
MAT 307: Combinatorics

Lecture 17: Linear algebra - continued

Instructor: Jacob Fox

1 Few possible intersections - summary

Last time, we proved two results about families of sets with few possible intersection sizes. Let us
compare them here.

Theorem 1. If F is an L-intersecting family of subsets of [n], then

|F| ≤
|L|∑

k=0

(
n

k

)
.

Theorem 2. Let p be prime and L ⊂ Zp. Assume F ⊂ 2[n] is an L-intersecting family (with
intersections taken mod p), and no set in F has size in L (mod p). Then

|F| ≤
|L|∑

k=0

(
n

k

)
.

Both results have intersecting applications. First, let’s return to Ramsey graphs.

2 Explicit Ramsey graphs

We saw how to construct a graph on n =
(
k
3

)
vertices, which does not contain any clique or

independent set larger than k. Here, we improve this construction to n = kΩ(log k/ log log k), i.e.
superpolynomial in k.

Theorem 3 (Frankl,Wilson 1981). For any prime p, there is a graph G on n =
( p3

p2−1

)
vertices

such that the size k of any clique or independent set in G is at most
∑p−1

i=0

(
p3

i

)
.

Note that n ' pp2
, while k ' pp. I.e., n ' kp ' klog k/ log log k.

Proof. We construct G as follows. Let V =
( [p3]
p2−1

)
, and let A,B ∈ V form an edge if |A∩B| 6= p−1

(mod p). Note that for each A ∈ V , |A| = p2 − 1 = p− 1 (mod p).
If A1, . . . , Ak is a clique, then |Ai| = p − 1 (mod p), while |Ai ∩ Aj | 6= p − 1 (mod p) for all

i 6= j. By Theorem 2 with L = {0, 1, . . . , p− 2}, we get k ≤ ∑p−1
i=0

(
p3

i

)
.

If A1, . . . , Ak is an independent set, then |Ai ∩ Aj | = p − 1 (mod p) for all i 6= j. This means
|Ai ∩Aj | ∈ L = {p− 1, 2p− 1, . . . , p2 − p− 1}, without any modulo operations. By Theorem 1, we
get k ≤ ∑p−1

i=0

(
p3

i

)
.
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3 Borsuk’s conjecture

Can every bounded set S ⊂ Rd be partitioned into d + 1 sets of strictly smaller diameter?

This conjecture was a long-standing open problem, solved in the special cases of a sphere S
(by Borsuk himself), S being a smooth convex body (using the Borsuk-Ulam theorem) and low
dimension d ≤ 3. It can be seen that a simplex requires d + 1 sets, otherwise we have 2 vertices in
the same part and hence the diameter does not decrease.

The conjecture was disproved dramatically in 1993, when Kahn and Kalai showed that signifi-
cantly more than d + 1 parts are required.

Theorem 4. For any d sufficiently large, there exists a bounded set S ⊂ Rd (in fact a finite set)
such that any partition of S into fewer than 1.2

√
d parts contains a part of the same diameter.

The proof uses an algebraic construction, relying on the following lemma.

Lemma 1. For any prime p, there exists a set of 1
2

(
4p
2p

)
vectors F ⊆ {−1, +1}4p such that every

subset of 2
(

4p
p−1

)
vectors contains an orthogonal pair of vectors.

Proof. Consider 4p elements and all subsets of size 2p, containing a fixed element 1:

F = {I : I ⊆ [4p], |I| = 2p, 1 ∈ I}.

For each set I, we define a vector vI
i = +1 if i ∈ I and vI

i = −1 if i /∈ I. We set F = {vI : I ∈ F}.
The only way that a pair of such vectors vI , vJ can be orthogonal is that |I∆J | = 2p and then

|I ∩ J | = p. Note that |I ∩ J | is always between 1 and 2p− 1 (I, J are different and they share at
least 1 element). Hence vI · vJ = 0 iff |I ∩ J | = 0 (mod p).

We claim that this is the desired collection of vectors. For a subset G ⊂ F without any
orthogonal pair, we would have a family of sets G ⊂ F such that

• ∀I ∈ G; |I| = 0 (mod p).

• ∀ distinct I, J ∈ G; |I ∩ J | ∈ {1, 2, . . . , p− 1} (mod p).

By Theorem 2,

|G| ≤
p−1∑

k=0

(
4p

k

)
< 2

(
4p

p− 1

)
.

Now we are ready to prove the theorem.

Proof. Given a set of vectors F ⊆ Rn = R4p provided by the lemma above, we define a set of
vectors

X = {v ⊗ v : v ∈ F} ⊂ Rn2
.

Here, each vector is a tensor product w = v ⊗ v. More explicitly,

wij = vivj , 1 ≤ i, j ≤ n.

These vectors satisfy the following properties:
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• w ∈ {−1, +1}n2
; ||w|| =

√
n2 = n.

• w · w′ = (v ⊗ v) · (v′ ⊗ v′) = (v · v′)2 ≥ 0.

• w, w′ are orthogonal if and only if v, v′ are orthogonal.

• ||w − w′||2 = ||w||2 + ||w′||2 − 2(w · w′) = 2n2 − 2(v · v′)2 ≤ 2n2, and the pairs of maximum
distance correspond to orthogonal vectors.

By the lemma, any subset of 2
(

4p
p−1

)
vectors contains an orthogonal pair and so its diameter

is the same as the original set. If we want to decrease the diameter, we must partition X into
sets of size less than 2

(
4p

p−1

)
, and the number of such parts is at least

|X|
2
(

4p
p−1

) =
1
2

(
4p
2p

)

2
(

4p
p−1

) =
(3p + 1)(3p)(3p− 1) · · · (2p + 2)(2p + 1)

4(2p)(2p− 1) · · · (p + 1)p
≥

(
3
2

)p−1

.

The dimension of our space is d = n2 = (4p)2, and the number of parts must be at least
(3/2)p−1 = (3/2)

√
d/4−1. (The bound can be somewhat improved by a more careful analysis.)
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