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Abstract

In this short note, we prove that for β < 1/5 every graph G with n vertices and n2−β edges

contains a subgraph G′ with at least cn2−2β edges such that every pair of edges in G′ lie together

on a cycle of length at most 8. Moreover edges in G′ which share a vertex lie together on a cycle

of length at most 6. This result is best possible up to the constant factor and settles a conjecture

of Duke, Erdős, and Rödl.

1 Introduction

Let H be a fixed collection of graphs. A graph G is H-connected if every pair of edges of G is

contained in a subgraph H of G, where H is a member of H. For example, if H is the collection

of all paths, then, ignoring isolated vertices, H-connectedness is equivalent to connectedness. If H

consists of all paths of length at most d, then each H-connected graph has a diameter at most d,

while every graph of diameter d is H-connected for H the collection of all paths of length at most

d + 2. So H-connectedness naturally extends basic notions of connectivity.

The definition of H-connectedness was introduced by Duke, Erdős, and Rödl, who initiated the

study of this notion in a series of four papers [5, 6, 7, 8]. A graph is C2k-connected if it is H-connected

where H consists of all even-length cycles of length at most 2k. The question studied by Duke, Erdős,

and Rödl was to determine the maximum number of edges in a C2k-connected subgraph that one can

find in every graph with n vertices and m edges as a function of k, n, and m. The following problem

was considered to be one of the main open problems in this area. It was first posed by Duke, Erdős,

and Rödl [6] in 1984, and discussed in the two subsequent papers [7, 8]. It also appears in the book

Erdős on Graphs by Chung and Graham [4].

Problem 1.1 Is it true that there are constants c, β0 > 0 such that for all 0 ≤ β ≤ β0 the following

holds. Every graph G with n vertices and n2−β edges contains a subgraph G′ with cn2−2β edges such

that every two edges of G′ lie together on a cycle of length at most eight?
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It is easy to see that such a result would be best possible up to a multiplicative constant. Indeed,

the bound on the number of edges in G′ is tight when G is a collection of nβ disjoint complete graphs

of size roughly n1−β. In [6], Duke, Erdős, and Rödl obtained a weaker result which proves that the

assertion of Problem 1.1 is correct if one allows the cycle length to be at most twelve instead of

at most eight. They also showed how to find in G a C6-connected (and hence also C8-connected)

subgraph G′ with at least cn2−3β edges.

The analogue of Problem 1.1 for graphs of constant density was solved in [7]. In that paper, the

authors proved that for each fixed d > 0, every graph G with n vertices and at least dn2 edges has

a subgraph G′ on (1 + o(1))d2n2 edges such that every pair of edges of G′ lie together on a cycle of

length at most eight. Unfortunately, the proof of Duke, Erdős, and Rödl uses Szemerédi’s regularity

lemma and consequently gives nothing when d tends to zero.

Duke, Erdős, and Rödl [6] also asked whether Problem 1.1 holds in the stronger form, where the

subgraph G′ has the additional property that edges sharing a vertex lie together on a cycle of length

at most 6. Motivated by this question, we call a graph strongly C2k-connected if it is C2k-connected

and every pair of edges sharing a vertex lie together on a cycle of length at most 2k−2. In this note,

we settle Problem 1.1 in its strengthened form for all β < 1/5.

Theorem 1.2 For 0 < β < 1/5 and sufficiently large n, every graph G on n vertices and at least

n2−β edges has a strongly C8-connected subgraph G′ with at least 1

64
n2−2β edges.

Our proof combines combinatorial ideas together with a probabilistic argument which may be

called dependent random choice. Early versions of this technique were developed in the papers

[10, 12, 15]. Later, variants were discovered and applied to a large variety of extremal problems

(see, e.g., [13, 1, 16, 17, 9]). In the concluding remarks, we show how the same proof can be used

to obtain a variant of the main graph theoretic lemma which is used in the proof of the celebrated

Balog-Szemerédi-Gowers theorem. Hence, we wonder if our result might have new applications in

Additive Combinatorics.

2 Proof of Theorem 1.2

Let β < 1/5, k = nβ and let G be a graph with n vertices and at least n2/k edges. Since β < 1/5

and n is sufficiently large, we may assume that n > 220k5. Delete vertices of minimum degree one

by one until the remaining induced subgraph G1 of G has minimum degree at least n
2k

. Since the

number of vertices deleted in this process is at most n, we have that the number of remaining edges

in G1 is at least

e(G1) ≥ e(G) − n ·
n

2k
≥

n2

k
−

n2

2k
=

n2

2k
.

Let H be the maximum bipartite subgraph of G1, and let A and B denote the vertex classes of H.

Without loss of generality we can assume that |B| ≤ |A|. For a vertex x ∈ H denote by dH(x) its

degree, i.e., the number of vertices adjacent to x in H. By maximality of H, the degree of every
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vertex in H is at least half of its degree in G1 and the number of edges in H is at least half of the

number of edges in G1. Hence the minimum degree in H is at least n
4k

and H has at least n2

4k
edges.

For two vertices x1, x2 ∈ H define the common neighborhood NH(x1, x2) to be the set of vertices of

H adjacent to both x1 and x2 and the codegree dH(x1, x2) to be the size |NH(x1, x2)|. We will later

use the following simple fact.

Lemma 2.1 If every pair of vertices in a subset X ⊂ A have codegree in H at most n
32k2 , then

|X| < 8k.

Proof: Suppose for contradiction that there is a subset X = {x1, . . . , x8k} such that every pair of

vertices in it have codegree in H at most n
32k2 . By the Bonferroni inequality (inclusion-exclusion

principle), the number of vertices of B adjacent to at least one of x1, . . . , x8k is at least

∑

1≤i≤8k

dH(xi) −
∑

1≤i<j≤8k

dH(xi, xj) ≥ 8k
n

4k
−

(

8k

2

)

n

32k2
> n.

Therefore, the size of B is larger than the total number of vertices n. This contradiction completes

the proof. 2

Define an auxiliary graph Γ on A where two vertices in Γ are adjacent if their codegree in H is at

least n
32k2 . Then the previous lemma simply states that Γ has no independent set of size 8k. Let Γ′

be an induced subgraph of Γ on v ≥ 16k vertices. If the number of edges in Γ′ is at most v2

32k
, then

its average degree is at most v
16k

. Therefore, by Turán’s theorem [19], it has an independent set of

size at least v/( v
16k

+ 1) ≥ 8k, which contradicts Lemma 2.1. Thus we have the following claim.

Lemma 2.2 Every induced subgraph of Γ on v ≥ 16k vertices has more than v2

32k
edges.

In particular, in any induced subgraph Γ1 of Γ, there are at most n
212k4 vertices of degree at

most n
216k5 . Otherwise, the subgraph Γ′ ⊂ Γ1 induced by the vertices of degree at most n

216k5 has

v ≥ n
212k4 ≥ 16k vertices and has at most

1

2
v ·

n

216k5
=

1

32k
v ·

n

212k4
≤

v2

32k

edges, contradicting the previous lemma.

We say that a vertex w ∈ A is bad with respect to a pair {u, v} of vertices of B if w ∈ NH(u, v)

and w has degree at most n
216k5 in the induced subgraph Γ[NH(u, v)] of the auxiliary graph Γ.

Lemma 2.3 Let u, v be two vertices in B. Pick a vertex w in A uniformly at random. Let E be the

event that w is bad with respect to the pair {u, v}. The probability of event E is at most n
212k4|A|

.

Proof: Let t denote the cardinality of NH(u, v). The probability that w ∈ NH(u, v) is given by

|NH(u, v)|/|A| = t/|A|. Since, by discussion in the previous paragraph at most n
212k4 vertices in

NH(u, v) have degree at most n
216k5 in the induced subgraph Γ[NH(u, v)] of Γ, then the probability
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that a vertex picked uniformly at random from NH(u, v) has degree at most n
216k5 in Γ[NH(u, v)] is

at most n
212k4

1

t
. Hence, the probability of the event E satisfies

P[E ] = P[w ∈ NH(u, v)] ·P[w is bad | w ∈ NH(u, v)] ≤
t

|A|
·

n

212k4

1

t
=

n

212k4|A|
. 2

Pick a vertex w ∈ A uniformly at random. Let Y be the random variable counting the number

of pairs {u, v} in B such that w is bad with respect to {u, v}. Since there are
(

|B|
2

)

pairs of elements

of B and |B| ≤ |A| ≤ n, then by Lemma 2.3, we have

E[Y ] ≤

(

|B|

2

)

n

212k4|A|
<

n2

213k4
.

Hence there exist a choice of w such that the number of pairs {u, v} in B for which w is bad is less

than n2

213k4 . Pick such a w and delete all vertices from A that have fewer than n
32k2 neighbors in

NH(w). That is, delete those vertices in A that are not adjacent to w in auxiliary graph Γ. Let A′

be the remaining subset of A.

Delete one by one vertices v from NH(w) for which there are at least n
27k2 vertices u in the

remaining set such that w is bad for {u, v}. Since w is bad only for at most n2

213k4 pairs, it is easy to

see that we deleted at most
n2/(213k4)

n/(27k2)
=

n

26k2
(1)

vertices. Denote the remaining subset of NH(w) by B′. Note that |B′| ≥ |NH(w)|− n
26k2 = n

4k
− n

26k2 ≥
n
5k

. By definition of B′, we have that for every v ∈ B′, there are fewer than n
27k2 vertices u ∈ B

such that w is bad for pair {u, v}. Let G′ be the bipartite subgraph of H induced by A′ ∪ B′. We

will show that this graph satisfies the assertion of Theorem 1.2. The next lemma summarizes several

important properties of G′.

Lemma 2.4 (i) The degree in G′ of every vertex in A′ is at least n
26k2 .

(ii) For every vertex v ∈ B′ there are fewer than n
27k2 vertices u ∈ B′ such that {v, u} have less than

n
216k5 common neighbors in A′.

(iii) The number of edges in G′ is at least n2

26k2 .

Proof: (i) Recall that to obtain A′ we removed from A all vertices of small degree in NH(w).

Thus the vertices in A′ all have degree at least n
32k2 in NH(w). Also by (1), we deleted at most n

26k2

vertices from NH(w) to obtain B′. Therefore, all vertices from A′ still have at least n
26k2 remaining

neighbors in B′.

(ii) Let {v, u} be a pair of vertices in B′ for which w is good. By definition, this means that

there are at least n
216k5 vertices z in A such that z is a common neighbor of {v, u} and the codegree

of z and w is at least n
32k2 . All these vertices z have high degree in NH(w) and were not deleted

when we constructed A′. This implies that there are at least n
216k5 common neighbors of pair {v, u}

in A′. To conclude the proof of this part note that by our construction for every vertex v ∈ B′ there

are less than n
27k2 vertices u ∈ B′ such that w is bad for {v, u}.

4



(iii) Since the minimum degree in H is at least n
4k

, we have that |NH(w)| ≥ n
4k

and the number

of edges between NH(w) and A is at least n
4k
|NH(w)| ≥ n2

16k2 . Since the vertices we deleted from A

all have degree at most n
32k2 in NH(w), the total number of remaining edges between A′ and NH(w)

is at least
n2

16k2
−

n

32k2
|A| ≥

n2

16k2
−

n2

32k2
=

n2

32k2
.

By (1), the number of edges between A′ and NB(w) \ B′ is at most

|A||NH (w) \ B′| ≤ n ·
n

26k2
≤

n2

26k2
.

Hence, the number of edges between A′ and B′, which is the number of edges of G′, is at least
n2

32k2 − n2

26k2 = n2

26k2 . 2

Having finished all the necessary preparation we are now ready to complete the proof of Theorem

1.2. Recall that n > 220k5 and let (a, b), (a′, b′) ∈ A′ × B′ be two edges of G′.

Case 1: (a, b) and (a′, b′) do not share a vertex. By properties (i) and (ii) of Lemma 2.4, there

are at least dG′(a) − n
27k2 ≥ n

26k2 − n
27k2 = n

27k2 neighbors b1 of a such that b′ and b1 have at least
n

216k5 > 4 common neighbors in A′. Fix any such b1 6= b and let a1 be a common neighbor of {b′, b1}

which is different from a, a′. Similarly, we can pick a neighbor b2 of a′ different from b, b′, b1 such

that b and b2 have at least n
216k5 > 4 common neighbors in A′. Let a2 be a common neighbor of

{b, b2} which is distinct from a, a′, a1. Then a, b1, a1, b
′, a′, b2, a2, b, a form an 8-cycle which contains

edges (a, b), (a′, b′).

Case 2: a = a′. Let a1 be a neighbor of b with a1 6= a′. (Note that by property (ii) of the previous

lemma the degree of b is at least n
216k5 > 4). Then, as in the previous case, we have that there is a

neighbor b1 of a1 different from b, b′ such that b′ and b1 have at least n
216k5 > 4 common neighbors

in A′. Let a2 be a common neighbor of {b′, b1} which is distinct from a, a1. Then a, b, a1, b1, a2, b
′, a

form a 6-cycle which contains edges (a, b), (a, b′).

Case 3: b = b′. Let b1 be a neighbor of a with b1 6= b. Then again, as in case 1, there is neighbor

b2 of a′ different from b, b1 such that b1 and b2 have at least n
216k5 > 4 common neighbors in A′.

Let a2 be a common neighbor of {b1, b2} which is distinct from a, a′. Then a, b, a′, b2, a2, b1, a form a

6-cycle which contains edges (a, b), (a′, b). 2

3 Concluding Remarks

• We suspect that the approach which was used to settle Problem 1.1 with some changes might

work also for values of β larger than 1/5. On the other hand, since for our proof it is crucial

to have vertices with large codegree, it surely fails if β ≥ 1/2. It would be very interesting to

determine all values of β for which Problem 1.1 have a positive answer. For every β that is

sufficiently close to 1 there are graphs with n2−β edges and no 8-cycle (see, e.g., [3]). Clearly,

for such β the answer to this problem is negative.
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• Duke, Erdős, and Rödl [6] showed that for 0 < β < 1/2 and a graph G on n vertices and at

least n2−β edges, there is a C6-connected subgraph G′ on at least cn2−3β edges, and this result

is tight up to the multiplicative constant c. However, it is still open whether this result can

be strengthened to show that every graph G with n vertices and n2−β edges has a strongly

C6-connected subgraph G′ with at least cn2−3β edges. Duke, Erdős, and Rödl [6] proved that

such a graph G will have a strongly C6-connected subgraph G′ with at least cn2−5β edges.

• The Balog-Szemerédi-Gowers theorem is a very useful tool in Additive Combinatorics. For ex-

ample, it is an important ingredient in Gowers’ proof [10] of Szemerédi’s theorem on arithmetic

progressions in dense sets. For detailed discussion and more applications of this theorem see,

e.g., the books by Nathanson [14] and by Tao and Vu [18].

Let A and B be sets of integers. The sumset A+B is defined to be the collection of sums a+ b

with a ∈ A, b ∈ B. For a bipartite graph G = (A,B;E), the partial sumset A +G B is defined

to be the collection of sums a + b with (a, b) ∈ E(G). The Balog-Szemerédi theorem [2] states

that for A and B sets of n integers with |E(G)| ≥ n2/k and |A +G B| ≤ cn for some k and c,

there are A′ ⊂ A and B′ ⊂ B such that |A′|, |B′| ≥ n/K and |A′ + B′| ≤ Cn, where K and C

only depend on k and c. The original proof of this theorem gave a poor bound on K and C in

terms of k and c. Gowers [10] discovered a new proof in which K and C can be taken to be

polynomials in k and c.

One can deduce the Balog-Szemerédi-Gowers theorem rather quickly from a graph-theoretic

lemma proved by Sudakov, Szemerédi, and Vu [17], which essentially says that for every dense

bipartite graph G = (A,B;E) with |A| = |B|, there are linear-sized subsets A′ ⊂ A and B′ ⊂ B

such that for every pair (a, b) ∈ A′ × B′, there are a quadratic number of paths in G of length

three between a and b. The following theorem strengthens this graph-theoretic lemma, showing

that the paths of length three can be taken to lie entirely within subgraph of G induced by

A′ ∪ B′.

Theorem 3.1 For every bipartite graph G = (A,B;E) with n ≥ 218k5 vertices and |E| ≥ n2/k

edges, there are subsets A′ ⊂ A and B′ ⊂ B such that the subgraph G′ of G induced by A′ ∪B′

has at least n2

26k2 edges and for every a ∈ A′ and b ∈ B′, there are at least n2

224k7 paths between

a and b in G′ of length three.

Proof: The proof follows easily from Lemma 2.4. By properties (i) and (ii) of this lemma,

there are at least dG′(a) − n
27k2 ≥ n

26k2 − n
27k2 = n

27k2 neighbors b1 of a such that pair {b, b1}

have at least n
216k5 common neighbor in A′. For any such b1 6= b and any common neighbor

a1 6= a we have a path of length three a, b1, a1, b. The number of such paths is clearly at least
(

n
27k2 − 1

) (

n
216k5 − 1

)

≥ n2

224k7 . 2

We wonder if this theorem might have new applications in Additive Combinatorics.

6



Acknowledgment. We would like to thank Daniel Martin for pointing out an error in an earlier

version of this paper.

References

[1] N. Alon, M. Krivelevich and B. Sudakov, Turán numbers of bipartite graphs and related Ramsey-

type questions, Combinatorics, Probability and Computing 12 (2003), 477–494.
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