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Abstract

Let G = (V,E) be a graph with n vertices and m ≥ 4n edges drawn in the plane. The celebrated
Crossing Lemma states that G has at least Ω(m3/n2) pairs of crossing edges; or equivalently, there
is an edge that crosses Ω(m2/n2) other edges. We strengthen the Crossing Lemma for drawings in
which any two edges cross in at most O(1) points. An `-grid in the drawing of G is a pair E1, E2 ⊂ E

of disjoint edge subsets each of size ` such that every edge in E1 intersects every edge in E2. If
every pair of edges of G intersect in at most k points, then G contains an `-grid with ` ≥ ckm2/n2,
where ck > 0 only depends on k. Without any assumption on the number of points in which edges
cross, we prove that G contains an `-grid with ` = m2/n2polylog(m/n). If G is dense, that is,
m = Θ(n2), our proof demonstrates that G contains an `-grid with ` = Ω(n2/ log n). We show
that this bound is best possible up to a constant factor by constructing a drawing of the complete
bipartite graph Kn,n using expander graphs in which the largest `-grid satisfies ` = Θ(n2/ log n).

1 Introduction

A drawing of a graph1 G in the plane is an embedding of the vertices to distinct points in the plane
and a mapping of the edges to simple continuous arcs (for short, curve) connecting the corresponding
vertices, but not passing through any other vertex. A crossing is a pair of curves and a common
interior point between the two arcs (intersections at vertices do not count as crossings). The crossing
number cr(G) of a graph G is the minimum number of crossings in a drawing of G. A celebrated result
of Ajtai et al. [ACNS82] and Leighton [L84], known as the Crossing Lemma, states that the crossing
number of every graph G with n vertices and m ≥ 4n edges satisfies

cr(G) = Ω
(

m3

n2

)
. (1)

The currently best known constant coefficient is due to Pach et al. [PRTT06]. Leighton [L84] was
motivated by applications to VLSI design. Székely [S97] used the Crossing Lemma to give simple
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proofs of the Szemerédi-Trotter bound on the number of point-line incidences [ST83], a bound on
Erdős’s unit distance problem, and a bound on Erdős’s distinct distance problem [E46]. The Crossing
Lemma has since found many important applications, in combinatorial geometry [D98, KT04, PS98,
PT02, STT02], and number theory [ENR00, TV06].

The pairwise crossing number pair-cr(G) of a graph G is the minimum number of pairs of crossing
edges in a drawing of G. The lower bound (1) also holds for the pairwise crossing number with the
same proof. It follows that in every drawing of a graph with n vertices and m ≥ 4n edges, there is an
edge that crosses at least Ω(m2/n2) other edges. Conversely, if in every drawing of every graph with
m ≥ 3n edges some edge crosses Ω(m2/n2) others, then we have pair-cr(G) = Ω(m3/n2) for every
graph G with m ≥ 4n edges. Indeed, by successively removing edges that cross many other edges, we
obtain the desired lower bound for the total number of crossing pairs.

Definition 1.1 An `-grid in a drawing of a graph G = (V, E) is a pair E1, E2 ⊂ E of disjoint edge
subsets each of size ` such that every edge in E1 crosses every edge in E2.

Drawing with a bounded number of crossings between any two edges. We prove a bipartite
strengthening of the Crossing Lemma for drawings where any two edges cross in at most a constant
number of points by showing that such drawings contain a large `-grid.

Theorem 1.2 For every k ∈ N, there is a constant ck > 0 such that every drawing of a graph
G = (V,E) with n vertices and m ≥ 3n edges in which no two edges cross in more than k points
contains an `-grid with ` ≥ ckm

2/n2.

We have k = 1 in straight-line drawings, k = (t + 1)2 if every edge is a polyline with up to t bends,
and k = d2 if the edges are sufficiently generic algebraic curves (e.g., splines) of degree at most d.
Note also that every graph G has a drawing with cr(G) crossings in which any two edges cross at most
once [V05].

Previously, Pach and Solymosi [PS01] proved Theorem 1.2 in the special case of straight-line
drawings of dense graphs. Later, Pach et al. [PPST05] proved that for every ` ∈ N, every drawing of a
graph with n vertices and at least (8 · 24``)n edges, where any two edges cross at most once, contains
an `-grid. Theorem 1.2 improves the lower bound on the minimum number of edges that guarantee an
`-grid in any drawing of the graph where any two edges cross at most once from (8 · 24``)n to (c

√
`)n,

where c is an absolute constant, and this bound is tight apart from the constant factor c.

General drawings. The dependence on k in Theorem 1.2 is necessary. We show that one cannot
expect to find an `-grid of size ` = Ω(m2/n2) in a drawing if any two edges may cross arbitrarily many
times, even if the graph drawings are restricted to be x-monotone. An x-monotone curve is a curve
that intersects every vertical line in at most one point. A drawing of a graph is x-monotone if every
edge is mapped to an x-monotone curve.

Theorem 1.3 For every positive integer n, there is an x-monotone drawing of the complete bipartite
graph Kn,n such that ` = O

(
n2/ log n

)
for every `-grid in the drawing.
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It is not difficult to show that Theorem 1.3 implies that for every n,m ∈ N with m ≤ n2/4, there
is a bipartite graph G = (V, E) with n vertices, m edges, and an x-monotone drawing such that every
`-grid in this drawing satisfies ` = O

(
m2

n2 log(m/n)

)
. Indeed, we may take G to be the disjoint union of

appropriately chosen dense bipartite graphs. We can take n2/(4m) copies of K2m/n,2m/n, for instance,
if n and m are powers of 2, and this construction can be adjusted for all other possible values of
n,m ∈ N.

If any two edges may cross arbitrarily many times, we have the following bounds.

Theorem 1.4

(i) Every drawing of a dense graph G = (V, E) with n vertices and m = Θ(n2) edges contains an
`-grid with ` = Ω

(
n2/ log n

)
.

(ii) There is a constant c such that every drawing of a graph G = (V, E) with n vertices and m ≥ 3n

edges contains an `-grid with ` ≥ m2

n2 logc(m/n)
.

Theorem 1.3 shows that Theorem 1.4(i) for dense graphs is tight up to a constant factor; and
Theorem 1.4(ii) is tight up to the exponent c of the polylogarithmic factor.

Pach et al. [PPST05] also proved that for every ` ∈ N, every drawing of a graph with n vertices
and at least (16 · 244`

`)n edges contains an `-grid. Theorem 1.4 improves the lower bound on the
minimum number of edges that guarantee an `-grid in any drawing of the graph from (16 · 244`

`)n to
(
√

` logc `)n, where c is an absolute constant, and this bound is tight apart from the constant c in the
exponent of the logarithmic factor.

Organization. We prove Theorem 1.2 in Section 2. We discuss how to modify the proof of The-
orem 1.2 to obtain Theorem 1.4 in Section 3. We use expander graphs to construct an x-monotone
drawing of Kn,n with no large `-grid in Section 4. Finally, we present a further strengthening of the
Crossing Lemma for graphs satisfying some monotone property in Section 5.

2 Proof of Theorem 1.2

Intersection patterns of curves. The proof of Theorem 1.2 relies on a recent result on the inter-
section pattern of curves in which no two curves intersect in more than k points. For a collection C of
curves in the plane, the intersection graph G(C) is defined on the vertex set C, two elements of C are
adjacent iff the (relative) interiors of the corresponding curves intersect. A complete bipartite graph
is balanced if the vertex classes differ in size by at most one. For brevity, we call a balanced complete
bipartite graph a bi-clique.

Theorem 2.1 [FPT07a] Given m curves in the plane such that at least εm2 pairs intersect and any
two curves intersect in at most k points for some k ∈ N, the intersection graph of the curves contains
a bi-clique with at least akε

64m vertices where ak > 0 depends only on k.
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If follows from the Crossing Lemma that in every drawing of a dense graph, the intersection graph
of the edges is also dense. Therefore, Theorem 2.1 implies Theorem 1.2 in the special case that G is
dense. This connection was first observed by Pach and Solymosi [PS01], in the case of straight-line
drawings.

If a graph G is not dense, we find an induced subgraph H for which the intersection graph of
the edges of H is so dense that Theorem 2.1 guarantees an `-grid already in H for an ` claimed by
Theorem 1.2. We search for such an induced subgraph H using an algorithm (Algorithm 2.3 below)
reminiscent of [PST00] that decomposes G recursively into induced subgraphs. The decomposition
algorithm successively removes bisectors, and we use Theorem 2.2 below to keep the total number of
deleted edges under control.

The bisection width, denoted by b(G), is defined for every simple graph G with at least two vertices.
It is the smallest nonnegative integer such that there is a partition of the vertex set V = V1 ∪∗ V2

with 1
3 · |V | ≤ Vi ≤ 2

3 · |V | for i = 1, 2, and |E(V1, V2)| = b(G). Pach, Shahrokhi, and Szegedy [PSS96]
gave an upper bound on the bisection width in terms of the crossing number and the L2-norm of the
degree vector (it is an easy consequence of the weighted version of the famous Lipton-Tarjan separator
theorem [LT79, GM90]).

Theorem 2.2 [PSS96] Let G be a graph with n vertices of degree d1, d2, . . . , dn. Then

b(G) ≤ 10
√

cr(G) + 2

√√√√
n∑

i=1

d2
i (G). (2)

Preprocessing. Let D be a drawing of a graph G. Since we want to keep the sum of degree squares
under control, we preprocess the graph and its drawing to cap the maximum degree, while keeping
the intersection graph of the edges intact. We transform the drawing D into a drawing D′ of a graph
G′ = (V ′, E′) with m edges, at most 2n vertices, and maximum degree at most 2m/n, so that the
intersection graph of E′ is isomorphic to that of E. If the degree d of a vertex v ∈ V is above the
average degree d̄ = 2m/n, split v into dd/d̄e vertices v1, . . . , vdd/d̄e arranged along a circle of small
radius centered at v. Denote the edges of G incident to v by (v, w1), . . . , (v, wd) in clockwise order
in the drawing D. In G′, connect wj with vi if and only if d̄(i − 1) < j ≤ d̄i, where 1 ≤ j ≤ d and
1 ≤ i ≤ dd/d̄e. Two edges of G′ cross if and only if the corresponding edges of G cross. Also, letting
d(v) denote the degree of vertex v in G′, the number of vertices of G′ is

∑

v∈V

dd(v)/d̄e <
∑

v∈V

1 + d(v)/d̄ = 2n.

Decomposition algorithm. We search for a sufficiently dense subgraph in G′, with at most 2n
vertices and m ≥ 3n edges, using an algorithm reminiscent of [PST00] that decomposes G recursively
into induced subgraphs. In each step, the largest subgraphs H are split into two induced subgraphs
of roughly equal size by removing a bisector of size b(H).

Algorithm 2.3 Decompose(G′)
1. Let S0 = {G′} and i = 0.
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2. While (3/2)i < 4n2/m, do

Set i := i + 1. Let Si := ∅. For every H ∈ Si−1, do

– If |V (H)| ≤ (2/3)i 2n, then let Si := Si ∪ {H};
– otherwise split H into induced subgraphs H1 and H2 along a bisector of size b(H), and

let Si := Si ∪ {H1,H2}.
3. Return Si.

For every i, every graph H ∈ Si has at most |V (H)| ≤ (2/3)i 2n vertices. Hence, the algorithm
terminates in t = dlog(3/2)(4n2/m)e rounds, and it returns a set St of induced subgraphs, each of
which has at most (2/3)t 2n ≤ 2n/(4n2/m) = m/2n vertices.

We introduce some more notation for the analysis of Algorithm 2.3. Let Ti ⊂ Si be the set of
those graphs in Si that have more than (2/3)i 2n vertices. Notice that |Ti| ≤ (3/2)i. Denote by Gi

the disjoint union of the induced subgraphs in Si. For an induced subgraph H of G′, let L2(H) denote
the square root of the sum of degree squares in H. A few immediate observations are in place.

Proposition 2.4 Let G′ be a graph with m edges and at most 2n vertices. Algorithm 2.3 deletes more
than m/2 edges of G′.

Proof. G′ has at most 2n vertices. Each vertex lies in an induced subgraph in St containing at most
m/2n vertices. Hence, the total number of vertex pairs lying in a same induced subgraph of St is less
than 1

2 · 2n · (m/2n) = m/2, and so the decomposition algorithm has deleted more than m/2 edges. 2

Proposition 2.5 Let G′ = (V ′, E′) be a graph with at least n but at most 2n vertices, m ≥ 3n edges,
and maximum degree at most d̄ = 2m/n. The ith round of Algorithm 2.3 partitions every induced
subgraph in Ti, and we have ∑

H∈Ti

L2(H) ≤ 2m√
n

√
(3/2)i. (3)

Proof. Denoting by d(v, H) the degree of vertex v in an induced subgraph H, we have

∑

H∈Ti

L2(H) =
∑

H∈Ti

√ ∑

v∈V (H)

d2(v, H) ≤
√
|Ti|

√ ∑

v∈V (Gi)

d2(v,Gi) (4)

≤
√

(3/2)i

√
n · (d̄)2 ≤ 2m√

n

√
(3/2)i.

In the first inequality, we use the Cauchy-Schwartz inequality to get
∑

H∈Ti

√
xH ≤

√
|Ti|

√∑
H∈Ti

xH

with xH =
∑

v∈V (H) d2(v, H). 2

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2: Let G = (V, E) be a graph with n vertices and m ≥ 3n edges. Since a
graph with more than 3n− 6 edges cannot be planar, it must have a pair of crossing edges. Hence, as
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long as 3n ≤ m < 105n, Theorem 1.2 holds as G contains a 1-grid and 1 ≥ 10−10m2/n2. We assume
m ≥ 105n in the remainder of the proof.

Preprocess graph G and its drawing D as described above to obtain a graph G′ = (V ′, E′) with
at most 2n vertices, m edges, and maximum degree at most 2m/n such that the intersection graph of
E′ is isomorphic to that of E. For an induced subgraph H of G′, let p(H) denote the number of pairs
of crossing edges in H in the drawing D′, and let e(H) be the number of edges of H. Theorem 2.1
implies that the intersection graph of the edges of an induced subgraph H of G′ contains a bi-clique

of size at least ak

(
p(H)
e(H)2

)64
e(H), where ak > 0 is the constant depending on k only in Theorem 2.1.

This further implies Theorem 1.2 for G′ (and hence for G) if

εk
m2

n2
≤

(
p(H)
e(H)2

)64

e(H), (5)

where εk > 0 is any constant depending on k only. We use εk = (1010k)−64 for convenience. Hence, it
is enough to find an induced subgraph H for which

e(H)2−1/64

1010

(m

n

) 1
32

< kp(H), (6)

since this readily implies (5).
Next, we decompose the graph G′ with Algorithm 2.3. We show that one of the induced subgraphs

H in the algorithm satisfies (6), otherwise the algorithm cannot delete more than m/2 edges, contra-
dicting Proposition 2.4. We use Theorem 2.2 for estimating the number of edges deleted throughout
the decomposition algorithm.

Assume, to the contrary, that (6) does not hold for any induced subgraph H of G′. This gives an
upper bound on kp(H). Note that cr(H) ≤ kp(H) since any two edges cross in at most k points in the
drawing D′. Substituting the upper bound for kp(H) and using Jensen’s inequality for the concave
function f(x) = x1−1/128, we have for every i = 0, 1, . . . , t,

∑

H∈Ti

√
cr(H) ≤

∑

H∈Ti

√
kp(H) ≤

∑

H∈Ti

√
e(H)2−1/64

1010

(m

n

) 1
32 = 10−5

(m

n

) 1
64

∑

H∈Ti

e(H)1−
1

128

≤ 10−5
(m

n

) 1
64 |Ti|

1
128 m1− 1

128 ≤ 10−5

(
3
2

) i
128 m1+1/128

n1/64
. (7)

By Theorem 2.2, the total number of edges deleted during Algorithm 2.3 is

t−1∑

i=0

∑

H∈Ti

b(H) ≤ 10
t−1∑

i=0

∑

H∈Ti

√
cr(H) + 2

t−1∑

i=0

∑

H∈Ti

L2(H)

≤ 10−4 m1+1/128

n1/64

t−1∑

i=0

(3/2)
i

128 + 4
m√
n

t−1∑

i=0

√
(3/2)i

< 10−4 m1+1/128

n1/64

(
4n2

m

) 1
128

∞∑

i=0

(
2
3

) i
128

+ 4
m√
n

√
4n2

m

∞∑

i=0

(
2
3

) i
2

<
1
10
· m1+1/128

n1/64

(
n2

m

)1/128

+ 50 ·m1/2n1/2 <
m

2
.
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The second inequality uses inequalities (3) and (7); the third inequality uses the geometric series
formula and the upper bound t ≤ 1 + log(3/2)

(
4n2/m

)
; while the last inequality follows from the fact

that m ≥ 105n.
So at least m/2 edges survive, contradicting Proposition 2.4. We conclude that an induced subgraph

H of G′ satisfies (6). This completes the proof of Theorem 1.2. 2

3 General Drawings

A string graph is an intersection graph of a collection of curves in the plane. The incomparability graph
of a partially ordered set (P,≺) has vertex set P and two elements of P are adjacent if and only if they
are incomparable by ≺. Golumbic, Rotem, and Urrutia [GRU83] showed that every incomparability
graph is a string graph. The proof is discussed in the next section and is motivation for the proof of
Theorem 1.3. The following theorem implies that every dense string graph contain a dense subgraph
which is an incomparability graph.

Theorem 3.1 [FP08] There is a constant c such that for every collection C of m curves in the plane
whose intersection graph has εm2 edges, we can pick for each curve γ ∈ C a subcurve γ′ such that
the intersection graph of {γ′ : γ ∈ C} has at least εcm2 edges and is an incomparability graph. In
particular, every string graph on n vertices and εm2 edges has a subgraph with at least εcm2 edges that
is an incomparability graph.

Theorem 3.1 shows that string graphs and incomparability graphs are closely related. The following
result shows that every dense incomparability graph contains a large balanced complete bipartite
graph.

Lemma 3.2 [FPT07b] Every incomparability graph I with m vertices and εm2 edges contains the
complete bipartite graph Kt,t with t ≥ c ε

log 1/ε
m

log m , where c is a positive absolute constant.

Combining Theorem 3.1 and Lemma 3.2, we have the following corollary.

Corollary 3.3 Every string graph with m vertices and εm2 edges contains the complete bipartite graph
Kt,t with t ≥ εβ m

log m , where β ≥ 1 is an absolute constant.

Note that Theorem 1.4(i), the case when graph G is dense, follows immediately from Corollary 3.3
and the fact that pair-cr(G) = Θ(n4) in this case.

We will use the following result of Kolman and Matoušek [KM04] which relates the pair-crossing
number and the bisection width of a graph. Recall that L2(G) denotes the square root of the sum of
degree squares in a graph G.

Theorem 3.4 [KM04] There is an absolute constant c such that if G is a graph with n vertices, then

b(G) ≤ c log n
(√

pair-cr(G) + L2(G)
)

.
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Using the same strategy as in the proof of Theorem 1.2, with Corollary 3.3 in place of Theorem
2.1 and Theorem 3.4 in place of Theorem 2.2, it is straightforward to establish Theorem 1.4.

Proof of Theorem 1.4: As already mentioned, part (i) follows directly from Corollary 3.3 and the
fact that pair-cr(G) = Θ(n4) in this case. For part (ii), let G = (V,E) be a graph with n vertices and
m ≥ 3n edges. Since a graph with more than 3n − 6 edges cannot be planar, it must have a pair of
crossing edges. As long as 3n ≤ m < an, for a fixed a, Theorem 1.4 holds as G contains a 1-grid and
1 ≥ (m/n)2/ logc(m/n) for a sufficiently large constant c > 0.

Preprocess graph G and its drawing D as described in Section 2 to obtain a graph G′ = (V ′, E′)
with at most 2n vertices, m edges, and maximum degree at most 2m/n such that the intersection
graph of E′ is isomorphic to that of E. For an induced subgraph H of G′, let p(H) denote the number
of pairs of crossing edges in H in the drawing D′, let e(H) be the number of edges of H and let v(H)
be the number of vertices of H. Corollary 3.3 implies that the intersection graph of the edges of an

induced subgraph H of G′ contains a bi-clique of size at least
(

p(H)
e(H)2

)β
e(H)

log e(H) , where β ≥ 1 is the
absolute constant from Corollary 3.3. This further implies Theorem 1.4 for G′ (and hence for G) if

m2

n2 logc(m/n)
≤

(
p(H)
e(H)2

)β e(H)
log e(H)

, (8)

for an absolute constant c > 0. Hence, it is enough to find an induced subgraph H for which

e(H)2−
1
β log e(H)

(
m/n

logc/2(m/n)

) 2
β

< p(H), (9)

since this already implies (8).
Next, we decompose the graph G′ with Algorithm 2.3. We show that one of the induced subgraphs

H in the algorithm satisfies (9), otherwise the algorithm cannot delete more than m/2 edges, contra-
dicting Proposition 2.4. We use Theorem 3.4 for estimating the number of edges deleted throughout
the decomposition algorithm.

Assume, to the contrary, that (9) does not hold for any induced subgraph H of G′. This gives an
upper bound on p(H). Note that pair-cr(H) ≤ p(H). Substituting the upper bound for p(H) and
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using Jensen’s inequality for the concave function f(x) = x1−1/(2β), we have for every i = 0, 1, . . . , t,

∑

H∈Ti

√
pair-cr(H) ≤

∑

H∈Ti

√
p(H) ≤

∑

H∈Ti

√√√√
e(H)2−

1
β log e(H)

(
m/n

logc/2(m/n)

) 2
β

≤ O




(
m/n

logc/2(m/n)

) 1
β ∑

H∈Ti

log
(
v(H)2

)
e(H)1−

1
2β




≤ O




(
m/n

logc/2(m/n)

) 1
β

(log3/2 n− i)
∑

H∈Ti

e(H)1−
1
2β




≤ O




(
m/n

logc/2(m/n)

) 1
β

(log3/2 n− i)|Ti|
1
2β m

1− 1
2β




≤ O

((
3
2

) i
2β

(log3/2 n− i)
m1+1/(2β)/n1/β

logc/(2β)(m/n)

)
.

From Proposition 2.5, we have

∑

H∈Ti

L2(H) ≤ 2m√
n

√
(3/2)i.

By Theorem 3.4, the total number of edges deleted during Algorithm 2.3 is

t−1∑

i=0

∑

H∈Ti

b(H) ≤ O




t−1∑

i=0

∑

H∈Ti

log v(H)
√

pair-cr(H)


 + O




t−1∑

i=0

∑

H∈Ti

log v(H) · L2(H)




≤ O

(
m1+1/2β/n1/β

logc/2β(m/n)

t−1∑

i=0

(log3/2 n− i)2
(

3
2

) i
2β

)
+ O


 m√

n

t−1∑

i=0

(log3/2 n− i)

√(
3
2

)i



≤ O

(
m1+1/2β/n1/β

logc/β(m/n)

(
n2

m

) 1
2β

log2
(m

n

))
+ O

(
m1/2n1/2 log

(m

n

))

≤ O

(
m

logc/β−2(m/n)

)
+ O

(
m · log(m/n)√

m/n

)
.

In the third inequality, we used that (log3/2 n − i)2 ≤ 2(log3/2 n − (t − 1))2 + 2((t − 1) − i)2. Since
t − 1 ≥ log(3/2) 2n2/m, we have log3/2 n − (t − 1) ≤ log3/2(m/2n). In the resulting upper bound on
the total number of deleted edges, O(m log(m/n)/

√
m/n) < m/4 if m ≥ an for a sufficiently large

constant a; and O(m log2−c/β(m/n)) ≤ m/4 if c ≥ 1 is a sufficiently large constant. Hence, less than
m/2 edges are deleted, contradicting Proposition 2.4. We conclude that an induced subgraph H of G′

satisfies (9). This completes the proof of Theorem 1.4. 2
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4 Drawings with Edges as x-Monotone Curves

It is known that Theorem 2.1 does not hold without the assumption that any two curves cross in
at most a constant number of points. Using a construction from [F06], Pach and G. Tóth [PT06]
constructed for every n ∈ N, a collection of n x-monotone curves whose intersection graph is dense but
every bi-clique it contains has at most O(n/ log n) vertices. Theorem 1.3 shows a stronger construction
holds: the curves are edges in an x-monotone drawing of the complete bipartite graph Kn,n, where n2

curves have only 2n distinct endpoints.
The proof of Theorem 1.3 builds on a crucial observation: Golumbic et al. [GRU83] noticed a

close connection between intersection graphs of curves of continuous functions defined on the interval
[0, 1] and partially ordered sets. Consider n continuous functions fi : [0, 1] → R. The graph of every
continuous real function is clearly an x-monotone curve. Define the partial order ≺ on the set of
functions by fi ≺ fj if and only if fi(x) < fj(x) for all x ∈ [0, 1]. Two such x-monotone curves cross
if and only if they are incomparable under this partial order ≺.

Lemma 4.1 [GRU83] Let P = {p1, . . . , pn} be a set of size n and ≺ a partial order on P . Then there
is a family of continuous functions f1, . . . , fn : [0, 1] → R such that pi ≺ pj if and only if fi(x) < fj(x)
for each x ∈ [0, 1].

Proof. Let Π = {π1, . . . , πt} denote the collection of linear extensions πk : P → {1, . . . , n} of the
poset (P,≺). Assign to each πk a distinct point xk of the interval [0, 1], so that

0 = x1 < x2 < . . . < xt = 1.

For each pi ∈ P , define a continuous, piecewise linear function fi(x), as follows. For any k (1 ≤ k ≤ t),
set fi(xk) = πk(pi), and let fi(x) change linearly over the interval [xk, xk+1] for k < t.

Obviously, whenever pi ≺ pj for some i 6= j, we have that πk(pi) < πk(pj) for every k, and hence
fi(x) < fj(x) for all x ∈ [0, 1]. On the other hand, if pi and pj are incomparable with respect to
the ordering ≺, we find that there are indices k and k′ (1 ≤ k 6= k′ ≤ t) such that fi(xk) < fj(xk)
and fi(xk′) > fj(xk′), therefore, by continuity, the curves of fi and fj must cross at least once in the
interval (xk, xk′). This completes the proof. 2

The following lemma is the key for the proof of Theorem 1.3. It presents a partially ordered set
of size n2 such that every bi-clique in its incomparability graph has size O(n2/ log n), yet it can be
represented with a set of n2 x-monotone curves having only 2n distinct endpoints. In the proof of
Lemma 4.1, all x-monotone curves have distinct endpoints. In the proof of Theorem 1.3, we start with
the same representation of a poset, but deform some x-monotone curves to have a common endpoint
if they correspond to consecutive elements in some linear extension of the poset.

Lemma 4.2 For every n ∈ N, there is a partially ordered set P with n2 elements satisfying the
following properties

1. every bi-clique in the incomparability graph of P has at most O(n2/ log n) nodes,
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2. there are equitable partitions P = P1 ∪ . . . ∪ Pn and P = Q1 ∪ . . . ∪Qn

such that

(a) for each i, there is a linear extension of P where the elements of Pi are consecutive,

(b) there is a linear extension of P where the elements of each Qj are consecutive, and

(c) for every i and j, we have |Pi ∩Qj | = 1.

We now prove Theorem 1.3, pending the proof of Lemma 4.2. The following result is a restatement
of Theorem 1.3.

Theorem 4.3 There is an x-monotone drawing of Kn,n such that every bi-clique in the intersection
graph of the edges has size at most O(n2/ log n).

Proof. Let P be a poset described in Lemma 4.2. Represent P with x-monotone curves as in the
proof of Lemma 4.1 such that the last linear extension πt has property (b) of Lemma 4.2, that is, the
elements of each Qj are consecutive in πt.

We transform the n2 x-monotone curves representing P into an x-monotone drawing of Kn,n. We
introduce two vertex classes, each of size n, as follows. Along the line x = 1, the right endpoints of the
x-monotone curves in each Qj are consecutive. Introduce a vertex on x = 1 for each Qj , and make it
the common right endpoint of all curves in Qj by deforming the curves over the interval (xt−1, 1] but
keeping their intersection graph intact. These n vertices along the line x = 1 form one vertex class of
Kn,n.

For each i, there is a vertical line x = xi along which the x-monotone curves in Pi are consecutive.
Introduce a vertex for each Pi on line x = xi, and make it the common left endpoint of all curves in Pi

by deforming the curves over the interval [xi, xi+1) and erasing their portions over the interval [0, xi).
These n vertices form the second vertex class of Kn,n. After truncating and slightly deforming the n2

curves representing P , we have constructed an x-monotone drawing of Kn,n.
Note that the intersection graph of the edges of this drawing of Kn,n is a subgraph of the in-

comparability graph of P , so every bi-clique of the intersection graph of the edges has size at most
O(n2/ log n). 2

4.1 Proof of Lemma 4.2

It remains to prove Lemma 4.2. The construction of the poset P in Lemma 4.2 uses known con-
structions of constant-degree expander graphs with large girth. The girth of a graph is the length of
the shortest cycle. A graph with v vertices and girth Ω(log v) is said to have large girth. An undi-
rected graph G is an ε-expander if for every vertex subset S ⊂ V (G) with |S| ≤ |V (G)|/2, we have
|N(S) \ S| ≥ ε|S|, where N(S) is the set of vertices adjacent to at least one vertex in S. For a group
G and symmetric subset S ⊂ G (that is, S = S−1) not containing the unit element of G, the Cayley
graph Γ(G,S) has vertex set G and (x, y) is an edge if and only if x = ys for some s ∈ S. The Cayley
graph Γ(G,S) is |S|-regular with |G| vertices. There is an integer d ∈ N and a constant ε > 0 for
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which there is an infinite family {Γi}i≥1 of d-regular Cayley graphs with limi→∞
|V (Γi+1)|
|V (Γi)| = 1 such

that each Γi is an ε-expander with large girth. See [LPS88] or [DSV03] for explicit constructions.
We next introduce analogous terminology for directed graphs (digraphs). A digraph is d-regular if

the in-degree and out-degree of every vertex is d. For a subset S of vertices in a digraph D, let N+(S)
denote the set of vertices x ∈ V (D) for which there is a vertex s ∈ S such that (s, x) is an edge of D.
Similarly, N−(S) is the set of vertices y ∈ V (D) for which there is a vertex s ∈ S such that (y, s) is
an edge of D. A digraph D has path-girth k if k is the smallest positive integer such that some pair of
vertices is connected by two distinct walks of length k. Equivalently, denoting by AD the adjacency
matrix of D, it has path-girth k if A1

D, . . . , Ak−1
D are all 0-1 matrices, but the matrix Ak

D has an entry
greater than 1. A digraph D is an ε-expander if both N+(S) \ S and N−(S) \ S has size at least ε|S|
for all S ⊂ V (D) with |S| ≤ |V (D)|/2. For a group G and subset S ⊂ G, the Cayley digraph D(G,S)
has vertex set G and (x, y) is an edge if and only if y = xs for some s ∈ S.

Assume that the Cayley graph Γ(G,S) is a d-regular ε-expander with girth g. Construct an
asymmetric set S′ ⊂ S of size |S′| = |S|/2 = d/2 by deleting an arbitrary element from each pair
{s, s−1} in the symmetric set S. The Cayley digraph D(G,S′) is (d/2)-regular with path-girth at least
g/2. Furthermore, we have |N−(T )| = |N+(T )| for any subset T ⊂ G, since the orbit of every element
s ∈ S′ is a cycle, these cycles provide a bijection between edges directed out from T and edges directed
into T in D(G,S′). It follows that D(G,S′) is an (ε/|S|)-expander. From the construction in [LPS88]
of Cayley graphs that are constant-degree expanders with large girth, we can conclude the following.

Lemma 4.4 There is a positive integer d and constants c, ε > 0 for which there is an infinite family
{Di}i≥1 of d-regular Cayley digraphs with limi→∞

|V (Di+1)|
|V (Di)| = 1 such that each Di is an ε-expander

with path-girth greater than c log |Di|.

Let D = D(G,S) be a Cayley digraph as in Lemma 4.4 with |D| = v. For every a ∈ N, we define a
poset P (a,D) with ground set G×{1, 2, . . . , a}, generated by the relations (j1, k1) ≺ (j2, k2) whenever
k2 = k1 + 1 and (j1, j2) is an edge of D.

Let P0 = P (a,D) with a = bmin
(
c, (10 log d)−1

) · log vc. It is clear that P0 has a|D| = Θ(v log v)
elements. Partition P0 into subsets P0 = X1 ∪ . . . ∪ Xa, where Xk = {(j, k) ∈ P0 : j ∈ G}. Let
X≤k =

⋃k
i=1 Xi and similarly X≥k =

⋃a
i=k Xi for k, 1 ≤ k ≤ a.

Proposition 4.5 The poset in Figure 1(a) is not a subposet of P0. 2

Proof. Each path down the Hasse diagram of P0 between comparable elements y ≺ x corresponds
to a walk in the digraph D. Since the path-girth of D is greater than a, there is a unique path in the
Hasse diagram between y and x. if x, y, z, w ∈ P0 satisfy both y ≺ z ≺ x and y ≺ w ≺ x, then z and
w must be in this unique path and so they are comparable. 2

We show, by essentially the same argument as in [F06] (proof of Lemma 9), that the incomparability
graph of the partially ordered set P0 does not contain large bi-cliques.

Proposition 4.6 The size of every bi-clique in the incomparability graph of P0 is O(|D|) = O(v).
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Proof. Assume that P0 contains two disjoint subsets, A and B, each of size m, such that every
element of A is incomparable with every element of B. It is enough to show that m = O(v).

First we show that there is an integer κ, 1 ≤ κ ≤ a, and two subsets A′ ⊆ X≥κ, B′ ⊆ X≤κ

such that |A′| ≥ m/2, |B′| ≥ m/2 and every element of A′ is incomparable with every element of B′.
Let κ, 1 ≤ κ ≤ a, be the integer such that |A ∩ X≤κ| ≥ |A|/2 > |A ∩ X≤(κ−1)|. That is, we have
both |A ∩ X≥κ| ≥ |A|/2 and |A ∩ X≤κ| ≥ |A|/2. If |B ∩ X≤κ| ≥ m/2, then let A′ = A ∩ X≥κ and
B′ = B ∩X≤κ, otherwise let A′ = B ∩X≥κ and B′ = A ∩X≤κ.

Let Â = {x ∈ Xκ : ∃y ∈ A′ with x ¹ y} be the set of all elements in Xκ that equal or less than
some element in A′. Similarly, let B̂ = {x ∈ Xκ : ∃y ∈ B′ with y ¹ x}. Note that Â and B̂ are
disjoint, otherwise x ∈ Â ∩ B̂ would imply that y1 ¹ x ¹ y2 for some elements y1 ∈ B′ and y2 ∈ A′.
Assume that |Â ∩ Xκ| ≤ |Xκ|/2, where |Xκ| = v. The case that |B̂ ∩ Xκ| ≤ |Xκ|/2 is analogous.
Observe that for every i = 0, 1, . . . , a− κ, we have

|A′ ∩Xκ+i| ≤ |Â ∩Xκ|
(

1
1 + ε

)i

≤ v

2

(
1

1 + ε

)i

,

since D is an ε-expander and so |Â∩Xκ| ≥ min(v/2, |A′ ∩Xκ+i|(1 + ε)i|). Therefore, we can estimate
the size of A′ from both sides as

m

2
≤ |A′| ≤

a−κ∑

i=0

v

2

(
1

1 + ε

)i

<
v

2

∞∑

i=0

(
1

1 + ε

)i

=
1 + ε

2ε
v,

which gives m ≤ 1+ε
ε v, as required. 2

Having finished the necessary preparation, we are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. The poset P required for Lemma 4.2 will be a linear-sized subposet of P0.
We next describe the construction of P .

x

w

y

z

(a) (b)

Ai

Pi

Bi

x

y

Figure 1: (a) The Hasse diagram of a four element excluded subposet of P0. (b) A linear extension of
P where Bi ≺ Pi ≺ Ai.

A chain is a set of pairwise comparable elements. The maximum chains in P0 each have size a,
having one element from each of X × {k}, k = 1, 2, . . . , a. Fix an element t ∈ S. For each g ∈ G,
consider the chain Cg = {(gtk−1, k) : 1 ≤ k ≤ a}. The collection C = {Cg : g ∈ G} consists of disjoint
chains, so C is a partition of the poset P0, and the collection C has cardinality v.
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We successively choose disjoint subsets P1, . . . , Pha of P0, each of which is the union of h =
Θ

(√
v/ log v

)
chains of C. The number of subsets is ha = Θ(

√
v log v), each containing ha =

Θ(
√

v log v) elements of P0. Each Pi, 1 ≤ i ≤ ha, has the property that any two comparable ele-
ments in Pi belong to the same chain of C. We can choose the h chains of each Pi greedily: after
choosing the `th chain in Pi, we have to choose the (` + 1)st chain such that none of its elements
are comparable with any element of the first ` chains of Pi. It is easy to see that each element of
P0 is comparable with at most d + d2 + · · · + da−1 < da ≤ v1/10 other elements of P0 (see Lemma
8 of [F06]). Since at most `av1/10 ≤ hav1/10 = v3/5+o(1) of the v − (i − 1)h − ` = Θ(v) remaining
chains contain an element comparable with the first ` chains of Pi, almost any of the remaining chains
can be chosen as the (` + 1)th chain of Pi. Finally, let P = P1 ∪ . . . ∪ Pha. As mentioned earlier, we
have |P | = Θ(v log v) = Θ(|P0|), and the largest bi-clique in the incomparability graph of P is of size
O(|P0|/ log |P0|) = O(|P |/ log |P |) = Θ(v).

If any element of P \Pi is both greater than an element of Pi and less than another element of Pi,
then these two elements of Pi are comparable. By construction, if two elements of Pi are comparable,
then they belong to the same chain. Since the poset in Fig. 1(a) is not a subposet of P0, no element
of P0 \ Cg, Cg ∈ C, can be both greater than an element of Cg and less than another element of Cg.
Therefore, no element of P \ Pi can be both greater than an element of Pi and less than another
element of Pi.

Consider the partition P = Ai ∪ Pi ∪Bi, where an element x ∈ P \ Pi is in Ai if and only if there
is an element y ∈ Pi such that y ≺ x. There is a linear extension of P in which the elements of Ai

are the largest, followed by the elements of Pi, and the elements of Bi are the smallest (see Fig. 1(b)).
Indeed, any linear extension of the poset restricted to Ai, followed by any linear extension of the poset
restricted to Pi, followed by any linear extension of the poset restricted to Bi will do. This is because
no element of P \ Pi can be both greater than an element of Pi and less than another element of Pi.

Note that each Xk contains exactly h2a elements in P , h elements from each Pi. Arbitrarily
partition each Xk into h sets Xk = Q(k−1)h+1∪ . . .∪Qkh such that each Qj contains one element from
each Pi. Since the elements in each Xk form an antichain (a set of pairwise incomparable elements),
any linear order of the elements of P for which the elements of Xk are smaller than the elements of
X` for 1 ≤ k < ` ≤ a is a linear extension of P . Hence, there is a linear extension of P such that, for
each j, the elements of every Qj are consecutive.

We have established that P has all the desired properties. We can choose v such that n ≤ ha

and ha = O(n), so v = Θ(n2/ log n). If ha is not exactly n, we may simply take the subposet whose
elements are (P1 ∪ . . . ∪ Pn) ∩ (Q1 ∪ . . . ∪Qn). This completes the proof of Lemma 4.2. 2

5 Monotone properties

If a graph is drawn with at most k crossings between any two edges and the graph has some additional
property, then the lower bound for the largest `-grid in Theorem 1.2 can be improved.

A graph property P is monotone if whenever a graph G satisfies P, every subgraph of G also
satisfies P, and whenever graphs G1 and G2 satisfy P, then their disjoint union also satisfies P.
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The extremal number ex(n,P) denotes the maximum number of edges that a graph with property
P on n vertices can have. For graphs satisfying a monotone graph property, the bound (1) of the
Crossing Lemma can be improved [PST00]. In particular, if P is a monotone graph property and
ex(n,P) = O(n1+α) for some α > 0, then there exist constants c, c′ > 0 such that for every graph
G with n vertices and m ≥ cn log2 n edges that satisfies property P, the crossing number is at least
cr(G) ≥ c′m2+1/α/n1+1/α. Furthermore, if ex(n,P) = Θ(n1+α), then this bound is tight up to a
constant factor. One can prove the following strengthening of Theorem 1.2.

Theorem 5.1 Let P be a monotone graph property such that ex(n,P) = O(n1+α) for some α > 0.
For every k ∈ N, there exist positive constants c and ck such that every drawing of a graph G = (V, E)
satisfying property P, having n vertices and m ≥ cn log2 n edges in which no two edges cross in more
than k points contains an `-grid with ` ≥ ck(m/n)1+1/α.

Similarly, Theorem 1.4 can be strengthened for graphs satisfying a monotone graph property.

Acknowledgement. We would like to thank the anonymous referee for helpful comments.

References

[ACNS82] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi: Crossing-free subgraphs, in Theory
and Practice of Combinatorics, vol. 60 of Math. Studies, North-Holland, Amsterdam, 1982, pp. 9–12.

[DSV03] G. Davidoff, P. Sarnak, and A. Valette: Elementary number theory, group theory, and
Ramanujan graphs, London Math. Soc. Student Texts 55. Cambridge University Press, 2003.

[D98] T. K. Dey: Improved bounds for planar k-sets and related problems, Discrete Comput. Geom.
19 (1998), 373–382.

[ENR00] G. Elekes, M. B. Nathanson, and I. Z. Ruzsa: Convexity and sumsets, J. Number Theory
83 (2000), 194–201.
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[S97] L. A. Székely: Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab.
Comput. 6 (1997), 353–358.
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