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Abstract

Albertson conjectured that if graph G has chromatic number r, then the crossing number of G

is at least that of the complete graph Kr. This conjecture in the case r = 5 is equivalent to the

four color theorem. It was verified for r = 6 by Oporowski and Zhao. In this paper, we prove the

conjecture for 7 ≤ r ≤ 12 using results of Dirac; Gallai; and Kostochka and Stiebitz that give lower

bounds on the number of edges in critical graphs, together with lower bounds by Pach et al. on the

crossing number of graphs in terms of the number of edges and vertices.

1 Introduction

For more than a century, from Kempe through Appel and Haken and continuing to the present,

the Four Color Problem [5, 31] has played a leading role in the development of graph theory. For

background we recommend the classic book by Jensen and Toft [18].

There are three classic relaxations of planarity. The first is that of a graph embedded on an

arbitrary surface. Here Heawood established an upper bound for the number of colors needed to

color any embedded graph. About forty years ago Ringel and Youngs completed the work of showing

that the Heawood bound is (with the exception of Klein’s bottle) sharp. Shortly thereafter Appel

and Haken proved the Four Color Theorem. One consequence of these results is that the maximum

chromatic number of a graph embedded on any given surface is achieved by a complete graph. Indeed,

with the exception of the plane and Klein’s bottle, a complete graph is the only critical graph with

maximum chromatic number that embeds on a given surface.

The second classic relaxation of planarity is thickness, the minimum number of planar subgraphs

needed to partition the edges of the graph. It is well known that thickness 2 graphs are 12-colorable

and that K8 is the largest complete graph with thickness 2. Sulanke showed that the 9-chromatic

join of K6 and C5 has thickness 2. Thirty years later Boutin, Gethner, and Sulanke [7] constructed

infinitely many 9-chromatic critical graphs of thickness 2. We do know that if G has thickness t, then

G is 6t-colorable. When t ≥ 3, we do not know whether complete graphs have the maximum chromatic

number among all graphs of thickness t. We do know that if t ≥ 3, then K6t−2 is the largest complete

graph with thickness t [4].

The third classic relaxation of planarity is crossing number. The crossing number of a graph G,

denoted by cr(G), is defined as the minimum number of crossings in a drawing of G. There are

subtleties to this definition and we suggest Szekely [33] for a look at foundational issues related to the
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crossing number and a survey of recent results. A bibliography of papers about crossings can be found

at [34]. Surprisingly, there are only two papers that relate crossing number with chromatic number

[2, 28]. Since these papers are not well known, we briefly review some of their results to set the context

for our work.

Perhaps the first question one might ask about the connections between the chromatic number

and the crossing number is whether the chromatic number is bounded by a function of the crossing

number. Albertson [2] conjectured that χ(G) = O(cr(G)1/4) and this was shown by Schaefer [32]. In

Section 5, we give a short proof of this.

Although few exact values are known for the crossing number of complete graphs, the asymptotics

of this problem are well-studied. Guy conjectured [16] that the crossing number of the complete graph

is as follows.

Conjecture 1 (Guy).

cr(Kn) =
1

4
⌊
n

2
⌋⌊

n − 1

2
⌋⌊

n − 2

2
⌋⌊

n − 3

2
⌋. (1)

He verified this conjecture for n ≤ 10 and Pan and Richter [30] recently confirmed it for n = 11, 12.

Let f(n) denote the right hand side of equation (1). It is easy to show that f(n) is an upper bound

for cr(Kn), by considering a particular drawing of Kn where the vertices are equally spaced around

two concentric circles.

Kleitman proved that limn→∞ cr(Kn)/f(n) ≥ 0.80 [19]. Recently de Klerk et al. [20] strengthened

this lower bound to 0.83. By refining the techniques in [20], de Klerk, Pasechnik, and Schrijver [21]

further improved the lower bound to 0.8594. These lower bounds shows that Schaefer’s result that

χ(G) = O(cr(G)1/4) is best possible.

The next natural step would be to determine exact values of the maximum chromatic number for

small numbers of crossings. An easy application of the Four Color Theorem shows that if cr(G) = 1,

then χ(G) ≤ 5. Oporowski and Zhao [28] showed that the conclusion also holds when cr(G) = 2. They

further showed that if cr(G) = 3 and G does not contain a copy of K6, then χ(G) ≤ 5; they conjectured

that this conclusion remains true even if cr(G) ∈ {4, 5}. Albertson, Heenehan, McDonough, and

Wise [3] showed that if cr(G) ≤ 6, then χ(G) ≤ 6.

The relationship between pairs of crossings was first studied by Albertson [2]. Given a drawing of

graph G, each crossing is uniquely determined by the cluster of four vertices that are the endpoints

of the crossed edges. Two crossings are said to be dependent if the corresponding clusters have at

least one vertex in common, and a set of crossings is said to be independent if no two are dependent.

Albertson gave an elementary argument proving that if G is a graph that has a drawing in which all

crossings are independent, then χ(G) ≤ 6. He also showed that if G has a drawing with three crossings

that are independent, then G contains an independent set of vertices one from each cluster. Since

deleting this independent set leaves a planar graph, χ(G) ≤ 5. He conjectured that if G has a drawing

in which all crossings are independent, then χ(G) ≤ 5. Independently, Wenger [35] and Harmon [17]

showed that any graph with four independent crossings has an independent set of vertices one from

each cluster, but there exists a graph with five independent crossings that contains no independent set

of vertices one from each cluster. Finally, Král and Stacho [25] proved the conjecture that if G has a

drawing in which all crossings are independent, then χ(G) ≤ 5.

Our purpose in this paper is to investigate whether for r ≥ 5 the complete graphs are the unique

critical r-chromatic graphs with minimum crossing number. We look for results analogous to those on
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coloring embedded graphs. Our problem may be more difficult, since we have nothing like a Heawood

Theorem to give a good bound on the chromatic number in terms of the crossing number. Of course

we also have nothing like a Ringel-Youngs Theorem to give the crossing number of the complete graph.

To illustrate our ignorance, we recall that cr(Kn) is known only for n ≤ 12 and that the results for

n = 11 (and thus n = 12) are recent [30].

At an AMS special session in Chicago in October of 2007, Albertson conjectured the following.

Conjecture 2 (Albertson). If χ(G) ≥ r, then cr(G) ≥ cr(Kr).

At that meeting Schaefer observed that if G contains a subdivision of Kr, then such a subdivision

must have at least as many crossings as Kr [32]. A classic conjecture attributed to Hajós was that if G is

r-chromatic, then G contains a subdivision of Kr. Dirac [10] verified the conjecture for r ≤ 4. In 1979,

Catlin [9] noticed that the lexicographic product of C5 and K3 is an 8-chromatic counterexample to

the Hajós Conjecture. He generalized this construction to give counterexamples to Hajós’ conjecture

for all r ≥ 7. A couple of years later Erdős and Fajtlowicz [13] proved that almost all graphs are

counterexamples to Hajós’ conjecture. However, Hajós’ conjecture remains open for r = 5, 6. Note

that if Hajós’ conjecture does hold for a given G, then Alberton’s conjecture also holds for that same

G. This explains why Albertson’s conjecture is sometimes referred to as the Weak Hajós Conjecture.

The rest of this paper is organized as follows. In Section 2 we discuss known lower bounds on

the number of edges in r-critical graphs. In Section 3 we discuss known lower bounds on the crossing

number, in terms of the number of edges. In Section 4 we prove Albertson’s conjecture for 7 ≤ r ≤ 12

by combining the results in the previous sections. In Section 5 we show that for r ≥ 37, any minimal

counterexample to this conjecture has less than 4r vertices, and we also give a few concluding remarks.

2 Color critical graphs

About 1950, Dirac introduced the concept of color criticality in order to simplify graph coloring theory,

and it has since led to many beautiful theorems. A graph G is r-critical if χ(G) = r but all proper

subgraphs of G have chromatic number less than r.

Let G denote an r-critical graph with n vertices and m edges. Define the excess ǫr(G) of G to be

ǫr(G) =
∑

x∈V (G)

(deg(x) − (r − 1)) = 2m − (r − 1)n.

Since G is r-critical, every vertex has degree at least r − 1 and so ǫr(G) ≥ 0. Brooks’ theorem is

equivalent to saying that equality holds if and only if G is complete or an odd cycle. Dirac [11]

strengthened Brooks’ theorem by proving that for r ≥ 3, if G is not complete, then ǫr(G) ≥ r − 3.

Later, Dirac [12] gave a complete characterization for r ≥ 4 of those r-critical graphs with excess r−3,

and, in particular, they all have 2r − 1 vertices. Gallai [15] proved that r-critical graphs that are not

complete and that have at most 2r − 2 vertices have much larger excess. Namely, if G has n = r + p

vertices and 2 ≤ p ≤ r − 2, then ǫr(G) ≥ pr − p2 − 2. A fundamental difference between Gallai’s

bound and Dirac’s bound is that Gallai’s bound grows with the number of vertices (while Dirac’s does

not). Several other papers [14, 26, 24, 22] prove such Gallai-type bounds. Gallai further proved that

r-critical graphs with at most 2r−2 vertices are decomposable, i.e., their complement is disconnected.

Kostochka and Stiebitz [23] proved that if n ≥ r + 2 and n 6= 2r − 1, then ǫr(G) ≥ 2r − 6.
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We will frequently use the bounds due to Dirac and to Kostochka and Stiebitz. When we use these

bounds, it will be convenient to rewrite them in terms of m, as below.

If G is r-critical and not a complete graph and r ≥ 3, then

m ≥
r − 1

2
n +

r − 3

2
.

We call this Dirac’s bound.

If G is r-critical, n ≥ r + 2, and n 6= 2r − 1, then

m ≥
r − 1

2
n + r − 3.

We call this the bound of Kostochka and Stiebitz.

We finish the section with a simple lemma classifying the r-critical graphs with at most r + 2

vertices.

Lemma 1. For r ≥ 3, the only r-critical graphs with at most r + 2 vertices are Kr and Kr+2 \ C5,

the graph obtained from Kr+2 by deleting the edges of a cycle of length five.

Proof. The proof is by induction on r. For the base case r = 3, the 3-critical graphs are precisely odd

cycles, and those with at most five vertices are K3 and C5 = K5 \ C5.

Let G be an r-critical graph with r ≥ 4 and n ≤ r + 2 vertices, so all vertices of G have degree

at least r − 1 ≥ n − 3. If G has a vertex v adjacent to all other vertices of G, then clearly G \ v is

(r − 1)-critical with at most r + 1 vertices, and by induction, we are done in this case. So we may

suppose every vertex in the complement of G has degree at least one and at most two. Since the

number n of vertices of G is at most r + 2 ≤ 2r − 2, Gallai’s decomposition result implies that the

vertex set of G can be partitioned V (G) = V1 ∪ V2 such that all vertices in V1 are adjacent to all

vertices in V2. Also, there are no two vertices u,w of G that have the same neighborhood, otherwise

we could (r − 1)-color G \ u and give w the same color as u. This implies, for i = 1, 2, that the

complement of the subgraph of G induced by Vi must contain a triangle or a path with three edges,

and hence the subgraph of G induced by Vi has chromatic number at most |Vi| − 2. However, this

implies χ(G) ≤ |V1|−2+ |V2|−2 = n−4 ≤ r−2, contradicting the hypothesis that G is r-critical.

We remark that the same proof can be used to show for r ≥ 4 that the only r-critical graph with

r + 3 vertices is Kr+3 \ C7.

3 Lower bounds on crossing number

A simple consequence of Euler’s polyhedral formula is that every planar graph with n ≥ 3 vertices has

at most 3n − 6 edges. Suppose G is a graph with n vertices and m edges. By deleting one crossing

edge at a time from a drawing of G until no crossing edges exist, we see that

cr(G) ≥ m − (3n − 6). (2)
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Pach, R. Radoičić, G. Tardos, and G. Tóth [29] proved the following lower bounds on the crossing

number.

cr(G) ≥
7

3
m −

25

3
(n − 2), (3)

cr(G) ≥ 3m −
35

3
(n − 2), (4)

cr(G) ≥ 4m −
103

6
(n − 2). (5)

Although inequality (4) is not written explicitly in [29], it follows from their proof of (5). Of the

above four inequalities on the crossing number, inequality (2) is best when m ≤ 4(n − 2), inequality

(3) is best when 4(n − 2) ≤ m ≤ 5(n − 2), inequality (4) is best for 5(n − 2) ≤ m ≤ 5.5(n − 2), and

inequality (5) is best when m ≥ 5.5(n − 2).

A celebrated result of Ajtai, Chvátal, Newborn, and Szemerédi [1] and Leighton [27], known as the

Crossing Lemma, states that the crossing number of every graph G with n vertices and m ≥ 4n edges

satisfies

cr(G) ≥
1

64

m3

n2
.

The constant factor 1
64 comes from using inequality (2). The best known constant factor is due to

Pach et al. [29]. Using (5), they show for m ≥ 103
6 n that

cr(G) ≥
1

31.1

m3

n2
. (6)

4 Albertson’s conjecture for r ≤ 12

In this section we prove Albertson’s conjecture (Conjecture 2) for r = 7, 8, 9, 10, 11, 12. Note that if

H is a subgraph of G, then cr(H) ≤ cr(G). Therefore, to prove Albertson’s conjecture for a given r,

it suffices to prove it only for r-critical graphs.

Lemma 1 demonstrates that the only r-critical graphs with n ≤ r+2 vertices are Kr and Kr+2\C5.

This second graph contains a subdivision of Kr. Indeed, by taking all the vertices of Kr+2 \ C5 and

picking two adjacent vertices of degree r − 1 to be internal vertices of a subdivided edge, we get a

subdivision of Kr with only one subdivided edge. Hence, cr(Kr+2\C5) ≥ cr(Kr). So a counterexample

to Albertson’s conjecture must have at least r + 3 vertices. However, none of our proofs rely on this

observation except for the proof of Proposition 6; the others use only the easier observation that no

r-critical graph has r + 1 vertices.

Proposition 1. If χ(G) = 7, then cr(G) ≥ 9 = cr(K7).

Proof. By the remarks above, we may suppose G is 7-critical and not K7. Let n be the number of

vertices of G and m be the number of edges of G. By Dirac’s bound, we have m ≥ 3n + 2. Borodin

[6] showed that if a graph has a drawing in the plane in which each edge intersects at most one other

edge, then the graph has chromatic number at most 6. Consider a drawing D of G in the plane with

cr(G) crossings. Since G has chromatic number 7, there is an edge e in D that intersects at least two

other edges. Beginning with e, we delete one crossing edge at a time, until no crossing edges exist.

We get that cr(G) ≥ m − (3n − 6) + 1 = m − 3n + 7. Since m ≥ 3n + 2, this bound gives:

cr(G) ≥ m − 3n + 7 ≥ 9.

This completes the proof.

5



Proposition 2. If χ(G) = 8 and G does not contain K8, then cr(G) ≥ 20 > 18 = cr(K8).

Proof. We may suppose G is 8-critical. Let n be the number of vertices of G and m be the number of

edges of G. When n = 15, Dirac’s bound gives m ≥ 7
2n + 2.5 = 55, and thus inequality (3) gives

cr(G) ≥
7

3
m −

25

3
(n − 2) = 20.

When n 6= 15, the bound of Kostochka and Stiebitz gives m ≥ 7
2n + 5. When we substitute for m,

inequalties (3) and (4) give

cr(G) ≥ m − 3n + 6 ≥
n

2
+ 11,

and

cr(G) ≥
7

3
m −

25

3
(n − 2) ≥

7

3
(
7

2
n + 5) −

25

3
(n − 2) = −

n

6
+

85

3
.

The first lower bound shows that cr(G) ≥ 20 if n ≥ 18, while the second lower bound shows that

cr(G) ≥ 20 if n ≤ 50. This completes the proof.

Proposition 3. If χ(G) = 9 and G does not contain K9, then cr(G) ≥ 41 > 36 = cr(K9).

Proof. We may suppose G is 9-critical. Let n ≥ 11 be the number of vertices of G and m be the

number of edges of G. When n = 17, Dirac’s bound gives m ≥ 4n + 3 = 71, so inequality (3) gives

cr(G) ≥
7

3
m −

25

3
(n − 2) =

122

3
> 40.

Thus cr(G) ≥ 41. When n 6= 17, the bound of Kostochka and Stiebitz gives m ≥ 4n + 6. Hence,

inequality (3) gives

cr(G) ≥
7

3
m −

25

3
(n − 2) ≥ n +

92

3
≥ 11 +

92

3
> 41.

This completes the proof.

Proposition 4. If χ(G) = 10 and G does not contain K10, then cr(G) ≥ 69 > 60 = cr(K10).

Proof. We may suppose G is 10-critical. Let n ≥ 12 be the number of vertices of G and m be the

number of edges of G. When n = 19, Dirac’s bound gives m ≥ 9
2n + 7

2 = 89, so inequality (4) gives

cr(G) ≥ 3m −
35

3
(n − 2) =

206

3
> 68.

Thus cr(G) ≥ 69. When n 6= 19, the bound of Kostochka and Stiebitz gives m ≥ 9
2n + 7, so inequality

(5) gives

cr(G) ≥ 4m −
103

6
(n − 2) ≥

5

6
n +

187

3
≥ 10 +

187

3
> 72.

This completes the proof.

Proposition 5. If χ(G) = 11 and G does not contain K11, then cr(G) ≥ 104 > 100 = cr(K11).
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Proof. We may suppose G is 11-critical. Let n ≥ 13 be the number of vertices of G and m be the

number of edges of G. When n = 21, Dirac’s bound gives m ≥ 5n + 4 = 109, so inequality (5) gives

cr(G) ≥ 4m −
103

6
(n − 2) =

659

6
> 109.

Thus cr(G) ≥ 110. When n 6= 21, the bound of Kostochka and Stiebitz gives m ≥ 5n+8, so inequality

(5) gives

cr(G) ≥ 4m −
103

6
(n − 2) ≥

17

6
n +

199

3
≥

17

6
· 13 +

199

3
> 103.

Thus cr(G) ≥ 104, which completes the proof.

Proposition 6. If χ(G) = 12, then cr(G) ≥ 153 > 150 = cr(K12).

Proof. We may suppose G is 12-critical and is not K12. Let n be the number of vertices of G and m

be the number of edges of G. By the remark before the proof of Proposition 1, we may suppose G has

at least 15 vertices.

Case 1: n = 23. Dirac’s bound gives m ≥ 11
2 n + 9

2 = 131, so inequality (5) gives

cr(G) ≥ 4m −
103

6
(n − 2) =

327

2
> 163.

Thus cr(G) ≥ 164.

Case 2: n > 16 and n 6= 23. The bound of Kostochka and Stiebitz gives m ≥ 11
2 n+9, so inequality

(5) gives

cr(G) ≥ 4m −
103

6
(n − 2) ≥

29

6
n +

211

3
> 152.

Thus we get cr(G) ≥ 153 if n > 16.

Case 3: n = 15. By rewriting Gallai’s bound (from Section 2) as a lower bound on m, and

substituting r = 12, we get the inequality m ≥ 11
2 n + 3

2r − 11
2 = 11

2 n + 25
2 = 95. Now inequality (5)

gives

cr(G) ≥ 4m −
103

6
(n − 2) > 4 · 95 −

103

6
· 13 > 156.

Case 4: n = 16. We again use Gallai’s bound with r = 12, and now we get the inequality

m ≥ 11
2 n + 2r − 9 = 103. Now inequality (5) gives

cr(G) ≥ 4m −
103

6
(n − 2) > 4 · 103 −

103

6
· 14 > 171.

This completes the proof.

5 Concluding remarks

In the previous section, we showed that a minimal counterexample to Albertson’s conjecture has at

least r + 3 vertices. Here we give an upper bound on the number of vertices of a counterexample.

Proposition 7. Suppose r ≥ 37 and G is an r-critical graph with n ≥ 4r vertices and m edges. Then

cr(G) ≥ cr(Kr).
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Proof. Since G is r-critical, m ≥ n(r − 1)/2. By assumption, r ≥ 37 and m ≥ 18n > 103
6 n. Therefore,

the bound (6) gives

cr(G) ≥
1

31.1

m3

n2
≥

1

8 · 31.1
(r − 1)3n ≥

1

64
(r − 1)3r ≥

1

4
⌊
r

2
⌋⌊

r − 1

2
⌋⌊

r − 2

2
⌋⌊

r − 3

2
⌋ ≥ cr(Kr).

By modifying the above argument to assume only n ≥ r, we can prove that cr(G) ≥ (r − 1)4/28 if

G has chromatic number r ≥ 37. This immediately implies χ(G) ≤ 1 + 4cr(G)1/4.

We think that if G has chromatic number r and does not contain Kr, then cr(G) − cr(Kr) is not

only nonnegative, but is at least cubic in r. Recall that Kr+2 \ C5 is r-critical and note that it is a

subgraph of Kr+2; hence, if Guy’s conjecture on the crossing number of Kr is true, then Kr+2 \ C5

shows that cr(G) − cr(Kr) can be as small as cubic in r.

Acknowledgment. We thank Sasha Kostochka for helpful discussions on excess in critical graphs.
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373–395.

[16] R. K. Guy, Crossing Numbers of Graphs. In Graph Theory and Applications: Proceedings of the

Conference at Western Michigan University, Kalamazoo, Mich., May 10-13, 1972 (Ed. Y. Alavi,

D. R. Lick, and A. T. White). New York: Springer-Verlag, pp. 111–124, 1972.

[17] N. Harmon, Graphs with four independent crossings are five colorable, Rose-Hulman Un-

dergraduate Mathematics Journal 9 (2008), available from: http://www.rose-hulman.edu/

mathjournal/archives/2008/vol9-n2/paper12/v9n2-12p.pdf, retrieved on 15 January 2009.

[18] T. R. Jensen and B. Toft, Graph coloring problems, John Wiley & Sons, New York, 1995.

[19] D. Kleitman, The crossing number of K5,n, J. Combin. Theory 9 (1970), 315–323.

[20] E. de Klerk, J. Maharry, D.V. Pasechnik, R. B. Richter, and G. Salazar, Improved bounds for

the crossing numbers of Km,n and Kn. SIAM J. Discrete Math. 20, (2006), 189–202.

[21] E. de Klerk, D.V. Pasechnik, and A. Schrijver, Reduction of symmetric semidefinite programs

using the ∗-representation, Math Program Ser. B 109 (2007), 613–624.

[22] A. V. Kostochka and M. Stiebitz, Colour-critical graphs with few edges, Discrete Math. 191

(1998), 125–137.

[23] A. V. Kostochka and M. Stiebitz, Excess in colour-critical graphs, Graph theory and combina-

torial biology (Balatonlelle, 1996), 87–99, Bolyai Soc. Math. Stud., 7, János Bolyai Math. Soc.,

Budapest, 1999.

[24] A. V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical

graphs and hypergraphs. J. Combin. Theory Ser. B 87 (2003), 374–402.

[25] D. Král and L. Stacho, Coloring plane graphs with independent crossings, preprint, available from:

http://kam.mff.cuni.cz/∼kamserie/serie/clanky/2008/s886.ps, retrieved on 15 January

2009.

[26] M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica 17

(1997), 401–426.

[27] F. T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory 17 (1984), 47–70.

9



[28] B. Oporowski and D. Zhao, Coloring graphs with crossings, arXiv:math/0501427 [math.CO] 25

Jan 2005.
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