
MAT 307: Combinatorics

Lecture 14: Topological methods

Instructor: Jacob Fox

1 The Borsuk-Ulam theorem

We have seen how combinatorics borrows from probability theory. Another area which has been
very beneficial to combinatorics, perhaps even more surprisingly, is topology. We have already seen
Brouwer’s fixed point theorem and its combinatorial proof.

Theorem 1 (Brouwer). For any continuous function f : Bn → Bn, there is a point x ∈ Bn such
that f(x) = x.

A more powerful topological tool which seems to stand at the root of most combinatorial
applications is a somewhat related result which can be stated as follows. Here, Sn denotes the
n-dimensional sphere, i.e. the surface of the (n + 1)-dimensional ball Bn+1.

Theorem 2 (Borsuk-Ulam). For any continuous function f : Sn → Rn, there is a point x ∈ Sn

such that f(x) = f(−x).

There are many different proofs of this theorem, some of them elementary and some of them
using a certain amount of the machinery of algebraic topology. All the proofs are, however, more
involved than the proof of Brouwer’s theorem. We will not give the proof here.

In the following, we use a corollary (in fact an equivalent re-statement of the Borsuk-Ulam
theorem).

Theorem 3. For any covering of Sn by n + 1 open or closed sets A0, . . . , An, there is a set Ai

which contains two antipodal points x,−x.

Let’s just give some intuition how this is related to Theorem 2. For now, let us assume that all
the sets Ai are closed. (The extension to open sets is a technicality but the idea is the same.) We
define a continuous function f : Sn → Rn,

f(x) = (dist(x,A1), dist(x,A2), . . . , dist(x, An))

where dist(x, A) = infy∈A ||x − y|| is the distance of x from A. By Theorem 2, there is a point
x ∈ Sn such that f(x) = f(−x). This means that dist(x,Ai) = dist(−x,Ai) for 1 ≤ i ≤ n. If
dist(x,Ai) = 0 for some i, then we are done. If dist(x,Ai) = dist(−x,Ai) 6= 0 for all i ∈ {1, . . . , n},
it means that x,−x /∈ A1 ∪ . . . ∪An. But then x,−x ∈ A0.

2 Kneser graphs

Similarly to the previous sections, Kneser graphs are derived from the intersection pattern of a
collection of sets. More precisely, the vertex set of a Kneser graph consists of all k-sets on a given
ground set, and two k-sets form an edge if they are disjoint.
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Definition 1. The Kneser graph on a ground set [n] is

KGn,k =
((

[n]
k

)
, {(A,B) : |A| = |B| = k,A ∩B = ∅}

)
.

Thus, the maximum independent set in KGn,k is equivalent to the maximum intersecting family
of k-sets - by the Erős-Ko-Rado theorem, α(KGn,k) =

(
n−1
k−1

)
= k

n |V | for k ≤ n/2. The maximum
clique in KGn,k is equivalent to the maximum number of disjoint k-sets, i.e. ω(KGn,k) = bn/kc.

Another natural question is, what is the chromatic number of KGn,k? Note that for n = 3k−1,
the Kneser graph does not have any triangle, and also α(KG3k−1,k) ≈ 1

3 |V |. Yet, we will show that
the chromatic number χ(KGn,k) grows with n. Therefore, these graphs give another example of a
triangle-free graph of high chromatic number.

Theorem 4 (Lovász-Kneser). For all k > 0 and n ≥ 2k − 1, χ(KGn,k) = n− 2k + 2.

Proof. First, we show that KGn,k can be colored using n − 2k + 2 colors. This means assigning
colors to k-sets, so that all k-sets of the same color intersect. This is easy to achieve: color each
k-set with all elements in [2k − 1] with one color, and every other k-set by their largest element.
We have n− 2k + 2 colors and all k-sets of a given color intersect.

The proof that n − 2k + 1 colors are not enough is more interesting. Let d = n − 2k + 1 and
assume that KGn,k is colored using d colors. Let X be a set of n points on Sd in a general position
(there are no d + 1 points lying on a d-dimensional hyperplane through the origin). Each subset
A ∈ (

X
k

)
corresponds to a vertex of KGn,k which is colored with one of d colors. Let Ai be the

collection of k-sets corresponding to color i.
We define sets U1, . . . , Ud ⊆ Sd as follows: x ∈ Ui, if there exists A ∈ Ai such that ∀y ∈

A; x · y > 0. In other words, x ∈ Ui if some k-set of color i lies in the open hemisphere whose pole
is x. Finally, we define U0 = Sd \ (U1 ∪ U2 ∪ . . . ∪ Ud). It’s easy to see that the sets U1, . . . , Ud are
open and U0 is closed. By Theorem 3, there is a set Ui and two antipodes x,−x ∈ Ui.

If this happens for i = 0, then we have two antipodes x,−x which are not contained in any
Ui, i > 0. This means that both hemispheres contain fewer than k points, but then n−2(k−1) = d+1
points must be contained in the “equator” between the two hemispheres, contradicting the general
position of X. Therefore, x,−x ∈ Ui for some i > 0, which means we have two k-sets of color i
lying in opposite hemispheres. This means that they are disjoint and hence forming an edge in
KGn,k, which is a contradiction.

3 Dolnikov’s theorem

The Kneser graph can be defined naturally for any set system F : two sets form an edge if they are
disjoint. We denote this graph by KG(F):

KG(F) = {F , {(A,B) : A,B ∈ F , A ∩B = ∅}}.

We derive a bound on the chromatic number of KG(F) which generalizes Theorem 4. For this
purpose, we need the notion of a 2-colorability defect.

Definition 2. For a hypergraph (or set system) F , the 2-colorability defect cd2(F) is the smallest
number of vertices, such that removing them and all incident hyperedges from F produces a 2-
colorable hypergraph.
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For example, if H is the hypergraph of all k-sets on n vertices, we need to remove n − 2k + 2
vertices and then the remaining hypergraph of k-sets on 2k−2 vertices is 2-colorable, i.e. cd2(H) =
n − 2k + 2. Coincidentally, this is also the chromatic number of the corresponding Kneser graph.
We prove the following.

Theorem 5 (Dolnikov). For any hypergraph (or set system) F ,

χ(KG(F)) ≥ cd2(F).

We remark that equality does not always hold, and also cd2(F) is not easy to determine for a
given hypergraph. The connection between two very different coloring concepts is quite surprising,
though. Our first proof follows the lines of the Kneser-Lovász theorem.

Proof. Let d = χ(KG(F)) and consider a coloring of F by d colors. Again, we identify the ground
set of F with a set of points X ⊂ Sd in general position, with no d+1 points on the same hyperplane
through the origin. We define Ui ⊆ Sd by x ∈ Ui iff some set F ∈ F of color i is contained in
H(x) = {y ∈ Sd : x · y > 0}. Also, we set A0 = Sd \ (A1 ∪ . . . ∪Ad).

By Theorem 3, there is a set Ai containing two antipodal points x,−x. This cannot happen
for i ≥ 1, because then there would be two sets F, F ′ ∈ F of color i such that F ⊂ H(x) and
F ′ ⊂ H(−x). This would imply F ∩ F ′ = ∅, contradicting the coloring property of the Kneser
graph KG(F).

Therefore, there are two antipodal points x,−x ∈ A0. This implies that there is no set
F ∈ F in either hemisphere H(x) or H(−x). By removing the points on the equator between
H(x) and H(−x), whose number is at most d = χ(KG(F)), and also removing all the sets in
F containing them, we obtain a hypergraph F ′ such that all the sets F ∈ F ′ touch both hemi-
spheres H(x),H(−x). This hypergraph can be colored by 2 colors corresponding to the two hemi-
spheres.

Next, we present Dolnikov’s original proof, which is longer but perhaps more intuitive. It relies
on the following geometric lemma, which follows from the Borsuk-Ulam theorem.

Lemma 1. Let C1, C2, . . . , Cd be families of convex bounded sets in Rd. Suppose that each family
Ci is intersecting, i.e. ∀C,C ′ ∈ Ci; C ∩ C ′ 6= ∅. Then there is a hyperplane intersecting all the sets
in

⋃d
i=1 Ci.

Proof. Let’s consider a vector v ∈ Sd−1, which defines a line in Rd, Lv = {αv : α ∈ R}. For each
family Ci, we consider its projection on Lv. Formally, for each C ∈ Ci we consider

P (C, v) = {x · v : x ∈ C}.

Since each C is a convex bounded set, P (C, v) is a bounded interval. C ∩C ′ 6= ∅ for all C,C ′ ∈ Ci,
and therefore all the intervals P (C, v) are pairwise intersecting as well. Hence, the intersection of
all these intervals,

⋂
C∈Ci

P (C, v), is a nonempty bounded interval as well. Let fi(v) denote the
midpoint of

⋂
C∈Ci

P (C, v). This means that the hyperplane

H(v, λ) = {x ∈ Rd : x · v = λ}

for λ = fi(v) intersects all the sets in Ci.
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For each 1 ≤ i ≤ d − 1, define gi(v) = fi(v) − fd(v). Observe that P (C,−v) = −P (C, v) and
hence fi(−v) = −fi(v), and also gi(−v) = −gi(v). By Theorem 2, there is a point v ∈ Sd−1 such
that for all 1 ≤ i ≤ d−1, gi(v) = gi(−v). Since gi(−v) = −gi(v), this implies that in fact gi(v) = 0.
In other words, fi(v) = fd(v) = λ for all 1 ≤ i ≤ d − 1. This means that the hyperplane H(v, λ)
intersects all the sets in Ci, for each 1 ≤ i ≤ d.

Now we can give the second proof of Dolnikov’s theorem.

Proof. We consider a coloring of the Kneser graph KG(F) by d colors. Denote by Fi the collection
of sets in F corresponding to vertices of color i.

We represent the ground set of F by a set of points X ⊂ Rd in general position. (Observe that
in the first proof, we placed the points in Sd ⊂ Rd+1.) Again, we assume that there are no d + 1
points on the same hyperplane. We define d families of convex sets: for every i ∈ [d],

Ci = {conv(F ) : F ∈ Fi}.

In other words, these are polytopes corresponding to sets of color i. In each family, all polytopes
are pairwise intersecting, by the coloring property of KG(F). Therefore by Lemma 1, there is a
hyperplane H intersecting all these polytopes in each Ci. Let Y = H ∩ X be the set of points
exactly on the hyperplane. Let’s remove Y and all the sets containing some point in Y , and denote
the remaining sets by F ′. Each set F ′ ∈ F ′ must contain vertices on both sides of H, otherwise
conv(F ′) would not be intersected by H. Therefore, coloring the open halfspaces on the two sides
of H by 2 colors, we obtain a valid 2-coloring of F ′.
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