
MAT 307: Combinatorics

Lecture 19: The Petersen graph and Moore graphs

Instructor: Jacob Fox

1 The Petersen graph

As a more interesting exercise, we will compute the eigenvalues of the Petersen graph.

Definition 1. The Petersen graph is a graph with 10 vertices and 15 edges. It can be described in
the following two ways:

1. The Kneser graph KG(5, 2), of pairs on 5 elements, where edges are formed by disjoint edges.

2. The complement of the line graph of K5: the vertices of the line graph are the edges of K5,
and two edges are joined if they share a vertex.

3. Take two disjoint copies of C5: (v1, v2, v3, v4, v5) and (w1, w2, w3, w4, w5). Then add a match-
ing of 5 edges between them: (v1, w1), (v2, w3), (v3, w5), (v4, w2), (v5, w4).

The Petersen graph is a very interesting small graph, which provides a counterexample to many
graph-theoretic statements. For example,

• It is the smallest bridgeless 3-regular graph, which has no 3-coloring of the edges so that
adjacent edges get different colors (the smallest “snark”).

• It is the smallest 3-regular graph of girth 5.

• It is the largest 3-regular graph of diameter 2.

• It has 2000 spanning trees, the most of any 3-regular graph on 10 vertices.

To compute the eigenvalues of the Petersen graph, we use the fact that it is strongly regular.
This means that not only does each vertex have the same degree (3), but each pair of vertices
(u, v) ∈ E has the same number of shared neighbors (0), and each pair of vertices (u, v) /∈ E has
the same number of shared neighbors (1). In terms of the adjacency matrix, this can be expressed
as follows:

• (A2)ij =
∑

k aikakj is the number of neighbors shared by i and j.

• For i = j, (A2)ij = 3.

• For i 6= j, (A2)ij = 1− aij : either 0 or 1 depending on whether (i, j) ∈ E.

In concise form, this can be written as

A2 + A− 2I = J.
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Now consider any eigenvector, Ax = λx. We know that one eigenvector is 1 which has eigenvalue
d = 3. Other than that, all eigenvectors x are orthogonal to 1, which also means that Jx = 0.
Then we get

(A2 + A− 2I)x = λ2x + λx− 2x = 0.

This means that each eigenvalue apart from the largest one should satisfy a quadratic equation
λ2 + λ− 2 = 0. This equation has two roots, 1 and −2.

Finally, we calculate the multiplicity of each root from the condition that
∑

λi = 0. The
largest eigenvalue has multiplicity 1 (it is obvious that any vector such that Ax = 3x is a multiple
of 1). Therefore, if eigenvalue 1 comes with multiplicity a and −2 with multiplicity b, we get
3+a · 1+ b · (−2) = 0 and a+ b = 9, which implies a = 5 and b = 4. We conclude that the Petersen
graph has eigenvalues including multiplicities (3, 1, 1, 1, 1, 1,−2,−2,−2,−2).

Finally, we show an application of eigenvalues to the following question. Consider 3 overlapping
copies of the Petersen graph. The degrees in each copy are equal to 3, so the degrees in total could
add up to 9 and form the complete graph K10. However, something does not work here when you
try it. The following statement shows that indeed this is impossible.

Theorem 1. There is no decomposition of the edge set of K10 into 3 copies of the Petersen graph.

Proof. Suppose that A,B,C are adjacency matrices of different permutations of the Petersen graph,
such that they add up to the adjacency matrix of K10, A + B + C = J − I. Let VA and VB be
the subspaces corresponding to eigenvalue 1 for matrices A and B, respectively. We know that
dim(VA) = dim(VB) = 5, and moreover both VA and VB are orthogonal to the eigenvector 1. This
implies that they cannot be disjoint (then we would have 11 independent vectors in R10), and
therefore there is a nonzero vector z ∈ VA ∩ VB. This vector is also orthogonal to 1, i.e. Jz = 0.
Therefore, we get

Cz = (J − I −A−B)z = −z −Az −Bz = −3z.

But we know that −3 is not an eigenvalue of the Petersen graph, which is a contradiction.

2 Moore graphs and cages

The Petersen graph is a special case of the following kind of graph: Suppose that G is d-regular,
starting from any vertex it looks like a tree up to distance k and within distance k we already see
the entire graph. In other words, the diameter of the graph is k and the girth is 2k + 1. Such
graphs are called Moore graphs.

By simple counting, we get that the number of vertices in such a graph must be

nd,k = 1 + d

k−1∑

i=0

(d− 1)i.

This is obviously the minimum possible number of vertices for a d-regular graph of girth 2k + 1.
Such graphs are also called cages.

The Petersen graph is a (unique) example of a 3-regular Moore graph of diameter 2 and girth
5. There are surprisingly few known examples of Moore graphs. We prove here that for girth 5
there cannot be too many indeed.
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Theorem 2 (Hoffman-Singleton). The only d-regular Moore graphs of diameter 2 exist for d =
2, 3, 7 and possibly 57.

Proof. Assume G is a d-regular Moore graph of girth 5. The number of vertices is n = 1+d+d(d−
1) = d2 + 1. Again, we consider the square of the adjacency matrix A2. Observe that adjacent
vertices don’t share any neighbors, otherwise there is a triangle in G. Non-adjacent vertices share
exactly one neighbor, because the diameter of G is 2 and there is no 4-cycle in G. Hence, A2 has
d on the diagonal, 0 for edges and 1 for non-edges. In other words,

A2 + A− (d− 1)I = J.

If λ is an eigenvalue of A different from d, we get λ2 + λ− (d− 1) = 0. This means

λ = −1
2
± 1

2

√
1 + 4(d− 1) = −1

2
± 1

2

√
4d− 3.

Assume that −1
2 + 1

2

√
4d− 3 has multiplicity a and −1

2 − 1
2

√
4d− 3 has multiplicity b. We get

d− a + b

2
+

1
2
(a− b)

√
4d− 3 = 0.

We also know that a + b = n− 1 = d2. Therefore,

(a− b)
√

4d− 3 = a + b− 2d = d2 − 2d.

This can be true only if a = b and d = 2, or else 4d−3 is a square. Let 4d−3 = s2, i.e. d = 1
4(s2+3).

Substituting this into the equation

d− d2

2
+

s

2
(2a− d2) = 0,

we get
1
4
(s2 + 3)− 1

32
(s2 + 3)2 +

s

2
(2a− 1

16
(s2 + 3)2) = 0.

From here, we get
s5 + s4 + 6s3 − 2s2 + (9− 32a)s = 15.

To satisfy this equation by integers, s must divide 15 and hence s ∈ {1, 3, 5, 15}, giving d ∈
{1, 3, 7, 57}. Case d = 1 leads to G = K2 which is not a Moore graph.

We remark that the graph for d = 2 is C5, for d = 3 it is the Petersen graph, for d = 7 it is
the “Hoffman-Singleton graph” (with 50 vertices and 175 edges) and for d = 57 it is not known
whether such a graph exists. This graph would need to have 3250 vertices, 92, 625 edges, diameter
2 and girth 5.
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