MAT 307: Combinatorics

Lecture 15: Applications of linear algebra

Instructor: Jacob Fox

1 Linear algebra in combinatorics

After seeing how probability and topology can be useful in combinatorics, we are going to exploit
an even more basic area of mathematics - linear algebra. While the probabilistic method is usually
useful to construct examples and prove lower bounds, a common application of linear algebra is
to prove an upper bound, where we show that a collection of objects satisfying certain properties
cannot be too large. A typical argument to prove this is that we replace the objects by vectors
in a linear space of a certain dimension, and we show that the respective vectors are linearly
independent. Hence, there cannot be more of them than the dimension of the space.

2 Even and odd towns

We start with the following classical example. Suppose there is a town where residents love forming
different clubs. To limit the number of possible clubs, the town council establishes the following
rules:

Even town.
e Every club must have an even number of members.
e Two clubs must not have exactly the same members.
e Every two clubs must share an even number of members.

How many clubs can be formed in such a town? We leave it as an exercise to the reader that
there can be as many as 22 clubs (for an even number of residents n). Thus, the town council
reconvened and invited a mathematician to help with this problem. The mathematician suggested
the following modified rules.

Odd/even town.
e Every club must have an odd number of members.
e Every two clubs must share an even number of members.

The residents soon found out that they were able to form only n clubs under these rules, for
example by each resident forming a separate club. In fact, the mathematician was able to prove
that more than n clubs are impossible to form.

Theorem 1. Let F C 2" be such that |A| is odd for every A € F and |AN B| is even for every
distinct A, B € F. Then |F| < n.



Proof. Consider the vector space Z§, where Zs = {0, 1} is a finite field with operations modulo 2.
Represent each club A € F by its incidence vector 14 € Z3, where a component 4 is equal to 1
exactly if © € A. We claim that these vectors are linearly independent.

Suppose that z =) 4. raaly = 0. Fix any B € F. We consider the inner product z-1p = 0.
By the linearity of the inner product and the odd-town rules,

O0=z2-1p = ZaA(lA‘lg):aB,
AEF

all operations over Zy. We conclude that ap = 0 for all B € F. Therefore, the vectors {14 : A € F}
are linearly independent and their number cannot be more than n, the dimension of Z3. O

An alternative variant is an even/odd town, where the rules are reversed.

Even/odd town.
e Every club must have an even number of members.

e Every two clubs must share an odd number of members.

Exercise. By a simple reduction, any even/odd town with n residents and m clubs can be converted to
an odd/even town with n + 1 residents and m clubs. This shows that there is no even/odd town with n
residents and n + 2 clubs.

Theorem 2. Let F C 2" be such that |A| is even for every A € F and |AN B| is odd for every
distinct A, B € F. Then |F| < n.

Proof. Assume that |F| = n + 1. All calculations in the following are taken mod 2. The n + 1
vectors {14 : A € F} must be linearly dependent, i.e. > ,.ra414 = 0 for some non-trivial linear
combination. Note that 1 4-1g = 1 for distinct A, B € F and 14-14 = 0 for any A € F. Therefore,

]_B-ZOzAlA: Z ayg = 0.
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By subtracting these expressions for B,B’ € F, we get ap = ap/. This means that all the
coefficients ap are equal and in fact equal to 1 (otherwise the linear combination is trivial).

We have proved that for any even/odd town with n 4 1 clubs, >, .14 = 0. Moreover, for
any B€ F,0=1p-) 4cr1a =|F|—1=n which means that |F| is odd and n is even.

Now we use the following duality. Replace each set A € F by its complement A. Since the total
number of elements n is even, we get |A| even and |A N B| odd for any distinct A, B € F. This
means that the n + 1 complementary clubs A should also form an even/odd town and therefore
again, we should have ), 14 = 0. But then,

0= 14+ 1;=|F1
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where 1 is the all-ones vector. This implies that |F| is even, contradicting our previous conclusion
that |F| is odd. O



3 Fisher’s inequality

A slight modification of the odd-town rules is that every two clubs share a fixed number of members
k (there is no condition here on the size of each club). We get a similar result here, which is known
as Fisher’s inequality.

Theorem 3 (Fisher’s inequality). Suppose that F C 27l is a family of nonempty clubs such that
for some fixred k, |AN B| =k for every distinct A, B € F. Then |F| < n.

Proof. Again, we consider the incidence vectors {14 : A € F}, this time as vectors in the real
vector space R". We have 14 -1p = k for all A # B in F. Suppose that ) ,.raa14 = 0. Then

0 = [ aalalf= (Z 04A1A> : (Z aBlB>
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Note that |A| > k, and at most one set A* can actually have size k. Therefore, the contributions to
the last expression are all nonnegative and a4 = 0 except for |[A*| = k. But then, > 4 r a4 = -
and this must be zero as well.

We have proved that the vectors {14 : A € F} are linearly independent in R™ and hence their
number can be at most n. O

Fisher’s inequality is related to the study of designs, set systems with special intersection pat-
terns. We show here how such a system can be used to construct a graph on n vertices, which does
not have any clique or independent set of size w(nl/ 3). Recall that in a random graph, there are
no cliques or independent sets significantly larger than logn; so this explicit construction is very
weak in comparison.

Lemma 1. For a fized k, let G be a graph whose vertices are triples T' € ([7§1> and {A, B} is an
edge if |[AN B| =1. Then G does not contain any clique or independent set of size more than k.

Proof. Suppose @ is a clique in G. This means we have a set of triples on [k] where each pair
intersects in exactly one element. By Fisher’s inequality, the number of such triples can be at most
k.

Suppose S is an independent set in G. This is a set of triples on [k] where each pair intersects
in an even number of elements, either 0 or 2. By the odd-town theorem, the number of such triples
is again at most k. O

Another application of Fisher’s inequality is the following.

Lemma 2. Suppose P is a set of n points in the plane, not all on one line. Then pairs of points
from P define at least n distinct lines.

Proof. Let L be the set of lines defined by pairs of points from P. For each point z; € P, let A; C L
be the set of lines containing x;. We have |A;| > 2, otherwise all points lie on the same line. Also,
A; is different for each point; the same set of at least 2 lines would define the same point. Moreover,
any two points share exactly one line, i.e. |A; N Ay| =1 for any i # i'. By Fisher’s inequality, we
get |P| < |L|. O



