
MAT 307: Combinatorics

Lecture 15: Applications of linear algebra

Instructor: Jacob Fox

1 Linear algebra in combinatorics

After seeing how probability and topology can be useful in combinatorics, we are going to exploit
an even more basic area of mathematics - linear algebra. While the probabilistic method is usually
useful to construct examples and prove lower bounds, a common application of linear algebra is
to prove an upper bound, where we show that a collection of objects satisfying certain properties
cannot be too large. A typical argument to prove this is that we replace the objects by vectors
in a linear space of a certain dimension, and we show that the respective vectors are linearly
independent. Hence, there cannot be more of them than the dimension of the space.

2 Even and odd towns

We start with the following classical example. Suppose there is a town where residents love forming
different clubs. To limit the number of possible clubs, the town council establishes the following
rules:

Even town.

• Every club must have an even number of members.

• Two clubs must not have exactly the same members.

• Every two clubs must share an even number of members.

How many clubs can be formed in such a town? We leave it as an exercise to the reader that
there can be as many as 2n/2 clubs (for an even number of residents n). Thus, the town council
reconvened and invited a mathematician to help with this problem. The mathematician suggested
the following modified rules.

Odd/even town.

• Every club must have an odd number of members.

• Every two clubs must share an even number of members.

The residents soon found out that they were able to form only n clubs under these rules, for
example by each resident forming a separate club. In fact, the mathematician was able to prove
that more than n clubs are impossible to form.

Theorem 1. Let F ⊂ 2[n] be such that |A| is odd for every A ∈ F and |A ∩ B| is even for every
distinct A,B ∈ F . Then |F| ≤ n.
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Proof. Consider the vector space Zn
2 , where Z2 = {0, 1} is a finite field with operations modulo 2.

Represent each club A ∈ F by its incidence vector 1A ∈ Zn
2 , where a component i is equal to 1

exactly if i ∈ A. We claim that these vectors are linearly independent.
Suppose that z =

∑
A∈F αA1A = 0. Fix any B ∈ F . We consider the inner product z · 1B = 0.

By the linearity of the inner product and the odd-town rules,

0 = z · 1B =
∑

A∈F
αA(1A · 1B) = αB,

all operations over Z2. We conclude that αB = 0 for all B ∈ F . Therefore, the vectors {1A : A ∈ F}
are linearly independent and their number cannot be more than n, the dimension of Zn

2 .

An alternative variant is an even/odd town, where the rules are reversed.

Even/odd town.

• Every club must have an even number of members.

• Every two clubs must share an odd number of members.

Exercise. By a simple reduction, any even/odd town with n residents and m clubs can be converted to
an odd/even town with n + 1 residents and m clubs. This shows that there is no even/odd town with n

residents and n + 2 clubs.

Theorem 2. Let F ⊂ 2[n] be such that |A| is even for every A ∈ F and |A ∩ B| is odd for every
distinct A,B ∈ F . Then |F| ≤ n.

Proof. Assume that |F| = n + 1. All calculations in the following are taken mod 2. The n + 1
vectors {1A : A ∈ F} must be linearly dependent, i.e.

∑
A∈F αA1A = 0 for some non-trivial linear

combination. Note that 1A ·1B = 1 for distinct A,B ∈ F and 1A ·1A = 0 for any A ∈ F . Therefore,

1B ·
∑

A∈F
αA1A =

∑

A∈F :A6=B

αA = 0.

By subtracting these expressions for B,B′ ∈ F , we get αB = αB′ . This means that all the
coefficients αB are equal and in fact equal to 1 (otherwise the linear combination is trivial).

We have proved that for any even/odd town with n + 1 clubs,
∑

A∈F 1A = 0. Moreover, for
any B ∈ F , 0 = 1B ·

∑
A∈F 1A = |F| − 1 = n which means that |F| is odd and n is even.

Now we use the following duality. Replace each set A ∈ F by its complement Ā. Since the total
number of elements n is even, we get |Ā| even and |Ā ∩ B̄| odd for any distinct A,B ∈ F . This
means that the n + 1 complementary clubs Ā should also form an even/odd town and therefore
again, we should have

∑
A∈F 1Ā = 0. But then,

0 =
∑

A∈F
1A +

∑

A∈F
1Ā = |F|1

where 1 is the all-ones vector. This implies that |F| is even, contradicting our previous conclusion
that |F| is odd.
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3 Fisher’s inequality

A slight modification of the odd-town rules is that every two clubs share a fixed number of members
k (there is no condition here on the size of each club). We get a similar result here, which is known
as Fisher’s inequality.

Theorem 3 (Fisher’s inequality). Suppose that F ⊂ 2[n] is a family of nonempty clubs such that
for some fixed k, |A ∩B| = k for every distinct A,B ∈ F . Then |F| ≤ n.

Proof. Again, we consider the incidence vectors {1A : A ∈ F}, this time as vectors in the real
vector space Rn. We have 1A · 1B = k for all A 6= B in F . Suppose that

∑
A∈F αA1A = 0. Then

0 = ||
∑

A∈F
αA1A||2 =

(∑

A∈F
αA1A

)
·
(∑

B∈F
αB1B

)

=
∑

A∈F
α2

A|A|+
∑

A 6=B∈F
αAαBk = k

(∑

A∈F
αA

)2

+
∑

A∈F
α2

A(|A| − k).

Note that |A| ≥ k, and at most one set A∗ can actually have size k. Therefore, the contributions to
the last expression are all nonnegative and αA = 0 except for |A∗| = k. But then,

∑
A∈F αA = αA∗

and this must be zero as well.
We have proved that the vectors {1A : A ∈ F} are linearly independent in Rn and hence their

number can be at most n.

Fisher’s inequality is related to the study of designs, set systems with special intersection pat-
terns. We show here how such a system can be used to construct a graph on n vertices, which does
not have any clique or independent set of size ω(n1/3). Recall that in a random graph, there are
no cliques or independent sets significantly larger than log n; so this explicit construction is very
weak in comparison.

Lemma 1. For a fixed k, let G be a graph whose vertices are triples T ∈ (
[k]
3

)
and {A,B} is an

edge if |A ∩B| = 1. Then G does not contain any clique or independent set of size more than k.

Proof. Suppose Q is a clique in G. This means we have a set of triples on [k] where each pair
intersects in exactly one element. By Fisher’s inequality, the number of such triples can be at most
k.

Suppose S is an independent set in G. This is a set of triples on [k] where each pair intersects
in an even number of elements, either 0 or 2. By the odd-town theorem, the number of such triples
is again at most k.

Another application of Fisher’s inequality is the following.

Lemma 2. Suppose P is a set of n points in the plane, not all on one line. Then pairs of points
from P define at least n distinct lines.

Proof. Let L be the set of lines defined by pairs of points from P . For each point xi ∈ P , let Ai ⊆ L
be the set of lines containing xi. We have |Ai| ≥ 2, otherwise all points lie on the same line. Also,
Ai is different for each point; the same set of at least 2 lines would define the same point. Moreover,
any two points share exactly one line, i.e. |Ai ∩ Ai′ | = 1 for any i 6= i′. By Fisher’s inequality, we
get |P | ≤ |L|.
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