MAT 307: Combinatorics

Lecture 17: Linear algebra - continued

Instructor: Jacob Fox

1 Few possible intersections - summary

Last time, we proved two results about families of sets with few possible intersection sizes. Let us
compare them here.

Theorem 1. If F is an L-intersecting family of subsets of [n], then
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Theorem 2. Let p be prime and L C Z,. Assume F C 2"l is an L-intersecting family (with
intersections taken mod p), and no set in F has size in L (mod p). Then
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Both results have intersecting applications. First, let’s return to Ramsey graphs.

2 Explicit Ramsey graphs

We saw how to construct a graph on n = (g) vertices, which does not contain any clique or

independent set larger than k. Here, we improve this construction to n = kf(logk/loglogh) i o

superpolynomial in k.

Theorem 3 (Frankl,Wilson 1981). For any prime p, there is a graph G on n = (pfil) vertices

such that the size k of any clique or independent set in G is at most Zf:_& (p;).

Note that n ~ pp2, while k ~ pP. Le., n ~ kP ~ klogh/loglogh

Proof. We construct G as follows. Let V = (p[‘fi]l), and let A, B € V form an edge if |[ANB| # p—1
(mod p). Note that for each A € V, |A| =p? —1=p—1 (mod p).

If Ai,..., Ay is a clique, then |A4;] = p — 1 (mod p), while |4; N 4] # p — 1 (mod p) for all
i # j. By Theorem 2 with L = {0,1,...,p — 2}, we get k < Z?:_ol (p:).

If Ay,..., Ay is an independent set, then [A; N A;| = p —1 (mod p) for all i # j. This means
|AinAjle L={p—1,2p—1,...,p* — p— 1}, without any modulo operations. By Theorem 1, we

get k < Y00 (7). O



3 Borsuk’s conjecture

Can every bounded set S C R® be partitioned into d + 1 sets of strictly smaller diameter?

This conjecture was a long-standing open problem, solved in the special cases of a sphere S
(by Borsuk himself), S being a smooth convex body (using the Borsuk-Ulam theorem) and low
dimension d < 3. It can be seen that a simplex requires d + 1 sets, otherwise we have 2 vertices in
the same part and hence the diameter does not decrease.

The conjecture was disproved dramatically in 1993, when Kahn and Kalai showed that signifi-
cantly more than d + 1 parts are required.

Theorem 4. For any d sufficiently large, there exists a bounded set S C R® (in fact a finite set)
such that any partition of S into fewer than 1.2vd parts contains a part of the same diameter.

The proof uses an algebraic construction, relying on the following lemma.

Lemma 1. For any prime p, there exists a set of %(;li) vectors F C {—1, —|—1}4p such that every

subset 0f2(p4f1) vectors contains an orthogonal pair of vectors.

Proof. Consider 4p elements and all subsets of size 2p, containing a fixed element 1:
F={I:1C[4p],|I|=2p,1e€el}.

For each set I, we define a vector v/ = +1ifi € I and v/ = —1ifi ¢ I. Weset F = {o!: 1€ F}.
The only way that a pair of such vectors v/, v’ can be orthogonal is that |[IA.J| = 2p and then
|I NJ| =p. Note that | N J| is always between 1 and 2p — 1 (I, J are different and they share at
least 1 element). Hence v! - v/ = 0iff [IN.J| =0 (mod p).
We claim that this is the desired collection of vectors. For a subset G C F without any
orthogonal pair, we would have a family of sets G C F such that

e VI €G;|I| =0 (mod p).
e Vdistinct I,J € G;|INJ| € {1,2,...,p—1} (mod p).
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By Theorem 2,

Now we are ready to prove the theorem.

Proof. Given a set of vectors F C R" = R* provided by the lemma above, we define a set of

vectors ,
X={v@uv:ve F} C R".

Here, each vector is a tensor product w = v ® v. More explicitly,
Wi = V;Vy, 1 SZ,] <n.

These vectors satisfy the following properties:



w e {—1, 41} [lul| = VaZ = n.
w-w' =(wev) (Vev)=(v-1v)?>0.
w,w’ are orthogonal if and only if v,v" are orthogonal.

[lw—w'|[? = [|[w]||? + |[w']]?> = 2(w - w') = 2n? — 2(v - v')? < 2n?, and the pairs of maximum
distance correspond to orthogonal vectors.
By the lemma, any subset of 2(p4_pl) vectors contains an orthogonal pair and so its diameter

is the same as the original set. If we want to decrease the diameter, we must partition X into
sets of size less than 2(pAf’1), and the number of such parts is at least

X _ 36D Gpr)ERGr -1 2p 2@ tD) <3)p_1
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The dimension of our space is d = n? = (4p)?, and the number of parts must be at least
(3/2)p~1 = (3/ 2)\@/ 4=1 (The bound can be somewhat improved by a more careful analysis.)
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