say
that the pair (G,Hc) is Ramsey if there exists F that is Ramsey for (G,Hc). Trivially,
(G,Hc) is not Ramsey if the coloring c of H contains a monochromatic copy of G. This
new notation will be useful in proving our main result, s(Kk) = (k − 1)2.

Theorem 5. If the graphs Hi ∈ F(Kk−1, 2(i−1)(k−1), 2) for 1 ≤ i ≤ k − 1, then the
product graph F = H1 ⊗H2 ⊗ · · · ⊗Hk−1 is Ramsey for (Kk,K c̄

(k−1)2).
Proof. We first prove that F 6→ Kk. If (v, w) is an edge of F , v is a vertex in Hi,

and w is a vertex in Hj , then color (v, w) blue if i = j and red otherwise. Since each Hi

does not contain a Kk, we know that there is no monochromatic blue Kk in this coloring.
Since the red subgraph in this coloring of F is a complete (k−1)-partite graph, we know
that there is no red Kk in this coloring. Hence, F 6→ Kk.

Next, we prove that F → (Kk,K c̄
(k−1)2). Assume we have a coloring of the edges of

F with the colors red and blue without a monochromatic Kk. Since H1 ∈ F(Kk−1, 1, 2),
there must exist a monochromatic Kk−1 in H1. We may assume without loss of generality
that this monochromatic Kk−1 is blue. Denote the vertices of this monochromatic blue
Kk−1 by v

(j)
1 , where 1 ≤ j ≤ k − 1. Now, we color each vertex v2 of H2 one of 2k−1

colors determined by the colors of the k − 1 edges from v2 to {v(j)
1 }k−1

j=1 . If two vertices

v2 and v′2 have the same color, then the edges (v2, v
(j)
1 ) and (v′2, v

(j)
1 ) are the same color

for 1 ≤ j ≤ k − 1. Since H2 ∈ F(Kk−1, 2k−1, 2), there are k − 1 vertices v
(j)
2 with

1 ≤ j ≤ k − 1 of the same color whose edges form a monochromatic Kk−1.
Assume for contradiction that the edges of this monochromatic Kk−1 in H2 with

vertices {v(j)
2 }k−1

j=1 are red. If one of the edges (v(j1)
1 , v

(j2)
2 ) is red, then all the edges

(v(j1)
1 , v

(j)
2 ) with 1 ≤ j ≤ k−1 are red because of how the vertex coloring of H2 is defined.

In this case, {v(j1)
1 }∪{v(j)

2 }k−1
j=1 are the vertices of a monochromatic red Kk, contradicting

the assumption that the given coloring of F did not contain a monochromatic Kk. So,
all the edges (v(j′)

1 , v
(j)
2 ) such that 1 ≤ j′ ≤ k − 1 and 1 ≤ j ≤ k − 1 are blue. In this

case, {v(j)
1 }k−1

j=1 ∪ {v1
2} are the vertices of a monochromatic blue Kk, contradicting the

assumption that the given coloring of F did not contain a monochromatic Kk. Therefore,
the edges of this monochromatic Kk−1 with vertices {v(j)

2 }k−1
j=1 must be blue. If any edge

(v(j1)
1 , v

(j2)
2 ) is blue, then the edges (v(j1)

1 , v
(j)
2 ) are all blue for 1 ≤ j ≤ k − 1. In this

case, {v(j1)
1 } ∪ {v(j)

2 }k−1
j=1 are the vertices of a monochromatic blue Kk, contradicting the

assumption that the given coloring of F did not contain a monochromatic Kk. So all the
edges (v(j1)

1 , v
(j2)
2 ) with 1 ≤ j1 ≤ k − 1 and 1 ≤ j2 ≤ k − 1 are red.
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We will induct on i from 3 to k−1. Color each vertex vi of Hi one of 2(i−1)(k−1) colors
determined by the color of the edges from vi to v

(j)
l with 1 ≤ l ≤ i−1 and 1 ≤ j ≤ k−1.

If two vertices vi and v′i have the same color, then the edges (vi, v
(j)
l ) and (v′i, v

(j)
l ) are

the same color for 1 ≤ j ≤ k − 1 and 1 ≤ l ≤ i − 1. Since Hi ∈ F(Kk−1, 2(i−1)(k−1), 2),
then there are k − 1 vertices v

(j)
i with 1 ≤ j ≤ k − 1 of the same color whose edges form

a monochromatic Kk−1. By the same argument that proved that the monochromatic
Kk−1 with vertices {v(j)

2 }k−1
j=1 had to be blue, we have that the monochromatic Kk−1 with

vertices {v(j)
i }k−1

j=1 has to be blue. Likewise, the edges (v(j1)
l , v

(j2)
i ) with 1 ≤ j1 ≤ k − 1,

1 ≤ j2 ≤ k − 1, and 1 ≤ l ≤ i− 1 must all be red.
So, for each i with 1 ≤ i ≤ k − 1, {v(j)

i }k−1
j=1 are the vertices of a monochromatic blue

Kk−1. Moreover, if i, l, j1, j2 ∈ {1, . . . , k− 1} and i 6= l, then the edge (v(j1)
l , v

(j2)
i ) is red.

So, the elements of the set V = {v(j)
i : i, j ∈ {1, . . . , k−1}} are the vertices of a complete

graph on (k − 1)2 vertices with the coloring c̄. Therefore, F → (Kk,K c̄
(k−1)2).

Now we prove Theorem 4.
Proof of Theorem 4: By Corollary 1, there exist graphs Hi ∈ F(Kk−1, 2(i−1)(k−1), 2)

for 1 ≤ i ≤ k−1. Let F be the product graph H1⊗H2⊗· · ·⊗Hk−1 and V be the vertex
set of F . By Theorem 5, F is Ramsey for (Kk,K c̄

(k−1)2). Let F1 be the supergraph of
F obtained from F by adjoining a vertex vS with neighborhood NF1(vS) = S for each
subset S ⊂ V with |S| = (k − 1)2. Since F is Ramsey for (Kk,K c̄

(k−1)2) and the edge-
coloring c̄ of K(k−1)2 has Property k, then F1 → Kk and F1 has a Kk-minimal subgraph
F2 that contains a vertex of F1 not in F . Therefore, F2 has minimum degree at most
(k − 1)2, and s(Kk) ≤ (k − 1)2. This upper bound on s(Kk) matches the lower bound
s(Kk) ≥ t(k) = (k − 1)2 proved in Lemma 1 and Lemma 2. Hence, s(Kk) = t(k) =
(k − 1)2.

3.2. Bipartite Graphs

For each complete bipartite graph Ka,b, we find another complete bipartite graph Km,n

that is Ka,b-minimal.

Theorem 6. Let a and b be positive integers such that a ≤ b. Let m = 2a − 1 and
n = 2(b− 1)

(
2a−1

a

)
+ 1. Then Km,n is Ka,b-minimal.

Proof. We first show that Km,n → Ka,b. Let V1 and V2 denote the independent
sets of vertices in Km,n that are disjoint and of size m and n, respectively. Consider a
2-coloring of the edges of Km,n with colors red and blue. For each vertex v of degree
2a− 1, either the number of blue edges adjacent to v is at least a or the number of red
edges adjacent to v is at least a. Therefore, for every 2-coloring of the edges of Km,n,
and for each vertex v ∈ V2, there is at least one subset S(v) ⊂ V1 with |S(v)| = a such
that the edges from S(v) to v are all the same color. There are

(
2a−1

a

)
possible subsets

S(v). Since there are 2(b− 1)
(
2a−1

a

)
+ 1 vertices in V2, then by the Pigeonhole Principle
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there exists v1, . . . , v2b−1 with S(v1) = · · · = S(v2b−1) := S. Since there are 2b− 1 such
vertices, at least b of these vertices have only red edges adjacent to the vertices in S or at
least b of these vertices have only blue edges adjacent to the vertices in S. Then these b
vertices along with the vertices in S are the vertices of an induced monochromatic Ka,b.

Now we show that Km,n − e 6→ Ka,b. We first note that for every pair of edges e1, e2

of Ka,b, there exists an isomorphism of Ka,b that maps e1 to e2. Thus, Km,n − e is well-
defined without specifying e. We give a 2-coloring of Km,n− e without a monochromatic
Ka,b. Let w denote the only vertex of Km,n−e that has degree 2a−2. Color a−1 of the
edges that are adjacent to w red and the other a− 1 edges that are adjacent to w blue.
So, w is not a vertex of a monochromatic Ka,b since the degree of w in a monochromatic
subgraph is at most a− 1. For each subset S ⊂ V1 with |S| = a, pick out b− 1 vertices
of V2 to have red edges adjacent to the vertices of S and blue edges adjacent to the
vertices of V1 − S, and then pick out b− 1 vertices of V2 to have blue edges adjacent to
the vertices of S and red edges adjacent to the vertices of V1 − S. We have colored all
the edges of Km,n− e, and there are no monochromatic Ka,b in this coloring. Therefore,
Km,n − e 6→ Ka,b. Hence, Km,n is Ka,b-minimal.

As a corollary of the previous theorem, we have s(Ka,b) ≤ 2min(a, b) − 1. Since the
minimum degree of Ka,b is min(a, b), then the upper bound on s(Ka,b) matches the lower
bound s(Ka,b) ≥ 2min(a, b)− 1 in Theorem 3.

Corollary 2. For all positive integers a and b, we have

s(Ka,b) = 2 min(a, b)− 1.

Every bipartite graph H on v vertices is the subgraph of Ka,v−a for some positive
integer a with a ≤ v

2 . If H is a subgraph of Ka,v−a, n = 2(a − v − 1)
(
2a−1

a

)
+ 1, and

m = 2a− 1, then Km,n has a H-minimal subgraph. We therefore arrive at the following
corollary of Theorem 6.

Corollary 3. If H is a bipartite graph with v vertices then

s(H) ≤ v − 1.

We proved in Corollary 2 that the lower bound s(G) ≥ 2δ(G)− 1 is tight for complete
bipartite graphs. The following question asks for which graphs is the lower bound tight.

Question 1. For which graphs G does s(G) = 2δ(G)− 1?

4. CONCLUSION

While this paper determines the exact values of s(G) if G is complete or complete bipar-
tite, the exact value of s(G) is open in most cases.
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We have also introduced a new question in Ramsey theory: Which pairs (G, Hc) are
Ramsey?

A famous result of Erdős [3] is the probabilistic lower bound R(Kn) > 2
n
2 on the

Ramsey number for the complete graph on n vertices. Theorem 7 follows from Erdős’
probabilistic lower bound on Ramsey numbers for complete graphs and a theorem of
Prömel and Rödl [17].

Theorem 7 (Prömel and Rödl, [17]). Let k1 be a fixed positive constant such that
k1 < 1

2 . Then there exists a constant k2 > 0 such that for all positive integers n, if H is
a graph with at most k2n vertices, c is a 2-coloring of the edges of H, and m = b2k1nc,
then Km is Ramsey for (Kn,Hc).

The Prömel-Rödl theorem gives evidence to support the following conjecture.

Conjecture 1. For every 2-coloring c of a graph H without a monochromatic Kk, the
pair (Kk, Hc) is Ramsey.

We next introduce new Ramsey-type numbers. If (G,Hc) is Ramsey, then we define
the dichromatic Ramsey number b(G,Hc) to be the least v such that there exists a
graph F with v vertices that is Ramsey for (G,Hc). If (G,Hc) is not Ramsey, we define
b(G,Hc) = ∞. Define S(G) to be the minimum positive integer v such that there exists
a G-minimal graph F with exactly v vertices and minimum degree δ(F ) = s(G). For all
graphs G, we have S(G) ≥ R(G), since no G-minimal graph has less than R(G) vertices.
For complete bipartite graphs Ka,b with b ≥ a, the following theorem shows that both
S(Ka,b) and R(Ka,b) have lower and upper bounds which are expressed as an exponential
function in a multiplied by a linear factor in b.

Theorem 8. For all positive integers a and b with a ≤ b, we have

2(b− 1)
(

2a− 1
a

)
+ 2a ≥ S(Ka,b) ≥ R(Ka,b) > (2π

√
ab)

1
a+b (

a + b

e2
)2

ab−1
a+b .

Proof. The upper bound is the number of vertices in K2a−1,2(b−1)(2a−1
a )+1, which we

showed was Ka,b-minimal. The lower bound is due to Fan Chung and Ron Graham [1].
Since every Kk-minimal graph has a proper subgraph which is Ramsey for (Kk,K c̄

(k−1)2),
then S(Kk) ≥ b(Kk,K c̄

(k−1)2) + 1, which makes the next conjecture seem plausible.

Conjecture 2. For all positive integers k, we have

S(Kk) = 2Ω(k2).

Conjecture 2 would imply that S(Kk) grows considerably faster than the Ramsey
number R(Kk).
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4.1. Multicolored Generalizations

In this section, we consider the natural generalization to r-colorings. Most of the results
in this paper carry over to r colors, and the proofs are straightforward generalizations.
We outline these multicolored results below.

We say that H is (G; r)-minimal if H → (G; r) but H ′ 6→ (G; r) for every proper
subgraph H ′ of H. Let s(G; r) denote the least nonnegative integer s such that there
exists a (G; r)-minimal graph H with a vertex of degree s. Several of the results we
obtained on s(G) for 2 colors generalize naturally to r colors. We omit the proofs of
these multicolored generalizations, as they are essentially the same proofs as those used
for 2 colors.

Theorem 9. For all graphs G, we have

rδ(G)− r + 1 ≤ s(G; r) ≤ R(G; r)− 1.

The proof of Theorem 6 can be easily generalized to prove s(Ka,b; r) = r min(a, b)−r+1
for all positive integers a, b, and r.

Theorem 10. Let a and b be positive integers such that a ≤ b. Let m = ra − r + 1
and n = r(b− 1)

(
ra−r+1

a

)
+ 1. Then Km,n is Ka,b-minimal.

While we proved s(Kk) = (k − 1)2, it is still an open problem to determine s(Kk; r)
for r > 2.
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