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The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently

large N, every k-colouring of [N] contains a monochromatic arithmetic progression of

length t. Motivated by this result, Radoičić conjectured that every equinumerous 3-colouring

of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression

whose terms are coloured with distinct colours. In this paper, we prove that every

3-colouring of the set of natural numbers for which each colour class has density more than

1/6, contains a 3-term rainbow arithmetic progression. We also prove similar results for

colourings of Zn. Finally, we give a general perspective on other anti-Ramsey-type problems

that can be considered.

1. Introduction

In 1916, Schur [29] proved that for every k, if n is sufficiently large, then every k-colouring

of [n] := {1, . . . , n} contains a monochromatic solution of the equation x + y = z. More

than seven decades later, Alekseev and Savchev [1] considered what Bill Sands calls an

un-Schur problem [15]. They proved that for every equinumerous 3-colouring of [3n] (i.e.,

a colouring in which different colour classes have the same cardinality), the equation
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x + y = z has a solution with x, y and z belonging to different colour classes. Such

solutions will be called rainbow solutions. E. and G. Szekeres asked whether the condition

of equal cardinalities for three colour classes can be weakened [31]. Indeed, Schönheim [28]

proved that for every 3-colouring of [n], such that every colour class has cardinality greater

than n/4, the equation x + y = z has rainbow solutions. Moreover, he showed that n/4 is

optimal.

Inspired by the problem above, Radoičić posed the following conjecture at the open

problem session of the MIT Combinatorics Seminar.

Conjecture 1.1. For every equinumerous 3-colouring of [3n], there exists a rainbow AP (3),

i.e., a solution to the equation x + y = 2z in which x, y, and z are coloured with three

different colours.

This conjecture can be considered as the counterpart of van der Waerden’s theorem

in Ramsey theory. Van der Waerden’s theorem states that, for every k and t, if N

is sufficiently large, then every k-colouring of [N] contains a monochromatic t-term

arithmetic progression.

Backed by the computer evidence (n � 56), we pose the following stronger form of

Conjecture 1.1.

Conjecture 1.2. For every n � 3, every partition of [n] into three colour classes R, G, and

B with min(|R|, |G|, |B|) > r(n), where

r(n) :=

{
�(n + 2)/6� if n �≡ 2 (mod 6),

(n + 4)/6 if n ≡ 2 (mod 6),
(1.1)

contains a rainbow AP (3).

Throughout the paper, R, G and B correspond to the colours red, green and blue,

respectively.

Unable to settle the above conjectures, in this paper we prove the following infinite

version of Conjecture 1.2.

Theorem 1.3. Every 3-colouring of the set of natural numbers N with the upper density of

each colour greater than 1/6 contains a rainbow AP (3).

A more precise statement of the above theorem and its proof will be presented in

Section 2. We also show that there exists a 3-colouring of [n] with min(|R|, |G|, |B|) = r(n),

where r is the function defined in (1.1), that contains no rainbow AP (3). This shows that

Conjecture 1.2, if true, is the best possible.

An interesting corollary of Theorem 1.3 is the modular version of Conjecture 1.2, which

states that if Zn is coloured with three colours such that the size of every colour class is

greater than n/6, then there exist x, y and z, each of a different colour with x + y ≡ 2z

(mod n). It turns out that in this case n/6 is not the best possible. We will discuss further

generalizations of the modular case of Conjecture 1.2 in Section 3.
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Previous work regarding the existence of rainbow structures in a coloured universe has

been done in the context of canonical Ramsey theory (see [9, 8, 7, 25, 24, 18, 19, 20, 26]

and references therein). However, the canonical theorems prove the existence of either a

monochromatic structure or a rainbow structure. Our results are not ‘either–or’ statements

and are thus the first results in the literature guaranteeing the existence of rainbow

arithmetic progressions. In a sense, the conjectures and theorems above can be thought

of as the first rainbow counterparts of classical theorems in Ramsey theory, such as van

der Waerden’s, Rado’s and Szemerédi’s theorems [14]. It is curious to note that anti-

Ramsey problems have received great attention in the context of graph theory as well

(see [10, 6, 2, 3, 27, 11, 5, 22, 17, 4, 21] and references therein).

In Section 4, we present a Rado-type theorem for colourings of Zp, using both classical

and recent results from additive number theory. Finally, in Section 5, we give several open

problems and a general perspective of various research problems in this area.

2. The infinite form of our conjecture

Assume c : N �→ {R,G, B} is a 3-colouring of the set of natural numbers with colours

red, green, and blue. We can also think of c as an infinite sequence of the elements of

{R,G, B}. Let Rc(n) be the number of integers less than or equal to n that are coloured

red. In other words, Rc(n) := |[n] ∩ {i : c(i) = R}|. Gc(n) and Bc(n) are defined similarly. A

rainbow AP (3) is a sequence a1, a2, a3 such that a1 + a3 = 2a2 and c(ai) �= c(aj) for every

i �= j. We say that c is rainbow-free if it does not contain any rainbow AP (3).

Theorem 2.1. Let c be a 3-colouring of N such that

lim sup
n→∞

(min(Rc(n),Gc(n),Bc(n)) − n/6) = +∞. (2.1)

Then c contains a rainbow AP (3).

Before proving Theorem 2.1 we define a few terms. We say that a string s = (s1, . . . , sk)

∈ {R,G, B, ?}k appears in c if there exists an i such that, for every j = 1, . . . , k, either

sj = c(i + j) or sj =?. In this case, s appears in c at position i. For i1, i2 ∈ N, i1 < i2 − 1,

and {x, y, z} = {R,G, B}, we say that c has a colour-change of type xyz at positions (i1, i2),

if c(i1) = x, c(i2) = z, and c(j) = y for every i1 < j < i2.

Lemma 2.2. Let c be a rainbow-free 3-colouring of N. If there is a colour-change of type

xyz at position (i1, i2) for some 1 < i1 < i2 − 1, then c(i1 − 1) = c(i2 + 1) = y.

Proof. If c(i1 − 1) = z, then i1 − 1, i1, i1 + 1 is a rainbow AP (3). Therefore, c(i1 − 1) is

either y or x. Assume c(i1 − 1) = x. One of the numbers i1 − 1 and i1 has the same parity

as i2. Let i′1 denote this number. It is easy to see that i′1, (i
′
1 + i2)/2, i2 is a rainbow AP (3).

This contradiction shows that c(i1 − 1) = y. Similarly, c(i2 + 1) = y.
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Corollary 2.3. Let c be a rainbow-free 3-colouring of N. If there is a colour-change of type

xyz at position (i1, i2) for some 1 < i1 < i2, then both yxyy?y and y?yyzy appear in c at

positions i1 − 1 and i2 − 4, respectively.

Proof. It suffices to note that if c has a colour-change at position (i1, i2), then i1 − i2 is

odd, for otherwise i1, (i1 + i2)/2, i2 is a rainbow AP (3). This, together with Lemma 2.2,

implies that if there is a colour-change of type xyz at position (i1, i2), then c(i1 + 4) =

c(i2 − 4) = y.

Lemma 2.4. Every 3-colouring of N that contains both a colour-change of type xyz and a

colour-change of type xzy contains a rainbow AP (3).

Proof. Assume c is a 3-colouring of N that contains a colour-change of type xyz at

position (i1, i2) and a colour-change of type xzy at position (i′1, i
′
2). By Corollary 2.3, c

contains yxyy?y and zxzz?z at positions i1 − 1 and i′1 − 1. Consider the following two

cases.

Case 1: i1 ≡ i′1 (mod 2).

In this case, consider one of the following arithmetic progressions based on the value of

c((i1 + i′1 + 2)/2):

i1 + 1, (i1 + i′1 + 2)/2, i′1 + 1 if c((i1 + i′1 + 2)/2) = x,

i1, (i1 + i′1 + 2)/2, i′1 + 2 if c((i1 + i′1 + 2)/2) = y,

i1 + 2, (i1 + i′1 + 2)/2, i′1 if c((i1 + i′1 + 2)/2) = z.

Case 2: i1 �≡ i′1 (mod 2).

In this case, consider one of the following arithmetic progressions based on the value of

c((i1 + i′1 + 1)/2):

i1 − 1, (i1 + i′1 + 1)/2, i′1 + 2 if c((i1 + i′1 + 1)/2) = x,

i1, (i1 + i′1 + 1)/2, i′1 + 1 if c((i1 + i′1 + 1)/2) = y,

i1 + 1, (i1 + i′1 + 1)/2, i′1 if c((i1 + i′1 + 1)/2) = z.

It is easy to see that in each case the arithmetic progression that we considered is a

rainbow arithmetic progression.

Similarly, we can prove that a rainbow-free 3-colouring of N cannot contain colour-

changes of type xyz and yxz at the same time. Therefore, we get the following corollary.

Corollary 2.5. Let c be a rainbow-free 3-colouring of N. Then, for every two types of colour-

changes that are connected in Figure 1 by an edge, c cannot contain both of them.

The following lemma shows an important property of rainbow-free 3-colourings of N.

Note that we do not need any assumption about the density of colours here. In fact, it
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Figure 1. Different types of colour-changes

is possible to prove the conclusion of this lemma even without the assumption that each

colour is used infinitely many times.

Lemma 2.6. Let c be a rainbow-free 3-colouring of N. Assume each colour is used for

colouring infinitely many numbers in c. Then there are two distinct colours x, y ∈ {R,G, B}
that never appear next to each other in c.

Proof. Assume, for a contradiction, that every two distinct colours appear next to each

other somewhere in c. In other words, for any two distinct colours x and y, there is an i

such that one of i and i + 1 is coloured with x and the other is coloured with y. Consider

the smallest number j greater than i that is coloured with the third colour, z. Such a

number exists, since by assumption each colour is used infinitely often in c. There must

be a colour-change of type xyz or yxz at position (j ′, j), for some j ′ < j. This shows that,

for every three distinct colours x, y, z ∈ {R,G, B}, either a colour-change of type xyz, or

a colour-change of type yxz must appear in c. This together with Corollary 2.5 implies

that, for every two types of colour-changes that are connected in Figure 1 by an edge, c

contains exactly one of them. Therefore, either c contains colour-changes of types RGB,

BRG, and GBR, and no colour-change of type RBG, BGR, or GRB, or vice versa. We

assume, without loss of generality, that c contains colour-changes of types RGB, BRG,

and GBR, and does not contain any colour-change of type RBG, BGR, or GRB.

Consider a colour-change of type RGB at position (i1, i2). Let i4 be the smallest number

greater than i2 that is coloured red, and let i6 be the smallest number greater than i4
that is coloured green. Since c does not contain any colour-change of type BGR or RBG,

there must be a colour-change of type GBR at position (i3, i4) for some i2 < i3 < i4, and

a colour-change of type BRG at position (i5, i6) for some i4 < i5 < i6. Notice that all

numbers between i2 and i3 are coloured blue or green, and all numbers between i4 and i5
are coloured blue or red (see Figure 2). One important observation is that R and G do

not appear next to each other after i1 and before i6.

By Corollary 2.3, c contains G?GGBG and RBRR?R at positions i2 − 4 and i5 − 1. We

consider two cases based on the parity of i2 + i5.
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Figure 2. Lemma 2.6

Case 1: i2 + i5 is odd .

Consider the number (i2 + i5 − 1)/2. In c, this number cannot be coloured red, for

otherwise we have a rainbow AP (3): i2 − 1, (i2 + i5 − 1)/2, i5. Also, it cannot be coloured

blue because of the arithmetic progression i2 − 2, (i2 + i5 − 1)/2, i5 + 1. Therefore, c((i2 +

i5 − 1)/2) = G. Similarly, the arithmetic progressions i2, (i2 + i5 + 1)/2, i5 + 1 and i2 − 1,

(i2 + i5 + 1)/2, i5 + 2 show that c((i2 + i5 + 1)/2) = R. But this is in contradiction to the

observation that G and R never appear next to each other between i1 and i6.

Case 2: i2 + i5 is even .

Considering the arithmetic progressions i2 − 2, (i2 + i5 − 2)/2, i5 and i2 − 1, (i2 + i5 − 2)/2,

i5 − 1 shows that c((i2 + i5 − 2)/2) = G. Also, c((i2 + i5 + 2)/2) = R because of the arith-

metic progressions i2, (i2 + i5 + 2)/2, i5 + 2 and i2 + 1, (i2 + i5 + 2)/2, i5 + 1. Since G and R

never appear next to each other between i1 and i6, (i2 + i5)/2 cannot be coloured with

green or red. Therefore it is coloured blue. Thus, (i2 + i5 − 2)/2), (i2 + i5)/2, (i2 + i5 + 2)/2

is a rainbow AP (3), which is a contradiction.

Therefore, the assumption that every two distinct colours appear next to each other

leads to a contradiction in both cases.

Lemma 2.6 shows that, for any rainbow-free 3-colouring, there is a colour z such that,

for every two consecutive numbers that are coloured with different colours, at least one

of them is coloured with z. We call such a colour a dominant colour. In the rest of this

proof, we assume, without loss of generality, that red is the dominant colour. In other

words, we will assume that B and G do not appear next to each other in c.

Lemma 2.7. Let c be a rainbow-free 3-colouring of N and assume red is the dominant

colour in c. Then there is a position i and a colour x ∈ {B,G} such that there are no two

consecutive xs after position i.

Proof. Assume, for a contradiction, that c is a 3-colouring of N with no rainbow AP (3) in

which BB and GG appear infinitely many times, and R is the dominant colour. Therefore

there is an i1 < i2 < i3, such that BB appears at positions i1 and i3, and GG appears

at position i2. Let j1 be the largest number less than i2 such that a BB appears at

position j1, and let j2 be the smallest number greater than i2 such that a BB appears at

position j2. Let k1, k1 + 1, . . . , k2 be the longest sequence of consecutive numbers between

j1 and j2 that are coloured green (i.e., j1 < k1 < k2 < j2, c(k) = G for every k1 � k � k2,

and k2 − k1 + 1 is maximum). By the definition of j1 and j2, neither j1 + 2 nor j2 − 1

is coloured blue. Therefore, since red is the dominant colour, c(j1 + 2) = c(j2 − 1) = R.

Consider one of the numbers j1 or j1 + 1 that has the same parity as j2 − 1. The arithmetic

progression consisting of this number, j2 − 1, and their midpoint �(j1 + j2)/2� shows that
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c(�(j1 + j2)/2�) �= G. Similarly, the red at j1 + 2 and one of the blues at j2 or j2 + 1 imply

that c(�(j1 + j2)/2 + 1) �= G. Therefore, since k1 < k2, we have either k2 < �(j1 + j2)/2�
or k1 > �(j1 + j2)/2 + 1.

Assume k2 < �(j1 + j2)/2�. For every i, k1 � i � k2, the arithmetic progressions j1, i, 2i −
j1 and j1 + 1, i, 2i − j1 − 1 show that 2i − j1 − 1 and 2i − j1 are not coloured red. Therefore,

none of the numbers between 2k1 − j1 − 1 and 2k2 − j1 is red. This, together with the

fact that red is the dominant colour, implies that all of the numbers between 2k1 − j1 − 1

and 2k2 − j1 must be coloured with the same colour, either blue or green. If they are

all blue, we get a contradiction to the definition of j1 and j2, as these definitions imply

that no BB appears after j1 and before j2. If they are all green, we have a contradiction

to the definition of k1 and k2, since by the assumption k2 < �(j1 + j2)/2�, the sequence

2k1 − j1 − 1, . . . , 2k2 − j1 is a sequence of greens between j1 and j2 that is longer than the

sequence k1, . . . , k2.

Therefore we get a contradiction in either case. A symmetric argument leads to a similar

contradiction for the case k1 > �(j1 + j2)/2 + 1.

Next we show that the density assumption (2.1) implies that the dominant colour must

appear in c with a high frequency. We start with the following simple lemma.

Lemma 2.8. Let c be a 3-colouring of N that satisfies the density assumption (2.1). Then

there is a k � 5 such that, for every i, there exists j > i such that j and j + k are both

coloured green.

Proof. Assume not; then there is an i such that every two numbers greater than i that

are coloured green are at least 6 apart. Therefore, Gc(n) � n/6 + i, which contradicts

(2.1).

Lemma 2.9. If c is a rainbow-free 3-colouring of N that satisfies the density assumption

(2.1), and red is a dominant colour in c, then there is n0 such that, for every i > n0, either

c(i) or c(i + 1) is red.

Proof. By Lemma 2.7, the number of appearances of either BB or GG in c is finite.

Assume, without loss of generality, that GG appears only a finite number of times in c.

That is, there is an n0 such that no GG appears in c after n0. If no BB appears after n0,

then we are done. Otherwise, consider a BB at position i > n0.

By Lemma 2.8, there exists a k � 5 and j > i such that j and j + k are both coloured

green. The arithmetic progressions i, j, 2j − i and i + 1, j, 2j − i − 1 imply that 2j − i − 1

and 2j − i are not red. Therefore, since red is the dominant colour, they are either both

blue or both green. The latter case is impossible, since 2j − i − 1 > n0. This shows that

there is a BB at position 2j − i − 1. Similarly, having a BB at position 2j − i − 1 and a

G at position j + k implies that there is another BB at position i + 2k (see Figure 3).

Repeating the same argument, we conclude that BB appears at positions i + 2kt for

every integer t � 0. Using Lemma 2.2 it is not difficult to see that if there is a BB at

position i1, and a G at position i2 > i1, then i2 � i1 + 6. Similarly, if there is a BB at
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Figure 3. Lemma 2.9

position i1 and a G at position i2 < i1, then i2 � i1 − 5. Since k � 5, these facts imply that

for every t � 0, none of the numbers between i + 2kt and i + 2k(t + 1) is coloured green.

Therefore, the number of greens is finite, which is a contradiction.

Lemma 2.10. If c be a rainbow-free 3-colouring of N that satisfies the density assumption

(2.1), and red is a dominant colour in c, then there is an n0 such that, for every i > n0, either

c(i) or c(i + 2) is red.

Proof. By Lemma 2.9, there is an n0 such that, for every i > n0, either i or i + 1 is

coloured red. Assume, for a contradiction, that there exists i > n0 such that neither i nor

i + 2 is coloured red. By Lemma 2.9, c(i + 1) = R. Therefore, i and i + 2 are either both

green, or both blue. Assume, without loss of generality, that they are both blue. Consider

an arbitrary l > i whose parity is the same as the parity of i. If l is coloured green,

then the arithmetic progressions i, (i + l)/2, l and i + 2, (i + l)/2 + 1, l show that neither

(i + l)/2 nor (i + l)/2 + 1 is red, which contradicts Lemma 2.9. Therefore, no l > i with

the same parity as i is coloured green.

Now consider an arbitrary i′ � i that is coloured blue and has the same parity as i. Using

Lemma 2.8, there is a j > i′ such that j and j + k are both coloured green (for a fixed

k � 5). By the above argument, neither j nor j + k has the same parity as i. Therefore, k

is either 2 or 4. The arithmetic progression i′, j, 2j − i′ shows that 2j − i′ is not red. Also,

since it has the same parity as i, it cannot be green. Therefore, c(2j − i′) = B. Similarly, the

arithmetic progression i′ + 2k, j + k, 2j − i′ and the fact that i′ + 2k has the same parity

as i show that c(i′ + 2k) = B. This means that, for every i′ > i with the same parity as i, if

i′ is coloured blue, then so is i′ + 2k. Thus, all numbers i + 2kt and i + 2kt + 2 for t � 0

must be coloured blue.

• If k = 2, this means that every number greater than i that has the same parity as i is

coloured blue. Therefore, by Lemma 2.6, no number greater than i is coloured green,

which is a contradiction.

• If k = 4, this means that for every integer t � 0, i + 8t, i + 8t + 2 and i + 8t + 8 are

coloured blue. Therefore, by Lemma 2.6, i + 8t + 1, i + 8t + 3, and i + 8t + 7 are not

green. Also, i + 8t + 4 and i + 8t + 6 have the same parity as i and therefore cannot

be coloured green. Thus, the only numbers that can be coloured green are of the form

i + 8t + 5. Therefore, Gc(n) � n0 + 1
8
n, which contradicts (2.1).

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Assume c does not contain any rainbow AP (3). Therefore, by

Lemma 2.6, there is a dominant colour. Assume without loss of generality that the
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dominant colour is red. By Lemmas 2.9 and 2.10 there is an n0 such that, for every i > n0,

at least two of the numbers i, i + 1, i + 2 are coloured red. Therefore, for every n, Rc(n) �
2
3
(n − n0). Thus, min(Gc(n),Bc(n)) � 1

2
(n − 2

3
(n − n0)) = 1

6
n + 1

3
n0, contradicting (2.1).

A natural question is whether the assumption (2.1) in Theorem 2.1 can be weakened.

Notice that Conjecture 1.2 suggests that the conclusion of Theorem 2.1 is true with the

weaker assumption that lim supn→∞(min(Rc(n),Gc(n),Bc(n)) − 1
6
n) > 4

6
. We still have not

been able to prove this fact. However, the following proposition shows that the constant

1/6 in the density assumption cannot be replaced with a smaller constant.

Proposition 2.11. There is a rainbow-free 3-colouring c of N such that, for every n,

min(Rc(n),Gc(n),Bc(n)) = �(n + 2)/6�.

Proof. Consider the following colouring of N:

c(i) :=




B if i ≡ 1 (mod 6),

G if i ≡ 4 (mod 6),

R otherwise.

It is easy to see that c contains no rainbow AP (3) and min(Rc(n),Gc(n),Bc(n)) = Gc(n) =

�(n + 2)/6�.

The following proposition shows that Conjecture 1.2, if true, is the best possible.

Proposition 2.12. For every n � 3, there is a rainbow-free 3-colouring c of [n] in which the

size of the smallest colour class is r(n), where r is the function defined in (1.1).

Proof. For n �≡ 2 (mod 6), Proposition 2.11 gives such a colouring. Assume n = 6k + 2

for an integer k. We define a colouring c as follows:

c(i) :=




B if i � 2k + 1 and i is odd,

G if i � 4k + 2 and i is even,

R otherwise.

Since every blue number is at most 2k + 1, and every green number is at least 4k + 2,

a blue and a green number cannot be the first and second, or the second and third

terms of an arithmetic progression with all terms in [n]. Also, since blue numbers are

odd and green numbers are even, a blue and a green cannot be the first and third terms

of an arithmetic progression. Therefore, c does not contain any rainbow AP (3). It is not

difficult to see that c contains no rainbow AP (3) and min(Rc(n),Gc(n),Bc(n)) = k + 1 =

(n + 4)/6.

3. Rainbow arithmetic progressions in Zn

A 3-term arithmetic progression (AP (3)) in Zn is a sequence a1, a2, a3 such that a1 + a3 ≡
2a2 (mod n). For a 3-colouring c : Zn �→ {R,G, B} of Zn, we define Rc := {i : c(i) = R}. Gc
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and Bc are defined similarly. Also, from a 3-colouring c of Zn, we define a 3-colouring c̄ of

N as follows: for every i ∈ N, c̄(i) := c(i mod n). An interesting corollary of Theorem 2.1

is the following.

Theorem 3.1. Every 3-colouring c of Zn with min(|Rc|, |Gc|, |Bc|) > n/6 contains a rainbow

AP (3).

Proof. Consider the colouring c̄ of N defined above. The assumption min(|Rc|, |Gc|, |Bc|)
> n/6 implies that

lim sup
m→∞

(min(Rc̄(m),Gc̄(m),Bc̄(m)) − m/6) = +∞.

Therefore, by Theorem 2.1, there is a rainbow AP (3) in c̄. By computing the terms of this

arithmetic progression modulo n we obtain a rainbow AP (3) in c.

A natural question is whether the condition min(|Rc|, |Gc|, |Bc|) > n/6 in Theorem 3.1

can be weakened. For n divisible by 6, the colouring defined in Proposition 2.11 shows

that this condition is tight. However, for most other values of n it is possible to use

number-theoretic properties of Zn to replace this condition with a weaker assumption.

The following theorem is an example.

Theorem 3.2. Let n be an odd number and let q be the smallest prime factor of n. Then

every 3-colouring c of Zn with min(|Rc|, |Gc|, |Bc|) > n/q contains a rainbow AP (3).

First, we prove the following lemma.

Lemma 3.3. Let c be a 3-colouring of Zn, let a be an integer relatively prime to n, and let

b be an arbitrary integer. Let c′(i) := c((ai + b) mod n) for every i ∈ Zn. Then c contains

a rainbow AP (3) if and only if c′ contains a rainbow AP (3). Furthermore, |Rc′ | = |Rc|,
|Gc′ | = |Gc|, and |Bc′ | = |Bc|.

Proof. It is enough to note that since a is relatively prime to n, the mapping i �→ ai + b

(mod n) is an automorphism of (Zn,+).

Proof of Theorem 3.2. Assume, for a contradiction, that we have a 3-colouring c of

Zn with no rainbow AP (3) such that min(|Rc|, |Gc|, |Bc|) > n/q. Assume, without loss of

generality, that |Gc| = min(|Rc|, |Gc|, |Bc|). Since |Gc| > n/q, there exist k < q and i such

that i and i + k are both coloured green. Since k < q and q is the smallest prime factor of

n, k is relatively prime to n. Therefore, Lemma 3.3 with a = k and b = i gives a colouring

with the same properties as c in which 0 and 1 are both coloured green. From now on,

we let c denote this colouring. Therefore, c does not contain any rainbow AP (3), and it

satisfies |Gc| = min(|Rc|, |Gc|, |Bc|) > n/q and c(0) = c(1) = G.
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From c, we construct a colouring c̄ of N as in the proof of Theorem 3.1. Lemma 2.6

shows that there is a dominant colour in c̄. We consider the following two cases.

Case 1: G is the dominant colour in c̄.

Since c̄ is periodic, Lemma 2.7 implies that c̄ cannot contain BB and RR at the same

time. Assume without loss of generality that c̄ does not contain any BB. This, together

with the fact that G is the dominant colour, implies that in c every B is followed by a G

(i.e., for every i ∈ Zn, if c(i) = B, then c(i + 1) = G). Furthermore, since by Lemma 2.6 no

R can be followed by a B in c̄, there must be at least one R in c that is followed by a G.

Thus, |Gc| � |Bc| + 1, contradicting the assumption that |Gc| = min(|Rc|, |Gc|, |Bc|).

Case 2: G is not the dominant colour in c̄.

Without loss of generality, assume R is the dominant colour in c̄. In c̄, GG appears at

positions nt for every t > 0. Therefore, by Lemma 2.7 no BB appears in c. On the other

hand, the assumption |Bc| � n/q implies that there exist k < q and i such that i and i + k

are both coloured blue. Now, consider the arithmetic progressions 0, i, 2i and 1, i, 2i − 1.

These arithmetic progressions show that neither of 2i − 1 and 2i can be red. Therefore,

since c does not contain BB, they must both be green. Similarly, the arithmetic progressions

2k, i + k, 2i and 2k + 1, i + k, 2i − 1 show that there is a GG at position 2k. Repeating the

same argument implies that there is a GG at position 2kt (mod n) for every t � 0. But

since k is smaller than the smallest prime factor of n, and n is odd, 2k is relatively prime

to n. Thus, we have proved that every number in {2kt (mod n) : t � 0} = Zn is coloured

green, which is a contradiction.

For any integer n, we define m(n) as the largest integer m for which there is a rainbow-

free 3-colouring c of Zn such that |Rc|, |Gc|, |Bc| � m. Theorems 3.1 and 3.2 show that, for

every integer n, m(n) � min(n/6, n/q), where q is the smallest prime factor of n. Computing

the exact value of m(n) for every n remains a challenge. The following theorem gives a

general lower bound for the value of m(n).

Theorem 3.4. Let n be an integer that is not a power of 2 and let q be the smallest odd

prime factor of n. Then m(n) � � n
2q

�.

Proof. It suffices to show that there is a rainbow-free 3-colouring c of Zn satisfying

min(|Rc|, |Gc|, |Bc|) � � n
2q

�. We know that exactly n/q elements of Zn are divisible by q.

Colour � n
2q

� of these numbers with green and the remaining � n
2q

 multiples of q with

blue. Colour other elements of Zn with red. Since q is odd, if two elements of a 3-term

arithmetic progression are divisible by q, the third term should also be divisible by q.

Therefore, the colouring c constructed above does not contain any rainbow AP (3), and

we have min(|Rc|, |Gc|, |Bc|) � � n
2q

�.

In the following theorem we characterize the set of natural numbers n for which

m(n) = 0.
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Theorem 3.5. For every integer n, there is a rainbow-free 3-colouring of Zn with non-empty

colour classes if and only if n does not satisfy any of the following conditions:

(a) n is a power of 2,

(b) n is a prime and ordn(2) = n − 1 (i.e., 2 is a generator of Zn),

(c) n is a prime, ordn(2) = (n − 1)/2, and (n − 1)/2 is an odd number.

Proof. We first prove the ‘if ’ part. We need to prove that, for every n that does not

satisfy any of the above conditions, there is a rainbow-free colouring of Zn with no empty

colour class. We consider the following two cases: n is not prime, and n is prime.

If n is not a prime number, then by conditions above n can be written as n = pq where

p is an odd number and q > 1. Let c denote the colouring of Zn obtained by colouring 0

with red, other multiples of p with green, and other numbers with blue. In this colouring,

every rainbow AP (3) must contain 0 and a multiple of p. Since p is odd, the other term

in such an arithmetic progression must also be a multiple of p. Therefore, c is rainbow-

free.

If n is a prime number, then we define the colouring c as follows: 0 is coloured with

red, all numbers in {2i mod n: i ∈ Z} ∪ {−2i mod n: i ∈ Z} are coloured with green, and

other numbers are coloured with blue. By conditions (b) and (c) we know that either

ordn(2) < (n − 1)/2, or ordn(2) = (n − 1)/2 = 2k for an integer k. In the former case, |Gc| �
2ordn(2) < n − 1. In the latter case, we have 2k = −1 and therefore |Gc| = ordn(2) < n − 1.

Thus, Bc is non-empty in either case. Also, every rainbow AP (3) in c must contain 0. Since

Gc is closed under multiplication/division by 2 and −1, any 3-term arithmetic progression

that contains 0 and an element of Gc must contain another element of Gc. Thus, c is

rainbow-free.

For the ‘only if ’ part, we need to argue that if n satisfies any of the conditions (a),

(b), or (c), then every colouring of Zn with non-empty colour classes contains a rainbow

AP (3). If n satisfies one of the conditions (b) or (c), then by Theorem 3.2 any colouring c

of Zn with min(|Rc|, |Gc|, |Bc|) > 1 contains a rainbow AP (3). If min(|Rc|, |Gc|, |Bc|) = 1,

then assume without loss of generality that 0 is the only number coloured with red and

1 is coloured with green. For every number i ∈ Zn\{0} that is coloured green, 2i must

also be green; otherwise 0, i, 2i will be a rainbow AP (3). Similarly, if i is green, then −i

must also be green. This implies that every number in {2i mod n: i ∈ Z} ∪ {−2i mod n: i ∈
Z} must be coloured green. However, if one of the conditions (b) or (c) hold, then

{2i mod n: i ∈ Z} ∪ {−2i mod n: i ∈ Z} = Zn\{0}. This contradicts the assumption that Bc

is non-empty.

The only case that remains to check is when n satisfies (a), i.e., we need to prove that

when n = 2k for an integer k, there is no rainbow-free colouring of Zn with non-empty

colour classes. We prove this statement by induction on k. The induction basis is easy

to verify. Assume this statement holds for k − 1, and (for a contradiction) consider a

rainbow-free colouring c of Z2k with non-empty colour classes.

We can partition Z2k into two sets: the set of even numbers Z
E
2k

= {2i mod 2k: i ∈ Z2k}
and the set of odd numbers Z

O
2k

= {(2i + 1) mod 2k: i ∈ Z2k}. It is clear that each of Z
E
2k

and Z
O
2k

is isomorphic to Z2k−1 . Therefore, by the induction hypothesis, if c restricted to
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either one of them has non-empty colour classes, then c will contain a rainbow AP (3).

Thus, we may assume without loss of generality that no element of Z
E
2k

is coloured blue

and no element of Z
O
2k

is coloured green. We consider the following two cases.

Case 1: There are two elements g1, g2 that are coloured green, and their distance on the

circle (i.e., (g1 − g2) mod 2k) is twice an odd number.

In this case, consider an arbitrary blue element b ∈ Z
O
2k

. Since (2g2 − b) mod 2k belongs

to Z
O
2k

, it can not be green. Also, it cannot be red, since otherwise 2g2 − b, g2, b will be

a rainbow AP (3). Thus, for every blue element b, 2g2 − b is also blue. Using the same

argument with g1 and 2g2 − b (instead of g2 and b), we deduce that for every blue element

b, 2g1 − (2g2 − b) = b + 2(g1 − g2) is also blue. Therefore, b + gcd(2(g1 − g2), 2
k) must also

be blue. However, from the assumption in this case we know that gcd(2(g1 − g2), 2
k) = 4.

Thus, in this case, for every blue element b, b + 4 is also blue. Now, since there is at least

one green element in Z
E
2k

, then there exists b ∈ Z
O
2k

such that b + 1 is green. The arithmetic

progression b, b + 1, b + 2 and the fact that no element of Z
O
2k

is green imply that b + 2 is

blue. Similarly, the arithmetic progression b + 1, b + 2, b + 3 and the fact that no element

of Z
E
2k

is blue imply that b + 3 is green. Therefore by induction for every i, b + 2i is blue

and b + (2i + 1) is green. This contradicts the assumption that there is at least one red

element.

Case 2: For every two green elements g1 and g2, their distance is a multiple of 4.

Consider two arbitrary consecutive green elements g1 and g2, and the set of elements A =

{g1 + 1, g1 + 2, . . . , g2} between them in the circular order. Since g1 and g2 are consecutive

greens, no element of A is green. Thus, all elements of A ∩ Z
E
2k

are red. By our assumption

in this case (g1 + g2)/2 ∈ Z
E
2k

. Therefore, for any element i ∈ A ∩ Z
O
2k

, either i < (g1 + g2)/2

or i > (g1 + g2)/2. In the first case, the arithmetic progression (g1, i, 2i − g1) and the fact

that 2i − g1 ∈ A ∩ Z
E
2k

⊆ Rc show that i must be red. In the second case, the arithmetic

progression (2i − g2, i, g2) and the fact that 2i − g2 ∈ A ∩ Z
E
2k

⊆ Rc show that i is red.

Therefore, for any two consecutive greens g1 and g2, all the elements between them are

red. This contradicts the assumption that Bc is nonempty.

4. Additive number theory and rainbows in Zp

Strong inverse theorems from additive number theory have proved to be useful tools in

Ramsey theory. For example, Gowers’ proof of Szemerédi’s theorem relies on the theorem

of Freiman [13]. Freiman’s theorem [12] essentially says that if a set S has small sumset

S + S , then S is a large subset of a generalized arithmetic progression [23]. Likewise, we

will use a recent theorem of Hamidoune and Rødseth [16], generalizing Vosper’s classical

theorem [33], to prove that almost every colouring of Zp with three colours has rainbow

solutions for almost all linear equations in three variables in Zp. Moreover, we classify all

the exceptions.

We write p to denote a prime number and (m, n) to denote the greatest common divisor

of m and n. For b, c ∈ Zp, we define the set {a + di}ci=b in Zp as {a + di|i ∈ Zp, b � i � c}, if

b � c, and {a + di|i ∈ Zp, b � i � p − 1 or 0 � i � c}, otherwise. For X,Y ⊂ Zp and j ∈ Zp,
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let jX = {jx | x ∈ X}, X − j = {x − j | x ∈ X} and X + Y = {x + y | x ∈ X, y ∈ Y }. If

x ∈ Zp, let |k|p denote min{k, p − k}. Note that |k|p � p
2
.

Theorem 4.1. Let a, b, c, e ∈ Zp, with abc �≡ 0 (mod p). Then every colouring of Zp = R ∪
B ∪ G with |R|, |B|, |G| � 4, contains a rainbow solution of ax + by + cz ≡ e (mod p), with

the only exception being the case when a = b = c =: t and every colour class is an arithmetic

progression with the same common difference d, so that d−1R = {i}a2−1
i=a1

, d−1B = {i}a3−1
i=a2

and

d−1G = {i}a1−1
i=a3

, where (a1 + a2 + a3) ≡ t−1e + 1 or t−1e + 2 (mod p).

Before proving Theorem 4.1, we recall the classical theorem of Cauchy and

Davenport [23] and the recent result of Hamidoune and Rødseth [16].

Theorem (Cauchy–Davenport). If S, T ⊂ Zp, then |S + T | � min{p, |S | + |T | − 1}.

Theorem (Hamidoune–Rødseth). Let S, T ⊂ Zp, |S | � 3, |T | � 3, 7 � |S + T | � p − 4.

Then either |S + T | � |S | + |T | + 1, or S and T are contained in arithmetic progressions

with the same common difference and |S | + 1 and |T | + 1 elements, respectively.

We also need the following two lemmas.

Lemma 4.2. If S ⊂ Zp is contained in an arithmetic progression of length |S | + 1 with

common difference d, then there are at most two pairs of elements of Zp of the form (x, x + d)

such that x ∈ S and x + d �∈ S .

Proof. Let S ⊂ {a + di}|S |
i=0. Define X = {a + (i + 1)d | 0 � i � |S |, a + id ∈ S, a + (i + 1)

d /∈ S}. Then X ∩ S = ∅ and X ∪ S ⊂ {a + di}|S |+1
i=0 . Therefore, |X| + |S | � |S | + 2, and

|X| � 2. Note that X is precisely the set of elements of the form x + d such that (x + d) �∈ S

and x ∈ S .

Lemma 4.3. Let p > 7 and let S ⊂ Zp, 3 � |S | � p − 5, be contained in an arithmetic

progression of length |S | + 1 and common difference d, (d, p) = 1. Then every arithmetic

progression of length |S | + 1 containing S has the common difference equal to d or p − d.

Proof. Let s := |S |. Suppose that S is contained in an arithmetic progression of length

s + 1 and common difference d′ �= d, p − d. Applying the group isomorphism Zp → d−1
Zp,

we can assume that S is contained in the arithmetic progression A := {a + i}si=0, as well

as in the arithmetic progression Ā of length s + 1 and common difference d̄ (= |d−1d′|p).
We have the following three cases.

Case 1: 2 � d̄ � 4.

View Zp as a circle on p elements and consider the process of looping around the circle in

steps of size d̄ starting at the first element of Ā and removing the terms of Ā with respect

to their order in Ā. For X ⊂ Zp and a positive integer i, let r(i, X) be the number of terms

removed from a subset X of Zp after i loops of this process. Let j be the smallest integer
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such that all the terms of Ā have been removed after j loops. It is obvious that s � r(j, A).

Since d̄ is relatively prime to p, then an element can be removed from A at most once, and

so we have r(j, A) �
∑j−1

i=0 � s+1 − i
d̄

. The number of elements x, x ∈ Ā and x /∈ A, removed

after j loops is at least
∑j−2

i=0 � p− (s+ 1) + i

d̄
�. Hence, r(j, Ā\A) �

∑j−2
i=0 � p− (s+ 1) + i

d̄
�. In the last

inequality, the summation goes only up to j − 2 because removing all the terms of Ā in

j loops means only j − 1 complete loops. It suffices to show that r(j, Ā\A) > 1 to get the

contradiction to |Ā| = s + 1.

(a) d̄ = 2.

s � � s+ 1
2

 does not hold and, thus, j � 2. Then r(j, Ā\A) � � p− (s+1)
2

� � 2.

(b) d̄ = 3.

s � � s+ 1
3

 + � s
3
 only if s ∈ {3, 4}. Hence, either j = 3, or j = 2 and s ∈ {3, 4}. If j = 3,

then r(j, Ā\A) � � p− (s+ 1)
3

� + � p− s
3

� � 2. If j = 2, then r(j, Ā\A) � � p− (s+ 1)
3

� � 2, since

� 4 and p > 7.

(c) d̄ = 4.

If j � 2, then s � � s+ 1
4

 + � s
4
. Hence s � 2, which contradicts s � 3. Therefore, j � 3.

Then r(j, Ā\A) � � p− (s+1)
4

� + � p− s
4

� � 2, since p − s > 4.

Case 2: 4 < d̄ � |A|.
Exactly 1 element of A is not in S . Since Zp\S has at least 5 elements, no element of

U := {a + s + 1 + i}3
i=0 is in S . Since every element of U − d̄ is in A, U − d̄ contains at

least 3 elements of S . This contradicts Lemma 4.2, because there are 3 pairs (x, x + d̄),

x ∈ S , x + d̄ �∈ S .

Case 3: d̄ > |A|.
No element of V := {a + i + d̄}3

i=0 is in S because a + d̄ > a + s + 1 and a + d̄ + 3 �
a + p

2
+ 3 < a + p. However, every element of V − d̄ is in A. Thus, at least 3 elements of

V are in S . This contradicts Lemma 4.2, because there are 3 pairs of elements (x, x + d̄),

x ∈ S , x + d̄ /∈ S .

Proof of Theorem 4.1. Assume that there exist a, b, c, e ∈ Zp, with abc �≡ 0 (mod p),

and a colouring c̃p of Zp = R ∪ B ∪ G into 3 colour classes (|R|, |B|, |G| � 4), containing

no rainbow solution of ax + by + cz ≡ e (mod p). Let R′,B′,G′ be a permutation of

R,B,G, and let a′, b′, c′ be a permutation of a, b, c. Since a′b′c′ = abc �≡ 0 (mod p), |a′R′| =

|R′|, |b′B′| = |B′|, |c′G′| = |G′|. If |a′R′ + b′B′| � |a′R′| + |b′B′| + 1, then by the theorem

of Cauchy and Davenport and |R′| + |B′| + |G′| = p, |a′R′ + b′B′ + c′G′| � min{p, (|R′| +

|B′| + 1) + |G′| − 1} = p. Hence, there exists a rainbow solution of ax + by + cz ≡ e (mod

p), which is a contradiction. Therefore,

|a′R′ + b′B′| < |a′R′| + |b′B′| + 1 = |R′| + |B′| + 1 < p − 3,

|b′B′ + c′G′| < |b′B′| + |c′G′| + 1 = |B′| + |G′| + 1 < p − 3,

|a′R′ + c′G′| < |a′R′| + |c′G′| + 1 = |R′| + |G′| + 1 < p − 3.

Moreover, using the condition |R|, |B|, |G| � 4 and the theorem of Cauchy and Davenport,

we obtain

|a′R′ + b′B′| � 7, |b′B′ + c′G′| � 7, |a′R′ + c′G′| � 7.
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Hence, for every X,Y ∈ {R,B,G}, X �= Y , and every x, y ∈ {a, b, c}, x �= y, we can apply

the theorem of Hamidoune and Rødseth on the sets xX and yY ; that is, xX and yY are

contained in arithmetic progressions with the same common difference and |X| + 1 and

|Y | + 1 elements, respectively.

The set xX is contained in an arithmetic progression of length |X| + 1 if and only if X is

contained in an arithmetic progression of length |X| + 1. Thus, R, B and G are contained

in arithmetic progressions of lengths |R| + 1, |B| + 1 and |G| + 1, respectively. Since every

arithmetic progression in Zp of common difference d is also an arithmetic progression of

common difference p − d, Lemma 4.3 implies that there exist unique common differences

dR , dB and dG (� p
2
) for all arithmetic progressions of lengths |R| + 1, |B| + 1 and |G| + 1,

containing R, B and G, respectively.

Let X,Y ∈ {R,B,G}, X �= Y , and x, y ∈ {a, b, c}, x �= y. Since xX and yY are contained

in arithmetic progressions with the same common difference and |X| + 1 and |Y | + 1 ele-

ments, respectively, y−1xX and Y are contained in arithmetic progressions with the com-

mon difference dY and |X| + 1 and |Y | + 1 elements, respectively. Hence, y−1xdX = dY .

Similarly, yX and xY are contained in arithmetic progressions with the same common

difference and |X| + 1 and |Y | + 1 elements, respectively. Thus, x−1yX and Y are con-

tained in arithmetic progressions with the common difference dY and |X| + 1 and |Y | + 1

elements, respectively. Hence, x−1ydX = dY .

It follows that y−1xdX = x−1ydX , that is, |x|p = |y|p. Substituting this back into y−1xdX =

x−1ydX , we get |dX |p = |dY |p. Since all common differences are assumed to be between 0

and p
2
, we conclude dX = dY . This implies a = b = c =: t and dR = dB = dG =: d.

Therefore, we can assume that the equation ax + by + cz ≡ e (mod p) is of the form

x + y + z ≡ t−1e (mod p). Since d = dR = dB = dG, after applying the group isomorphism

Zp → d−1
Zp, we can assume without loss of generality that R, B and G are contained

in strings of |R| + 1, |B| + 1 and |G| + 1 consecutive elements, respectively. One of the

following two cases occurs.

Case 1: There exist at least two colour classes, say R and B, that are not contained in

strings of |R| and |B| consecutive elements, respectively.

Then R = {a1 + i}|R|−2
i=0 ∪ {a1 + |R|} and B = {a1 + |R| − 1} ∪ {a1 + |R| + i}|B|−1

i=1 . Then

R + B = {2a1 + |R| + i}|R|+|B|−1
i=−1 , so that |R + B| = |R| + |B| + 1. By the theorem of

Cauchy and Davenport, |R + B + G| = p, which implies that the equation x + y + z ≡
t−1e (mod p) has a rainbow solution. This case is impossible.

Case 2: R, B and G are contained in strings of |R|, |B| and |G| consecutive elements,

respectively.

Then R = {i}a2−1
i=a1

, B = {i}a3−1
i=a2

, G = {i}a1−1
i=a3

, in which case R + B + G = {i}a1+a2+a3−3
i=a1+a2+a3

.

Clearly, if there is no rainbow solution to the equation x + y + z ≡ t−1e (mod p), then

a1 + a2 + a3 ≡ t−1e + 1 or t−1e + 2 (mod p).

Therefore, if the equation ax + by + cz ≡ e (mod p) has no rainbow solutions, then

a = b = c and every colour class is an arithmetic progression with the same common

difference d, so that d−1R = {i}a2−1
i=a1

, d−1B = {i}a3−1
i=a2

and d−1G = {i}a1−1
i=a3

, where (a1 + a2 +

a3) ≡ t−1e + 1 or t−1e + 2 (mod p).
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5. Future directions

The problems and conjectures stated in the previous sections deal with the existence of

rainbow structures in the sets of integers modulo n. There are many more directions and

generalizations we might consider.

One natural direction is generalizing the problems above for rainbow solutions of any

linear equation, imitating Rado’s theorem about the monochromatic analogue. We have

already shown an example of this in Theorem 4.1.

A search for a rainbow counterpart of the Hales–Jewett theorem, though an exciting

possibility, led us to some negative results. First, recall some notation from [14]. Define

Cn
t , the n-cube over t elements by Cn

t = {(x1, . . . , xn) : xi ∈ {0, 1, . . . , t − 1}}. A geometric

line in Cn
t is a set of (suitably ordered) points x0, . . . , xt−1, xi = (xi,1, . . . , xi,n) so that in each

coordinate j, 1 � j � n, either x0,j = x1,j = · · · = xt−1,j , or xs,j = s for every 0 � s < t, or

xs,j = n − s for every 0 � s < t. The Hales–Jewett theorem implies that, for every t and k,

if n is sufficiently large, every k-colouring of Cn
t contains a monochromatic geometric line.

This motivates the following question: Is it true that for every equinumerous t-colouring

of Cn
t there exists a rainbow geometric line? The following colouring shows that the

answer is negative even for small values of t and n. A 3-colouring of C3
3 defined by

C1 = {000, 002, 020, 200, 220, 022, 202, 222, 001},
C2 = {011, 021, 101, 201, 111, 221, 010, 210, 012},
C3 = {100, 110, 120, 121, 211, 102, 112, 122, 212}

(parentheses and commas being removed for clarity), has no rainbow geometric lines.

Indeed, suppose that x0, x1, x2 is a rainbow geometric line. Suppose that x0 is coloured by

C1. Then x0,1 ∈ {0, 2}. Assume x0,1 = 0. Then, either x1,1 = x2,1 = 0 or x1,1 = 1, x2,1 = 2.

In the former case neither x1 nor x2 is coloured by C3, which contradicts x0, x1, x2 being

rainbow. In the latter case, suppose that x1 is coloured by C2. Then x2 is coloured by C3.

Hence, x1 ∈ {101, 111} and x2 ∈ {212, 211}. It follows that either x1 = 111 and x2 = 211

or x1 = 111 and x2 = 212. Then x0 = 011 or x0 = 010. This contradicts the assumption

that x0 is coloured by C1. Other cases are handled similarly.

Another generic direction we considered is increasing the number of colours and the

length of a rainbow AP .

Proposition 5.1. For every n and k > 3, there exists a k-colouring of [n] with no rainbow

AP (k) and with each colour of size at least � n+2
3�(k+ 4)/3� �.

Proof. First, we partition the set of k colours into three sets C1, C2, and C3 of sizes l1, l2,

and l3, respectively, where (l1, l2, l3) is defined as follows:

(l1, l2, l3) =




(l + 1, l, l − 1) if k = 3l,

(l + 1, l + 1, l − 1) if k = 3l + 1,

(l + 2, l, l) if k = 3l + 2.

Notice that by the above definition, max(l1, l2, l3) = �(k + 4)/3�, and there are always

i, j ∈ {1, 2, 3} such that |li − lj | = 2. Now, for i = 1, 2, 3, we colour the numbers in
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Ni := {x ∈ [n] : x ≡ i (mod 3)} with colours in Ci, so that for each two colours in Ci,

the number of times they are used differ by at most 1. Thus, it is easy to verify that each

colour is used at least � n+ 2
3max(l1 ,l2 ,l3)

� = � n+ 2
3�(k+4)/3� � times. Also, every arithmetic progression

A is either completely contained in one of the Nis, or satisfies
∣∣|A ∩ Ni| − |A ∩ Nj |

∣∣ � 1

for every i, j ∈ {1, 2, 3}. Thus, the existence of i, j with |li − lj | = 2 shows that there is no

rainbow AP (k) in this colouring.

The above proposition can be thought of as a generalization of Proposition 2.11

for k > 3. One is tempted to also generalize Theorem 1.3 and conjecture that any

partition N = C1 ∪ C2 ∪ · · · ∪ Ck into k colour classes, with every colour class having

density greater than 1
3�(k+4)/3� , contains a rainbow AP (k). However, it is easy to verify

that the following equinumerous colourings of N do not contain any rainbow AP (5), and

hence the generalization of Radoičić’s conjecture is not true for k = 5, 6. Namely, e.g., for

c5, it suffices to check that no AP (5) in [10] is rainbow, that is,

c5(i) :=




1 if i ≡ 1, 3 (mod 10),

2 if i ≡ 2, 5 (mod 10),

3 if i ≡ 4, 8 (mod 10),

4 if i ≡ 6, 7 (mod 10),

5 if i ≡ 9, 0 (mod 10),

c6(i) :=




1 if i ≡ 1, 3 (mod 12),

2 if i ≡ 2, 4 (mod 12),

3 if i ≡ 5, 7 (mod 12),

4 if i ≡ 6, 8 (mod 12),

5 if i ≡ 9, 11 (mod 12),

6 if i ≡ 10, 0 (mod 12).

We still do not know whether there is a similar example when the number of colours is

k = 4 or k > 6. If the number of colours is infinite, the following proposition shows that

one cannot guarantee even the existence of a rainbow AP (3) with the assumption that

each colour has a positive density.

Proposition 5.2. There is a colouring of N with infinitely many colours, with each colour

having positive density such that there is no rainbow AP (3).

Proof. For each x ∈ N, let c(x) be the largest integer k such that x is divisible by 3k . It is

easy to see that the colour k has density 2·3−k−1 > 0 in this colouring. Also, if c(x) �= c(y), it

is not difficult to see that c(2y − x) = c(2x − y) = c((x + y)/2) = min(c(x), c(y)). Therefore,

if two elements of an arithmetic progression are coloured with two different colours, the

third term must be coloured with one of those two colours. Thus, there is no rainbow

AP (3) in c.

Yet another direction is limiting our attention to equinumerous colourings and letting

the number of colours be different from the desired length of a rainbow AP . Let Tk denote

the minimal number t ∈ N such that there is a rainbow AP (k) in every equinumerous

t-colouring of [tn] for every n ∈ N. We have the following lower and upper bounds on Tk .

Proposition 5.3. For every k � 3, � k2

4
� < Tk � k(k − 1)2

2
.
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Proof. First, we prove the upper bound. Let m = a(k − 1) + b, with k � 3, a � 1, and

0 � b � k − 1. We note that there is bijective correspondence between the set of all AP (k)s

and the set of all 2-element sets {α, β} ⊆ [m], α < β, with α ≡ β (mod(k − 1)). It follows

that the number of all AP (k)s in [m] is b( a+1
2

) + (k − b − 1)( a+1
2

). Thus,

# of AP (k)s in [tn] >
tn(tn − 2(k − 1))

2(k − 1)
.

Note that for a t-regular colouring of [tn], in each of the t colours there are ( n
2
) pairs of

numbers. The numbers from each of these pairs can be the terms of at most ( k
2
) different

AP (k)s. Therefore, for any t-regular colouring of [tn] there are at most t( k
2
)( n

2
) AP (k)s

that are not rainbow. Therefore, Tk is bounded by the smallest t that satisfies

tn(tn − 2(k − 1))

2(k − 1)
� t

(
k

2

) (
n

2

)
for all n,

which implies the upper bound.

As for the lower bound, we will exhibit colourings c1 and c2, showing that T2k+1 > k2 + k

and T2k > k2.

Let a j-block Bj (j ∈ N) be the sequence 12 . . . j12 . . . j, where the left half and the

right half of the block are naturally defined. For a ∈ Z, let Bj + a be the sequence

(a + 1)(a + 2) . . . (a + j)(a + 1)(a + 2) . . . (a + j).

We define the colouring c1 of [2k2 + 2k] in the following way (bars denoting endpoints

of the blocks):

|B−
k | . . . |B−

j | . . . |B−
2 |B−

1 |B+
1 |B+

2 | . . . |B+
i | . . . |B+

k |,

where B−
j = Bj − ( j + 1

2
) and B+

i = Bi + ( i
2
). Note that c1 uses each of the k2 + k colours

exactly twice.

The colouring c2 of [2k2] is defined similarly:

|B−
k−1| . . . |B−

j | . . . |B−
2 |B−

1 |B+
1 |B+

2 | . . . |B+
i | . . . |B+

k |,

thus using each of the k2 colours exactly twice.

Next, we show that [2k2 + 2k], coloured by c1, does not contain a rainbow AP (2k + 1).

The key observation is that a rainbow AP with common difference d cannot contain

elements from opposite halves of any block Bj , where d divides j. Fix a longest rainbow

AP A and let d denote its common difference. If d > k, then the length of A is � 2k. If

d � k, then A is one of the following three types.

(1) A is contained in |B−
d |B−

d−1| . . . |B−
2 |B−

1 |B+
1 |B+

2 | . . . |B+
d−1|B+

d |.
Then A does not intersect either the left half of B−

d or the right half of B+
d . Hence,

the length of A is at most 2d � 2k.

(2) A is contained in |B−
(j+1)d|B−

(j+1)d−1| . . . |B−
jd| or in |B+

jd|B+
jd+1| . . . |B+

(j+1)d|, where

(j + 1)d � k.

Assume that the first case occurs. Then A does not intersect either the left half of

B−
(j+1)d or the right half of B−

jd. Hence, the length of A is at most

1

d
(jd + 2(jd + 1) + 2(jd + 2) + · · · + 2(jd + d − 1) + (jd + d) � 2(j + 1)d � 2k.
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(3) A is contained in |B−
jd+x|B−

jd+x−1| . . . |B−
jd| or in |B+

jd|B+
jd+1| . . . |B+

jd+x|, where jd + x < k.

Assume that the first case occurs. Then A does not intersect the right half of B−
jd.

Hence, the length of A is at most

1

d
(jd + 2(jd + 1) + 2(jd + 2) + · · · + 2(jd + x − 1) + 2(jd + x))

� 1

d
(jd + 2jd(d − 1) + d(x − 1)) < 2(jd + x) < 2k.

Similarly, we show that [2k2], coloured by c2, does not contain a rainbow AP (2k).

Note that Proposition 5.3 gives 3 � T3 � 6, while Conjecture 1.1 claims that T3 = 3.

Conjecture 5.4. For all k � 3, Tk = Θ(k2).

The proof of Proposition 5.3 above is inspired by the proof of the following ‘canonical

version’ of van der Waerden’s theorem on arithmetic progressions, due to Erdős and

Graham [8]. We include this for completeness.

Theorem 5.5. For every positive integer k � 3, there exists a positive integer n(k) such that

every colouring of the first n � n(k) positive integers contains either a monochromatic AP (k)

or a rainbow AP (k).

Proof. By Szemerédi’s theorem [32], for every δ > 0 there exists a positive integer s(k, δ)

such that for all n � s(k, δ) every subset C ⊂ [n] with |C| > δn contains an AP (k). Fix

δ = 2
k(k − 1)2

and let n � s(k, δ). Suppose there exists a colouring of [n] = C1 ∪ C2 ∪ · · · ∪ Cr

containing no monochromatic or rainbow AP (k). Since a colour class Ci does not contain

a monochromatic AP (k), then |Ci| � δn. In the proof of Proposition 5.3, it was shown

that the number of AP (k)s in [n] is at least n(n− 2(k − 1))
2(k − 1)

. Since every non-rainbow AP (k)

contains a pair of terms of the same colour, there are at most ( k
2
)
∑r

i=1(
|Ci|
2

) non-rainbow

AP (k)s. Since 0 � |Ci| � δn and
∑

i=1 |Ci| = n, we have the inequality

(
k

2

) r∑
i=1

(
|Ci|
2

)
�

(
k

2

) 1/δ∑
i=1

(
δn

2

)
=

(
k
2

)(
δn
2

)
δ

.

However, the inequality n(n− 2(k − 1))
2(k − 1)

� ( k2 )( δn2 )

δ
does not hold for our choice of δ.

It is easy to show that the maximal number of rainbow AP (3)s over all equinumerous

3-colourings of [3n] is �3n2/2�, this being achieved for the unique 3-colouring with colour

classes R = {n|n ≡ 0 (mod 3)}, B = {n|n ≡ 1 (mod 3)} and G = {n|n ≡ 2 (mod 3)}. It seems

very difficult to characterize those equinumerous 3-colourings (in general, k-colourings)

that minimize the number of rainbow AP (3)s. Letting fk(n) denote the minimal number

of rainbow AP (k)s, over all equinumerous k-colourings of [kn], we pose the following

conjecture.

Conjecture 5.6. f3(n) = Ω(n).
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If we define gk(n) as the minimal number of rainbow AP (k)s, over all equinumerous

k-colourings of Zkn, then a straightforward counting argument shows that g3(n) � n, when

n is odd.

Finally, the further generalization of Vosper’s theorem, due to Serra and Zémor [30],

may lead to a generalization of Theorem 4.1 for more than 3 colour classes.
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[25] Prömel, H. J. and Voigt, B. (1983) Canonical partition theorems for parameter sets. J. Combin.

Theory Ser. A 35 309–327.

[26] Richer, D. (2000) Unordered canonical Ramsey numbers. J. Combin. Theory Ser. B 80 172–177.
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