
Sub-Ramsey Numbers for Arithmetic Progressions and Schur

Triples

Jacob Fox� Veselin Jungi�cy Rado�s Radoi�ci�cz

Abstract

For a given positive integer k, sr(m; k) denotes the minimal positive integer such that every
coloring of [n], n � sr(m; k), that uses each color at most k times, yields a rainbow AP (m);
that is, an m-term arithmetic progression, all of whose terms receive di�erent colors. We prove
that sr(3; k) = 17

8
k + O(1) and, for m > 1 and k > 1, that sr(m; k) = 
(m2k), improving

the previous bounds of Alon, Caro, and Tuza from 1989. Our new lower bound on sr(m; 2)

immediately implies that for n � m
2

2
, there exists a mapping � : [n]! [n] without a �xed point

such that for every AP (m) A in [n], the set A\ �(A) is not empty. We also propose the study
of sub-Ramsey{type problems for linear equations other than x + y = 2z. For a given positive
integer k, we de�ne ss(k) to be the minimal positive integer n such that every coloring of [n],
n � ss(k), that uses each color at most k times, yields a rainbow solution to the Schur equation
x+ y = z. We prove that ss(k) = b 5k

2
c+ 1.
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1 Introduction

Let N denote the set of positive integers, and for i; j 2 N, i � j, let [i; j] denote the set fi; i+1; : : : ; jg
(with [n] abbreviating [1; n] as usual). A k-term arithmetic progression, k 2 N, is a set of the
form fa+ (i� 1) d : i 2 [k]g, for some a; d 2 N, and will be abbreviated as AP (k) throughout. The
classical result of van der Waerden [vW27, GRS90] states that for all natural numbersm and k there
is an integer n0 = n0(m; k), such that every k-coloring of [n], n � n0, contains a monochromatic
AP (m). This statement was further generalized to sets of positive upper density in the celebrated
work of Szemer�edi [Sz75]. Canonical versions of van der Waerden's theorem were discovered by
Erd}os and others [E87].

Given a coloring of N, a set S � N is called rainbow if all elements of S are colored with di�erent
colors. In [JL+03], Jungi�c et al. considered a rainbow counterpart of van der Waerden's theorem,
and proved that every 3-coloring of N with the upper density of each color greater than 1=6 contains
a rainbow AP (3). Improving on their methods and some extensions [JR03], Axenovich and Fon-
Der-Flaass [AF04] proved the following \�nite" version of this result.

�Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail:
licht@mit.edu.

yDepartment of Mathematics, Simon Fraser University, Burnaby, B.C., V5A 2R6, Canada. E-mail:
vjungic@sfu.ca.

zDepartment of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854. E-mail:
rados@math.rutgers.edu. Research supported by NSF grant DMS-0503184.

1



Theorem 1 (Conjectured in [JL+03], proved in [AF04].) Given n � 3, every partition of [n] into
three color classes R, G, and B with min(jRj; jGj; jBj) > r(n), where

r(n) :=

�
b(n+ 2)=6c if n 6� 2 (mod 6)
(n+ 4)=6 if n � 2 (mod 6)

(1)

contains a rainbow AP (3).

Theorem 1 is the best possible. It is interesting to note that similar statements about the existence
of rainbow AP (k) in k-colorings of [n], k � 4, do not hold [AF04, CJR].

In lay terms, Axenovich and Fon-Der-Flaass showed that su�ciently large color classes in a 3-
coloring imply the existence of a rainbow AP (3). In this paper, we are interested in conditions that
guarantee the existence of rainbow patterns when color classes have small cardinality. A notable
distinction between these two approaches is that in the latter case the number of colors can be
greater than the number of elements in the particular pattern.

This setup was �rst studied by Alon, Caro and Tuza in [ACT89], where for a given k 2 N, they
de�ned sub-k-colorings as colorings in which every color class has size at most k. For given k,
m 2 N, they introduced the sub-k-Ramsey number sr(m; k) as the minimum integer n0 = n0(m; k)
such that every sub-k-coloring of [n], n � n0, yields a rainbow AP (m). They proved that for every
m � 3, k � 2,

1

6

(k � 1)m(m� 1)

log (k � 1)m
� k + 1 � sr(m; k) � (1 + o(1))

24

13
(k � 1)(m� 1)2 log (k � 1)(m� 1);

where the factor of 1 + o(1) approaches 1 as m!1. Also, if m is �xed and k grows, they proved
that

sr(m; k) � (1 + o(1))
1

2
m(m� 1)2(k � 1):

For k = 2, we improve on their lower bound by constructing a coloring that has already been used
in [JL+03] to prove a lower bound for a related problem concerning rainbow arithmetic progressions
in equinumerous colorings.

Theorem 2 For m � 3, sr(m; 2) > bm
2

2 c:

Motivated by [EH58] and [AC86], Caro [C87] proved that for every positive integer m, there is
a minimum integer n = n0(m) such that for every � : [n] ! [n] without a �xed point, there

is an AP (m) A satisfying: �(i) 62 A for i 2 A. Moreover, he showed that c1m2

logm � n0(m) �

m2(logm)
c2 logm

log logm for some absolute constants c1 and c2. In [ACT89], Alon et al. applied the same
methods they had used to bound sr(m; k) to drastically improve the earlier bounds on n0(m). They
proved that for every m,

m(m� 1)

3 logm
+O(1) � sr(m; 3)� 1 � n0(m) � (1 + o(1))

48

13
m2 logm:

Since sr(m; k) is an increasing function in both m and k, then in particular, sr(m; 2) � sr(m; 3).
Therefore, Theorem 2 implies the following improvement on the lower bound for n0(m) for all m:
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Corollary 1 For all positive integers m, n0(m) � bm
2

2 c:

Furthermore, we prove the following theorem, which together with the fact that sr(3; k) = 
(k)
and sr(m; 2) = 
(m2) implies sr(m; k) = 
(m2k) for all integers m and k with m > 2 and k > 1.1

Theorem 3 Let k � 3 and m � 46 be integers and set a = bk3c and l = bm�1
9 c. Then sr(m; k) >

3(l2 + l)a.

The exact determination of the asymptotic behavior of sr(m; k) appears to be di�cult. In the
case of AP (3), i.e. for m = 3, the above mentioned upper bounds of Alon et al. [ACT89] yield
sr(3; k) � (1 + o(1))6k. They provided a sharper estimate:

as k grows, 2k � sr(3; k) � (4:5 + o(1))k:

In what follows, we use sr(k) to denote the sub-k-Ramsey number sr(3; k). Using methods devel-
oped in [JL+03, AF04], we determine sr(k) for k > 603.

Theorem 4 For k > 603, sr(k) is the the least positive integer n such that k < 8n+�(n)
17 where �(n)

is de�ned by

n mod 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
�(n) 0 �8 1 10 2 11 3 �5 4 �4 5 �3 6 �2 7 �1 8

In particular,

sr(k) =
17

8
k +O(1) .

A set fx < y < zg of integers is an arithmetic progression of length three if and only if x+ z = 2y.
Hence, one can de�ne sub-Ramsey problems for other linear equations. A classical candidate is
the Schur equation x + y = z [S16]. Arguably, the �rst result in Ramsey theory is due to Schur,
who, in 1916, proved that for every k and su�ciently large n, every k-coloring of [n] contains a
monochromatic solution to the equation x + y = z. More than seven decades later, building up
on the previous work of Alekseev and Savchev, E. and G. Szekeres (see [JL+03] and references
therein), Sch�onheim [S90] proved the following rainbow counterpart, which is clearly an analogue
of Theorem 1.

Theorem 5 ([S90]) For every n � 3, every partition of [n] into three color classes R, G, and B
with min(jRj; jGj; jBj) > n=4, contains a rainbow solution to the equation x+ y = z. The term n=4
cannot be improved.

For a given positive integer k, let ss(k) denote the minimal number such that every coloring of [n],
n � ss(k), that uses each color at most k times, yields a rainbow solution to the equation x+y = z.
We prove the following theorem.

Theorem 6 For all positive integers k, ss(k) = b5k2 c+ 1:

1In the trivial cases, we have sr(1; k) = 1, sr(2; k) = k + 1, and sr(m; 1) = m.
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The paper is organized as follows. In Section 2, we construct a coloring that settles Theorem 2
and hence Corollary 1. In Section 3, we constructively prove Theorem 3. In Section 4, we use
Theorem 1 and prove a somewhat surprising claim that, in order to prove good bounds on sr(k),
it su�ces to only consider sub-k-colorings with three colors. Furthermore, we relate our problem
to the problem of �nding good bounds on �(n), the minimum integer k such that there is a sub-k-
coloring of [n] with three colors and no rainbow AP (3). In Section 5, we provide lower and upper
bounds on �(n), which in turn imply Theorem 4. In Section 6, we prove lemmata that together
imply Theorem 6. In Section 7, we propose new sub-Ramsey{type problems, while surveying the
current state of rainbow Ramsey theory.

2 Proof of Theorem 2

We construct a coloring c of [bm
2

2 c] that uses each color exactly twice and prove that it does not
contain a rainbow AP (m). De�ne a j-block Bj (j 2 N) to be the sequence 12 : : : j12 : : : j, where the
left half and the right half of the block are naturally de�ned. For a 2 Z, let Bj + a be the sequence
(a + 1)(a + 2) : : : (a + j)(a + 1)(a + 2) : : : (a + j). De�ne B�

j = Bj �
�j+1

2

�
and B+

i = Bi +
�i
2

�
. If

m = 2l+ 1 is odd, de�ne the coloring c of [2l2 + 2l] in the following way (bars denote endpoints of
the blocks):

jB�
l j : : : jB

�
j j : : : jB

�
2 jjB

�
1 jjB

+
1 jjB

+
2 j : : : jB

+
i j : : : jB

+
l j:

If m = 2l is even, de�ne the coloring c of [2l2] in the following way (bars denote endpoints of the
blocks):

jB�
l�1j : : : jB

�
j j : : : jB

�
2 jjB

�
1 jjB

+
1 jjB

+
2 j : : : jB

+
i j : : : jB

+
l j:

We only show the proof of Theorem 2 in the case when m is odd (since the case when m is even
is essentially the same). Note that the coloring c uses each of the l2 + l colors exactly twice (the
colors are integers from the interval [1�

�l+1
2

�
;
�l+1

2

�
]). Now, we show that the coloring c of [2l2+2l]

contains no rainbow AP (2l + 1). The key observation is that a rainbow AP with length greater
than l and di�erence d cannot contain elements from opposite halves of any block B�

j (or B+
j )

where d is a factor of j. Fix a longest rainbow AP A and let d denote its di�erence. If d = 1, then
the length of A is � l. If d > l, then the length of A is � 2l. If 1 < d � l, then A is one of the
following three types:
(1) A is contained in jB�

d j : : : jB
�
j j : : : jB

�
2 jjB

�
1 jjB

+
1 jjB

+
2 j : : : jB

+
i j : : : jB

+
d j. Then A intersects neither

the left half of B�
d nor the right half of B+

d . Therefore, the length of A is at most 1 + 2d2�1
d <

2d+ 1 � 2l + 1.
(2) A is contained in jB�

(j+1)djjB
�
(j+1)d�1j : : : jB

�
jdj or in jB

+
jdjjB

+
jd+1j : : : jB

+
(j+1)dj, where (j+1)d � l.

Assume the �rst case occurs (both cases are handled the same way). Then A intersects neither the
left half of B�

(j+1)d nor the right half of B
�
jd. Therefore, the length of A is at most

1 +
(2j + 1)d2 � 1

d
< (2j + 1)d+ 1 � 2l + 1:

(3) A is contained in jB�
l jjB

�
l�1j : : : jB

�
jd+1jjB

�
jdj or in jB

+
jdjjB

+
jd+1j : : : jB

+
l�1jjB

+
l j, where l� jd < d.

We note that 1 < d � jd � l. Assume the �rst case occurs (both cases are handled the same way).
Then A does not intersect the right half of B�

jd. Therefore, since jd � l� d+ 1, the length of A is
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at most

1 +
1

d
(l(l + 1)� j2d2 � 1) � 1 +

2ld� l � d2 + 2d� 2

d
= 2l + 1�

l + d2 � 2d+ 2

d

< 2l + 1�
d2 � d

d
= 2l + 1� (d� 1) � 2l .

3 Proof of Theorem 3

We construct a coloring c of [3a(l2+ l)] that uses each color exactly 3a times and prove that it does
not contain a rainbow AP (9l+ 1). As we did in the proof for the case k = 2, we construct a block
coloring where each color appears in only one block.

For each j, let Cj denote the sequence of aj terms such that the ith term equals d iae. Notice that
Cj consists of j constant strings of length a. For j 2 N, let Bj be the sequence of 3aj terms that
consists of 3 copies of Cj . The beginning third, middle third, and last third of Bj , which are all
copies of Cj , are naturally de�ned. Notice that in the sequence Bj , there are exactly 3a terms equal
to i for each i 2 [1; j].

For j 2 N and n 2 Z, we de�ne a block Bj + n as the sequence obtained by adding n to each term
of Bj . De�ne the block sequences B�

j = Bj �
�j+1

2

�
and B+

j = Bj +
�j
2

�
. Finally, de�ne the coloring

c of [3a(l2 + l)] in the following way (bars denote endpoints of the blocks):

jB�
l j : : : jB

�
j j : : : jB

�
2 jjB

�
1 jjB

+
1 jjB

+
2 j : : : jB

+
i j : : : jB

+
l j:

Note that each color appears in one block only. Since each color is used exactly 3a times, then c is
a sub-k-coloring. Now, we show that the coloring c contains no rainbow AP (9l + 1).

Let A = fx+ idj i 2 [0; s� 1]g be a maximal rainbow progression, i.e., if x� d or x+ sd belong to
[3a(l2 + l)] then they are colored by one of the colors used to color A.

We say that A goes through block B+
j (or B�

j ), j 2 [l � 1], if there are p; r 2 [0; s � 1] with the

property that fx+ idj i 2 [p; r]g � B+
j and fx+ (p� 1)d; x+ (r + 1)dg \B+

j = ;.

The key observation is that A cannot go through any block B�
j or B+

j if d � ja and a multiple of

d belongs to the interval [(j � 1
2)a; (j +

1
2)a]. Suppose the opposite, let t 2 [(j � 1

2)a; (j +
1
2)a] be

a multiple of d and let A go through B+
j or B�

j . Without loss of generality, A goes through B+
j .

Since d � ja, then there is a term x + id of A that is in the middle third of the block B+
j , and

then either x+ id� t or x+ id+ t is the same color as x+ id, which contradicts the fact that A is
rainbow.

If d � a, then by the key observation A cannot go through any block and therefore must lie in two
consecutive blocks. Since any two consecutive blocks contain less than 2l colors, then the length of
A is less than 2l.

If d > a, then by the key observation, the rainbow AP A with di�erence d does not go through
any block B+

j or B�
j with j = ddea �

1
2e and e an integer satisfying e > 1. So either A is contained

in ddae+ 1 consecutive blocks or lies in

jB�
b j : : : jB

�
2 jjB

�
1 jjB

+
1 jjB

+
2 j : : : jB

+
b j;
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where b = min(l; d2da �
1
2e). In the former case, the length of A is less than 1+(ddae+1)3lad < 9l+1.

In the latter case, the length of A is less than 1 +
2
Pb

i=1 3ia
d = 1 + 3b(b+1)a

d < 1 + 15
2 (l + 1) � 9l + 1

since ab < 5d
2 , b+ 1 � l + 1, and l � 5 (in view of m � 46).

4 Proof of Theorem 4: a reduction to 3-colorings

As we mentioned in the introduction, the number of colors in a sub-k-coloring can be greater than
three. In the following lemma we show that it is enough to consider only sub-k-colorings with three
colors.

Lemma 1 Let n, k, r 2 N be such that n � 7, k � n
2 �

13
6 , and r � 3. For every sub-k-coloring

c of [n] with r colors and no rainbow AP (3) there exists a sub-k-coloring c of [n] with three colors

and no rainbow AP (3), such that for all i; j 2 [n]

c(i) = c(j)) c(i) = c(j):

Proof: Let C1; C2; : : : ; Cr be the color classes of a sub-k-coloring c of [n] with k � n
2 �

13
6

and r � 3. Suppose that c contains no rainbow AP (3). Without loss of generality, assume
that jC1j � jC2j � : : : � jCrj. Then Theorem 1 implies that jC3j �

n+4
6 . Indeed, otherwise

jC1j � jC2j >
n+4
6 and j[r

i=3Cij >
n+4
6 imply that there is an AP (3) with terms from C1, C2, and

Ci for some i 2 [3; r].

Suppose jC2j �
n+4
6 . Let s = min

n
j :
���[j

i=1Ci

��� > n+4
6

o
. If s = 1, then j[s

i=1Cij = jC1j � k �
n
2 �

13
6 , and if s > 1, then j[s

i=1Cij =
��[s�1

i=1Ci

��+ jCsj �
n+4
6 + n+4

6 = n+4
3 . In either case, we have

j[s
i=1Cij �

n
2 �

13
6 . Let t = min

n
j :
���[j

i=s+1Ci

��� > n+4
6

o
. Since t � 2 and jC2j �

n+4
6 , we have��[t

i=s+1Ci

�� � n+4
3 . It follows that

��[n]n [t
i=1 Ci

�� � n� n
2+

13
6 �

n+4
3 = n+5

6 . Therefore, by Theorem 1,
the 3-coloring with color classes [s

i=1Ci, [
t
i=s+1Ci, and [n]n

�
[t
i=1Ci

�
yields a rainbow AP (3), that

clearly implies the existence of a rainbow AP (3) in the original coloring c. This contradicts our
assumptions.

Since k � jC1j � jC2j >
n+4
6 it follows that j[r

i=3Cij �
n+4
6 , else Theorem 1 implies there is a

rainbow AP (3), a contradiction. Then, we de�ne c of [n] to be the 3-coloring given by color classes
C1, C2, and [

r
i=3Ci. Clearly, c is a sub-k-coloring with no rainbow AP (3), as required. 2

For n 2 N, we de�ne �(n) as the minimum positive integer k such that there is a sub-k-coloring of
[n] with three colors and no rainbow AP (3).

We will prove in Proposition 2 that

�(n) =
8n+ �(n)

17
�

n

2
�

13

6

for n � 1280, where �(n) is as de�ned in the statement of Theorem 4. It follows that for k >
8�1280+11

17 = 603, we have that sr(k) is the least positive integer n such that k < �(n). Hence,
Theorem 4 follows from Proposition 2.
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5 Proof of Theorem 4: bounds on �(n)

For a given 3-coloring c : [a; b]! fR;B;Gg let R, B, and G denote sets of elements of [a; b] colored
with R, B, and G, respectively. First, we determine an upper bound for �(n).

Proposition 1 For all n 2 N, �(n) � 8n+�(n)
17 � 8n+11

17 where �(n) is as de�ned in the statement

of Theorem 4.

Proof: We de�ne a 3-coloring c : N! fR;G;Bg by

c(n) =

8<
:

G if n � 0 (mod 17)
R if n � 1; 2; 4; 8; 9; 13; 15; 16 (mod 17)
B if n � 3; 5; 6; 7; 10; 11; 12; 14 (mod 17):

The coloring c is periodic with a period 17. We claim that c contains no rainbow AP (3). Otherwise,
let fi; j; kg be an AP (3) with i + k = 2j. If c(j) = G, then i + k � 0 (mod 17), which implies
c(i) = c(k). If c(i) = G, then 2j � k (mod 17). It is not di�cult to check that in this case
c(j) = c(2j) = c(k).

It is easily noted what interval of length x, where 0 � x < 17 and x � n (mod 17), minimizes the
maximum number of integers colored by R or B. In fact, in all but the case x = 3 and x = 5, the
estimate given by the pigeonhole principle is attainable. Calling this minimum y(x), it follows that

�(n) � 8(n�x)
17 + y(x), and the bound in terms of �(n) follows by computing y(x).

2

Next, we prove a lower bound for �(n). We will do so through a sequence of lemmas. We start with
some de�nitions from [JL+03, JR03]. Given a 3-coloring c of [n] with colors R(ed), B(lue), and
G(reen), we say that X 2 fR;B;Gg is a dominant color if for every two consecutive elements of [n]
that are colored with di�erent colors, one of them is colored with X. We say that Y 2 fR;B;Gg
is a recessive color if there are no two consecutive elements of [n] colored with Y .

Lemma 2 ([JR03]) In every 3-coloring c : [n] ! fR;B;Gg with no rainbow AP (3), one of the
colors must be dominant and another color must be recessive.

Without loss of generality, let R be a dominant color and let G be a recessive color. The set
g1 < g2 < : : : < gs of all elements of [n] colored by G divide [n] naturally into subsegments, called
blocks, of the form Ii = [gi; gi+1 � 1], for 1 � i � s� 1, Is = [gs; n], and, if g1 6= 1, I0 = [1; g1 � 1].
Clearly, each block Ii, 1 � i � s, contains a single element colored by G.

Our goal is to show the following.

Proposition 2 If n � 1280, then �(n) = 8n+�(n)
17 .

If B is a recessive color, then, since R is dominant and G is recessive, in every pair of consecutive
integers in [n], at least one of them is color R. This implies that jRj � bn2 c �

8n+11
17 for n � 39.

Therefore, in the rest of the proof of Proposition 2, we can assume that B is not a recessive color.

We note that, in this setting, R, a dominant color, cannot be recessive. Otherwise, since all three
colors are used, there will be a rainbow AP (3) with di�erence 1.

Next, we prove that G, the unique recessive color, is sparse.
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Lemma 3 gi+1 � gi > 3 for 1 � i � s� 1.

Proof: Suppose there exists i 2 [s � 1] such that gi+1 = gi + 2. Note that the fact that G is
recessive and R is dominant implies c(gi + 1) = R. Since B is not recessive there exists j 2 [n]
such that c(j) = c(j + 1) = B. Fix j so that there is no other occurrence of consecutive elements
colored with B between j + 1 and gi, if j + 1 < gi; or between gi+1 and j if j > gi+1.

If gi � j (mod 2), then the following AP (3)s: fgi;
gi+j
2 ; jg, fgi + 1; gi+j

2 + 1; j + 1g, and fgi +

2; gi+j
2 +1; jg are not rainbow, so c

�
gi+j
2

�
2 fG;Bg and c

�
gi+j
2 + 1

�
= B. This contradicts either

our choice of j or our assumption that R is the dominant color. If gi 6� j (mod 2), then the following
AP (3)s: fgi;

gi+j+1
2 ; j + 1g, fgi + 1; gi+1+j

2 ; jg, and fgi + 2; gi+j+3
2 ; j + 1g are not rainbow, so we

have that c
�
gi+j+1

2

�
= B and c

�
gi+j+3

2

�
2 fG;Bg, which, as above, contradicts our assumptions.

Therefore, gi+1 � gi > 2 for all i.

Now, suppose there is i 2 [s�1] such that gi+1 = gi+3. Since R is dominant and c has no rainbow
AP (3), we have c(gi + 1) = c(gi + 2) = R. As above, we choose j with c(j) = c(j + 1) = B, that is
the closest to either gi from the left or gi+1 from the right.

If gi � j (mod 2), then the following AP (3)s: fgi;
gi+j
2 ; jg, fgi + 1; gi+j

2 + 1; j + 1g, and fgi +

3; gi+j
2 + 2; j + 1g cannot be rainbow, so we have c

�
gi+j
2

�
2 fG;Bg, c

�
gi+j
2 + 2

�
2 fG;Bg, and

c
�
gi+j
2 + 1

�
= R.2 Since there are no two elements colored with G that are one place apart and

since c has no rainbow AP(3), we have that c
�
gi+j
2

�
=
�
gi+j
2 + 2

�
= B.

If gi �
gi+j
2 (mod 2), then from the fact that

n
gi;

gi+(gi+j)=2
2 + 1; gi+j

2 + 2
o
and

n
gi + 2; gi+(gi+j)=2

2 + 1; gi+j
2

o

are not rainbow, it follows that c
�
gi+(gi+j)=2

2 + 1
�
= B. At the same time, since

n
gi;

gi+(gi+j)=2
2 ; gi+j

2

o

is not rainbow, then c
�
gi+(gi+j)=2

2

�
2 fG;Bg. However,

�
c

�
gi + (gi + j)=2

2

�
; c

�
gi + (gi + j)=2

2
+ 1

��
� fG;Bg

contradicts our choice of j or our assumption that R is the dominant color.

If gi 6�
gi+j
2 (mod 2), then the fact that the following AP (3)s:

n
gi + 3; gi+(gi+j)=2+1

2 + 1; gi+j
2

o
andn

gi + 3; gi+(gi+j)=2+1
2 + 2; gi+j

2 + 2
o
are not rainbow implies that

�
c

�
gi + (gi + j)=2 + 1

2
+ 1

�
; c

�
gi + (gi + j)=2 + 1

2
+ 2

��
� fG;Bg;

which is a contradiction as above.

If gi 6� j (mod 2), then the AP(3)s: fgi;
gi+j+1

2 ; j+1g, fgi+1; gi+1+j
2 ; jg, and fgi+3; gi+j+1

2 +1; jg

are not rainbow, so we have c
�
gi+j+1

2

�
= B and c

�
gi+j+1

2 + 1
�
2 fG;Bg, which again contradicts

our assumptions.

Therefore, gi+1 � gi > 3 for all i. 2

Now, we have the following corollaries.

2Here, we have also used the de�nition of j.
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Corollary 2 If fc(k); c(k + 2)g � fB;Gg for some k 2 [n� 2], then c(k) = c(k + 2) = B.

Corollary 3 Each block Ii, 1 � i � s� 1, is of length of at least four.

Note that Corollary 2 immediately implies the following property of c, which will be repeatedly
used throughout the proof.

Corollary 4 Every element colored with G is always followed and proceeded by the string RR in

c.

In the rest of the proof of Proposition 2, we discuss two cases.

Case 1. Each block Ij , 1 � j � s� 1, contains two consecutive elements colored with B.

We �rst observe that if Ij contains two consecutive elements colored with B then its size must
be greater than 10. This easily follows from Corollary 4 and the fact that the coloring is rainbow
AP (3) free.

If gj+3 is blue then the initial part of Ij must be GRRBR B R, where denotes an unknown color.
If gj+3 is red then the initial part of Ij must be GRRRR R R. Because of the symmetry, the �nal
part of Ij must either be R B RBRR(G) or R R RRRR(G), where (G) represents gj+1. If the
size of Ij is less than 17 then the initial and �nal parts of the block, as they are shown above, must
overlap. This leads to only two possibilities for Ij (if jIj j � 20): either Ij is of size 15 and looks like
GRRBRBBRRBBRBRR(G) or it is of size 17 and looks like GRRBRBBBRRBBBRBRR(G).
Both of these blocks have a very special \self-propagating" property that we use to determine R,
B, and G.

We describe this property with the following statement for the �rst mentioned block (the other
case being almost identical and left to the reader).

Lemma 4 If c : [15l + r] ! fB;G;Rg, l � 1 and 2 � r � 15, is a coloring without rain-

bow AP(3), with G recessive and R dominant, and such that the �rst 16 numbers are colored as

GRRBRBBRRBBRBRRG, then for any i 2 [l] and any j 2 [2; 15] with 15i + j � 15l + r, we
have c(15i+ j) = c(j).

Proof: Our proof is by induction on l. First, we establish the base case l = 1. Since c(16) = G,
it follows from Corollary 4 that c(17) = c(18) = R. The AP (3)s f13; 16; 19g and f11; 15; 19g force
c(19) = B, which in turn implies c(20) = R, due to AP (3)s f18; 19; 20g and f16; 18; 20g not being
rainbow. Now, the AP (3)s f19; 20; 21g and f11; 16; 21g are not rainbow, so c(21) = B; while the
AP (3)s f20; 21; 22g and f16; 19; 22g force c(22) = B. Since neither f1; 12; 23g nor f15; 19; 23g is
rainbow, then c(23) = R. Continuing in this fashion, f22; 23; 24g and f16; 20; 24g force c(24) = R;
while the fact that f21; 23; 25g and f1; 13; 25g are not rainbow implies c(25) = B. Since neither
f24; 25; 26g nor f16; 21; 26g is rainbow, then c(26) = B. Further, c(27) = R, due to AP (3)s
f23; 25; 27g and f1; 14; 27g not being rainbow. Next, the AP (3)s f26; 27; 28g and f16; 22; 28g force
c(28) = B, which in turn implies c(29) = R, because of the AP (3)s f27; 28; 29g and f1; 15; 29g.
Finally, the AP (3)s f28; 29; 30g and f16; 23; 30g force c(30) = R; hence, for all j 2 [2; 15], c(15+j) =
c(j), and Lemma 4 is true for l = 1.

Now suppose that claim is true for some l � 1 and consider a coloring c : [15(l+1)+r]! fB;G;Rg
with the properties listed in Lemma 4. By induction hypothesis, for all i 2 [l] and j 2 [2; 15],
c(15i+ j) = c(j).

9



For j 2 [2; r], depending on the parity of (l + 1) + j, either f1; 15(l+1)+j+1
2 ; 15(l + 1) + jg or

f16; 15(l+1)+j+16
2 ; 15(l+1)+ jg is an AP (3). Since c is a coloring without rainbow AP (3), it follows

that c(15(l+1)+ j) = G or c(15(l+1)+ j) = c(j). However, assuming c(15(l+1)+ j0) = c(j0) for
2 � j0 < j, then the observations concerning the structure of the initial part of a block, as given
after the start of Case 1, show that c(15(l + 1) + j) 6= G. 2

Now, back to the settings of Case 1; suppose that there is a block Ij of length 15. Going in both
directions from that block, from Lemma 4, we see that the coloring of [n] is almost completely
determined, repeating the same 14-term sequence of Bs and Rs as described in Lemma 4. Let
r1 2 [0; 14] be such that there is an element s with c(s) = G and s � r1 + 1 (mod 15). Let
n = r1 + 15l + r2, where l and r2 are positive integers with r2 � 15. Since the 14-term sequence
contains 8 Rs and 6 Bs, and at least half of the �rst r1 elements and the last r2 � 1 elements are
colored by R, we have

maxfR;Bg � 8l +
r1 + r2 � 1

2
=

8n

15
�
r1 + r2
30

�
1

2
�

8n

15
�

43

30
�

8n+ 11

17

for n � 34. Moreover, since jIj j � 15 for all 1 � j � s� 1, we have s = jGj < n=15 + 1.

Since the block GRRBRBBBRRBBBRBRR(G) is self-propagating (in the way described in
Lemma 4 for the block GRRBRBBRRBBRBRR(G)), we get that if a coloring contains a block
of length 17 then

maxfR;Bg �
8n+ �(n)

17

where �(n) is as de�ned before Proposition 1.

Finally, if each block Ij is of length greater than 20 for all 1 � j � s� 1, we have s = jGj < n
21 + 1

and

maxfjRj; jBjg >
n� n

21 � 1

2
=

10n

21
�

1

2
�

8n+ 11

17

for n > 205.

Case 2. There is a block with no two consecutive numbers colored with the non-recessive color B.

Suppose Ij , 0 � j � s, is the �rst block that contains two consecutive elements colored with B.
Let m 2 Ij denote the smallest number k in Ij such that c(k) = c(k+ 1) = B. Next, we show that
there cannot be three elements colored with G both before and after m.

Lemma 5 If m > g3, then m > gs�2.

Proof: Suppose this is not true and let g3 < m < gs�2. Then, there are u, v, x, and y such that
gu < gv < m < gx < gy, gu � gv (mod 2), and gx � gy (mod 2).

If 2m�gv+2 � n, then fgv;m; 2m�gvg and fgv;m+1; 2m�gv+2g are AP (3)s that are not rainbow,
and we have fc(2m� gv); c(2m� gv +2)g � fG;Bg. From Corollary 2 it follows that c(2m� gv) =
c(2m�gv+2) = B. Since fgu; (2m�gv+gu)=2; 2m�gvg and fgu; (2m�gv+gu+2)=2; 2m�gv+2g
are AP (3)s that are not rainbow, it follows that c((2m�gv+gu)=2) = c((2m�gv+gu)=2+1) = B.
However, since gu < gv, we have that (2m � gv + gu)=2 < m, which contradicts our choice of m.
Therefore, 2m� gv + 2 > n.

If 2m � gy � 1, then both 2m � gy and 2m � gy + 2 must be blue, whence
2m�gy+gx

2 < m and
2m�gy+gx

2 + 1 must also both be blue (by the same arguments as used in the �rst part of the
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proof), which will contradict the minimality of m. Otherwise, 2m � gy, which combined with
2m� gv � n� 1, implies n+ 1 � n� 1 + gv � gy � n, a contradiction. 2

Case 2 naturally breaks into two subcases: (1) m > g3, and (2) m < g3.

First we deal with (1).

Let gv be as de�ned in the proof of Lemma 5. The following lemma shows that B, although a
non-recessive color, is sparse after m.

Lemma 6 For every k 2 [n� 3], fc(k); c(k + 1); c(k + 2); c(k + 3)g \ fRg 6= ;:

Proof: Suppose there exists k 2 [n � 3] such that c(k) = c(k + 1) = c(k + 2) = c(k + 3) = B.

Let k0 2 fk; k + 1g be such that gv � k0 (mod 2). Then c
�
gv+k0

2

�
= c

�
gv+k0

2 + 1
�
= B. From the

proof of Lemma 5, we have 2m � gv + 2 > n. From k0 � n � 3 < 2m � gv + 2 � 3, it follows that
gv+k0

2 < m, which contradicts our choice of m.

We note that if G 2 fc(k); c(k+1); c(k+2); c(k+3)g, then since all occurrences of G are proceeded
and followed by a string RR, it follows that fc(k); c(k + 1); c(k + 2); c(k + 3)g \ fRg 6= ;. 2

In order to prove the lower bound on �(n), claimed in Proposition 2, we need to dig deeper into
the structure of coloring c.

Lemma 7 m � 2gj � 1.

Proof: Suppose m < 2gj�1. Then, 2gj�m, 2gj�m�1 2 [m], and fc(2gj�m); c(2gj�m�1)g �
fB;Gg. Since R is dominant and G is recessive, we have c(2gj �m) = c(2gj �m� 1) = B, which
is impossible because of our choice of m. 2

Lemma 8 jfk 2 [gj + 1; 2gj � 1] : c(k) = Rgj � jfk 2 [gj � 1] : c(k) = Rgj:

Proof: For every k 2 [gj � 1] with c(k) = R, the element 2gj � k of [gj +1; 2gj � 1] is colored with
R, since the AP (3) fk; gj ; 2gj � kg is not rainbow, and [gj + 1; 2gj � 1] � Ij by Lemma 7. 2

Since R is dominant and G is recessive and since there are no consecutive blue integers in [2gj �
1;m� 1] and since none of these integers is colored green (except possibly the integer 1 in the case

2gj � 1 = gj = 1), we obtain jfk 2 [2gj � 1;m � 1] : c(k) = Rgj �
m�2gj+1

2 . Furthermore, from
Lemma 6, since both m and m + 1 are colored B, it follows that jfk 2 [m + 2; n] : c(k) = Rgj �
n�(m+2)

4 .

If c(2gj � 1) 6= R, using Lemma 8, we get:

jRj � 2jfk 2 [gj � 1] : c(k) = Rgj+
m� 2gj + 1

2
+
n�m

4
;

which by Lemma 7 becomes:

jRj � 2jfk 2 [gj � 1] : c(k) = Rgj+
n

4
�
gj
2
�

1

4
:

11



If c(2gj � 1) = R then the bound from Lemma 7 becomes strict and we consider the intervals
[1; 2gj � 1], [2gj ;m� 1], and [m+ 2; n] to get

jRj � 2jfk 2 [gj � 1] : c(k) = Rgj+
m� 2gj

2
+
n�m� 2

4
;

which by the improved bound from Lemma 7 becomes:

jRj � 2jfk 2 [gj � 1] : c(k) = Rgj+
n

4
�
gj
2
�

1

2
:

By Corollary 3, each block Ii, 1 � i � j � 1, has length at least four. Moreover, each block starts
and ends with the string GRR or RR respectively, as observed in Corollary 4. Now, the de�nition
of m implies

jfk 2 Ii : c(k) = Rgj �
jIij

2
+ 1;

for all i 2 [j � 1], where jIij denotes the length of the block Ii. Similarly, since m > g3, jfk 2 I0 :

c(k) = Rgj � jI0j
2 : Summing up these inequalities, we get

jfk 2 [gj � 1] : c(k) = Rgj =

j�1X
i=0

jfk 2 Ii : c(k) = Rgj �
gj � 1

2
+ (j � 1);

since
Pj�1

i=0 jIij = gj � 1. Therefore,

jRj �
n

4
+
gj
2
+ 2j �

7

2
:

Since each block Ii, 1 � i � j�1, has length at least four, we have gj � 4j�3. Thus, jRj � n
4+4j�5.

By Lemma 5, we have j � s� 2 and jRj � n
4 + 4s� 13. Hence,

maxfjRj; jBjg � jRj �
n

4
+ 4jGj � 13 �

n

4
+ 4(n� 2maxfjRj; jBjg)� 13:

It follows from here that

maxfjRj; jBjg �
17n

36
�

13

9
�

8n+ 11

17

for n � 1280. Finally, we deal with the remaining subcase (2).

Let m < g3. Let t = maxfk : c(k) = c(k+1) = Bg. If t < gs�2, then we apply the argument for the
previous subcase to the coloring c : [n]! fR;B;Gg de�ned by c(i) = c(n+1� i). Let r 2 [s� 2; s]
be the greatest integer with the property that t � gr. We need the following lemma.

Lemma 9 Suppose c(u) = c(u + 1) = B, c(v) = c(x) = G, and c(y) = c(y + 1) = B, where
u < v < x < y are integers in [n]. Then, there are two consecutive elements in [v+1; x� 1] colored
with B.

Proof: Let u0 = maxfk < v : c(k) = c(k + 1) = Bg, and y0 = minfk > x : c(k) = c(k + 1) = Bg.
Note that u0 � u and y0 � y. Without loss of generality, we can assume that v � u0 � y0 � x.
Clearly, arithmetic progressions fu0; v; 2v � u0g and fu0 + 1; v; 2v � u0 � 1g are not rainbow which
implies, by Corollary 2, c(2v � u0 � 1) = c(2v � u0) = B. If 2v � u0 < x, we have completed the
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proof. Otherwise, we have 2v � u0 = (v � u0 � 1) + (v + 1) � (y0 � x) + x = y0, which contradicts
our de�nition of y0. 2

Thus, given two blocks, both with pairs of consecutive numbers colored with B, there is a block
between them with a pair of consecutive numbers colored with B. This immediately implies that
each of the blocks Ij ; Ij+1; : : : ; Ir contains a pair of consecutive numbers colored with B. Based on
Case 1, we conclude that each of these blocks has length at least 21. From jGj � 1+(r�j+1)+2 �
3 + n

21 , we get

maxfjRj; jBjg �
n� n

21 � 3

2
=

10n

21
�

3

2
�

8n+ 11

17
for n � 384.

Therefore for n � 1280, �(n) � 8n+�(n)
17 , which with Proposition 1 completes the proof of Proposi-

tion 2.

6 Proof of Theorem 6

We call a coloring of [n] rainbow Schur-free if it does not contain any rainbow solutions to equation
x+y = z. In order to show the lower bound ss(k) > b5k2 c, we de�ne the coloring c : [n]! fR;B;Gg
as follows:

c(i) :=

8<
:

R if i � 1 or 4 (mod 5)
B if i � 2 or 3 (mod 5)
G if i � 0 (mod 5)

Clearly, c is rainbow Schur-free and each color class has at most d2n5 e elements.

Now, let c denote an arbitrary rainbow Schur-free coloring of [n]. In the rest of the section, we
establish properties of c that imply that one of the color classes has size at least 2n

5 . The tight

upper bound ss(k) � b5k2 c + 1 immediately follows. Recall that in a coloring of [n], a color X is
called dominant if for every two consecutive integers with di�erent colors, one of them is colored
with X. Note that in every coloring that uses at least three colors, there is at most one dominant
color. Also, recall that a color Y is called recessive if no two consecutive elements of [n] receive
color Y .

By the pigeonhole principle, we may assume that c uses at least three colors; so there is at most
one dominant color. In fact, it is easy to conclude that color R := c(1) is the unique dominant
color. Indeed, if c(1) is not dominant, then there exist integers i and i + 1 such that the colors
c(1), c(i), and c(i + 1) are all di�erent. However, the set f1; i; i + 1g is then a rainbow solution
to x + y = z, which contradicts our assumption on c. Furthermore, if all the colors that are not
dominant are recessive, then for every pair of consecutive integers 1 � j < j + 1 � n, we have
c(j) = R or c(j+1) = R. Hence, the there are at least n

2 > 2n
5 elements colored with (the dominant

color) R. Therefore, we may assume that at least one color in c is neither dominant nor recessive.
As the following lemma shows, this color is necessarily unique as well.

Lemma 10 There is at most one color neither dominant nor recessive.

Proof: Suppose there are (at least) two colors in c that are not dominant and not recessive. Let
i; i + 1; : : : ; i + k be the longest string of consecutive integers colored with such a color, which we
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denote by Y . Let j; j + 1 be a string of two consecutive elements colored with Z, where Z denotes
a non-dominant and non-recessive color other than Y . There are two possible cases depending on
which of these two monochromatic strings comes �rst.

If i+ k < j, then none of the integers in the string j � i� k; j � i� k+ 1; : : : ; j � i+ 1 can receive
the dominant color R. Hence, all of them receive the same color, which is not dominant and is not
recessive. However, the length of this string is k + 2, which contradicts our choice of the string
i; i+ 1; : : : ; i+ k.

Similarly, if i > j+1, then none of the integers in the string i� j� 1; i� j; : : : ; i� j+k can receive
the dominant color R. Hence, all of them receive the same color, which is not dominant and is
not recessive. However, the length of this string is k+ 2, which again contradicts our choice of the
string i; i+ 1; : : : ; i+ k. 2

Let B denote the unique color in c which is neither dominant nor recessive. Let Nc be the number
of elements of [n] that are not colored with R or B. Thus, these integers receive a non-dominant
color that is recessive. As in Lemma 1, we can limit our consideration to 3-colorings. De�ne the
3-coloring �c by �c(i) = c(i), if c(i) = R or B, and �c(i) = G otherwise. We note that, for the coloring
�c, R is dominant, B is neither dominant nor recessive and, by Lemma 10, G is recessive. Let
G = fg : g 2 [n]; c(g) = Gg. Then �c is a rainbow Schur-free coloring of [n] and jGj = Nc. For
1 � i � jGj, let gi denote the i

th smallest element of G. Let B = fb : b 2 [n� 1]; c(b) = B; c(b+1) =
Bg. For 1 � i � jBj, let bi denote the i

th smallest element of B. If b1 > g1, then c(b1 � g1) 6= R
and c(b1 + 1 � g1) 6= R, so b1 � g1 2 B and b1 � g1 < b1, a contradiction. Hence, b1 < g1. Since
c(g1 � 1) = R, then 1 < b1 < b1 + 1 < g1 � 1 < g1, so g1 � 5.

Next, we show that for 1 � i � jGj � 1, there exists b0 2 B such that gi < b0 < gi+1. Since
b1 < g1 � gi, then there exists a largest element b 2 B such that b < gi. Since c(gi � b) 6= R and
c(gi�b�1) 6= R, then gi�b�1 2 B. However, then c(gi+1�(gi�b)) 6= R and c(gi+1�(gi�b�1)) 6= R,
which implies that b + gi+1 � gi 2 B. Since b is the largest element in B that is less than gi, we
have b+ gi+1 � gi > gi. De�ning b

0 = b+ gi+1 � gi, we obtain b0 2 B such that gi < b0 < gi+1.

Now, clearly, c(gi + 1) = c(gi+1 � 1) = R, so gi < gi + 1 < b0 < b0 + 1 < gi+1 � 1 < gi+1. Therefore,
gi+1 � gi � 5 for 1 � i � jGj � 1. Since g1 � 5, then jGj � n

5 . It immediately follows that in the
coloring �c, as well as in c, we have at least 2n

5 elements colored with R or B. We have completed
the proof of Theorem 6.

7 Conclusion

We believe that our methods cannot be used for improving the upper bounds on sr(m; k) in
[ACT89], when m > 3. The main obstacle is the fact that there is no analogue of Theorem 1 for
m-term arithmetic progressions, m � 4 (as shown in [AF04] for m � 5, and [CJR] for m = 4), that
could be used as in Lemma 1.

Fox et al. [FMR] consider yet another partition-regular3 equation, \the Sidon equation" x + y =
z + w, which is a classical object in combinatorial number theory. They proved the following.

Theorem 7 ([FMR]) For every n � 4, every partition of [n] into four color classes R, G, B, and

3For the de�nition of partition regularity, please refer to [GRS90].
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Y, such that

minfjRj; jBj; jGj; jYjg >
n+ 1

6
contains a rainbow solution of x+ y = z + w. Moreover, this result is tight.

For a given positive integer k, let sd(k) denote the minimal number such that every coloring of [n],
n � sd(k), that uses each color at most k times, yields a rainbow solution to equation x+y = z+w.
We propose the following open problem.

Problem 1 Determine sd(k).

We hope one could use Theorem 7 to prove a lemma similar to Lemma 1 and reduce Problem 1 to
studying the minimal size of the largest color class in 4-colorings of [n] without rainbow solutions to
the above equations. Some structural results about such colorings are already provided in [FMR].

It is interesting to note that there are still no other existential rainbow-type results for partition
regular equations other than the ones mentioned above. We are nowhere near the rainbow Rado-
type characterization. For numerous open problems concerning the existence of rainbow subsets of
integers in appropriate colorings of [n] or N, please refer to the survey [JRN05].

Both rainbow-Ramsey and sub-Ramsey problems have received considerable attention in graph
theory. The sub-Ramsey number of a graph G, denoted by sr(G; k), is the smallest integer n
such that every edge-coloring of Kn, where each color is used at most k times, contains a rainbow
subgraph isomorphic to G. Hell and Montellano [HM04] improved the bounds of Alspach et al.
[AG+86], and proved that sr(Km; k) is O(km

2) and 
(m3=2). Hahn and Thomassen [HT86] show
that sr(Pm; k) = sr(Cm; k) = m, when m is large enough with respect to k.4 Results on sub-
Ramsey number of stars and some other results dealing with existence of rainbow subgraphs in
colorings with bounded color classes can be found in [AJMP03, ENR83, FHS87, FR93, LRW96].

Remark: After this work was originally submitted for publication, it came to our attention that
Theorem 4 has been independently obtained by Maria Axenovich and Ryan Martin in [AM0x].

Acknowledgment: The authors would like to thank the anonymous referee whose comments and
suggestions led to a signi�cant improvement of the originally submitted work.
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