MAT 307: Combinatorics
Lecture 11: The probabilistic method

Instructor: Jacob Fox

Very often, we need to construct a combinatorial object satisfying properties, for example to
show a counterexample or a lower bound for a certain statement. In situations where we do not
have much a priori information and it’s not clear how to define a concrete example, it’s often useful
to try a random construction.

1 Probability basics

A probability space is a pair (€2, Pr) where Pr is a normalized measure on 2, i.e. Pr(Q) = 1. In
combinatorics, it’s mostly sufficient to work with finite probability spaces, so we can avoid a lot
of the technicalities of measure theory. We can assume that €2 is a finite set and each elementary
event w € Q has a certain probability Prjw] € [0,1]; > .o Priw] = 1.

Any subset A C Q is an event, of probability Pr[A] = > ., Pr[w]. Observe that a union of
events corresponds to OR and an intersection of events corresponds to AND.

A random variable is any function X : Q — R. Two important notions here will be expectation
and independence.

Definition 1. The expectation of a random variable X is

E[X] =) X(w)Prlw] =) aPr[X =a.

weN
Definition 2. Two events A, B C Q) are independent if
Pr[A N B] = Pr[A] Pr[B].

Two random variables X,Y are independent if the events X = a and Y = b are independent for
any choices of a,b.

Lemma 1. For independent random variables X,Y, we have E[XY] = E[X]|E[Y].
Proof.

EXY] =) X(w)Y(w)Prlw] =) abPr[X =a,YV =b] =) aPr[X =a] Y bPr[Y =] = E[X]E[Y].
b
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The two most elementary tools that we will use are the following.



1.1 The union bound

Lemma 2. For any collection of events A1, ..., A,,
Pr[A; UA;U...UA,] <Y Prl4].
i=1

An equality holds if the events A; are disjoint.

This is obviously true by the properties of a measure. This bound is very general, since we do
not need to assume anything about the independence of Ay, ..., A,.

1.2 Linearity of expectation

Lemma 3. For any collection of random variables X1, ..., X,,
E[X,+ X2 +...+ Xa] = > _E[X)].

Again, we do not need to assume anything about the independence of X1,..., X,.

Proof.

ED X =) ) Xi(w)Prlw] =) Xi(w)Priw] = Y E[X].
=1 i=1

weN =1 i=1 we

2 2-colorability of hypergraphs

Our first application is the question of 2-colorability of hypergraphs. We call a hypergraph 2-
colorable, if its vertices can be assigned 2 colors so that every hyperedge contains both colors. An

example which is not 2-colorable is the complete r-uniform hypergraph on 2r — 1 vertices, Ké:),l
This is certainly not 2-colorable, because for any coloring there is a set of r vertices of the same
.. (2r—1
color. The number of hyperedges here is ( " ) ~ 4" /\/r.
A question is whether a number of edges exponential in r is necessary to make a hypergraph

non-2-colorable. The probabilistic method shows easily that this is true.
Theorem 1. Any r-uniform hypergraph with less than 2"~! hyperedges is 2-colorable.

Proof. Consider a random coloring, where every vertex is colored independently red/blue with
probability 1/2. For each hyperedge e, the probability that e is monochromatic is 2/2". By the

union bound,
2 2|
Pr[3monochromatic edge| < — = 2]
27‘ 2T
eckE

<1

by our assumption that |E| < 277!, If every coloring contained a monochromatic edge, this proba-
bility would be 1; therefore, for at least one coloring this is not the case and therefore the hypergraph
is 2-colorable. O



3 A tournament paradox

A tournament is a directed graph where we have an arrow in exactly one direction for each pair
of vertices. A tournament can represent the outcome of a competition where exactly one game is
played between every pair of teams. A natural notion of k winning teams would be such that there
is no other team, beating all these k teams. Unfortunately, such a notion can be ill-defined, for any
value of k.

Theorem 2. For any k > 1, there exists a tournament T such that for every set of k vertices B,
there exists another vertex x such that x — y for ally € B.

Proof. We can assume k sufficiently large, because the theorem gets only stronger for larger k.
Given k, we set n = k + k?2* and consider a uniformly random tournament on n vertices. This
means, we select an arrow x — y or y — x randomly for each pair of vertices x, y.

First let’s fix a set of vertices B, |B| = k, and analyze the event that no other vertex beats all
the vertices in B. For each particular vertex z,

1
Pr[Vy € B;z — y| = o"
and by taking the complement,

1
Pr[EIyeB;y—>x]:1—2—k.

Since these events are independent for different vertices z € V' '\ B, we can conclude that

2

PrlVz € V\B;3ye By — x| =(1—-2"F)""*=(1- 27’“)’“22]6 <e k.

By the union bound over all potential sets B,

K22k
Pr[3B;|B|=k;Vex € V\ B;3y € B;y — 2] < (Z)ekz < (/’<:22k)ke’]€2 = ( . > )
e
For k sufficiently large, this is less than 1, and hence there exists a tournament where the respective
event is false. In other words, VB;|B| =k;Jz € V \ B;Vy € B;z — y. O

It is known that k%2* is quite close to the optimal size of a tournament satisfying this property;
more precisely, ck2F for some ¢ > 0 is known to be insufficient.

4 Sum-free sets

Our third application is a statement about sum-free sets, that is sets of integers B such that if
x,y € B then x +y ¢ B. A question that we investigate here is, how many elements can be pick
from any set A of n integers so that they form a sum-free set? As an example, consider A = [2n].
We can certainly pick B = {n+ 1,n+2,...,2n} and this is a sum-free set of size %|A| Perhaps
this is not possible for any A, but we can prove the following.

Theorem 3. For any set of nonzero integers A, there is a sum-free subset B C A of size |B| > %|A[



Proof. We proceed by reducing the problem to a problem in the finite field Z,. We choose p prime
large enough so that |a| < p for all a € A. We observe that in Z, (counting addition modulo p),
there is a sum-free set S = {[p/3],...,[2p/3]}, which has size [S| > (p — 1).

We choose a subset of A as follows. Pick a random element z € Z; = Z,, \ {0}, and let

Az ={a € A: (ax modp) € S}.

Note that A, is sum-free, because for any a,b € A,, we have (ax mod p), (bx mod p) € S and hence
(ax +br mod p) ¢ S, a+b ¢ A,. It remains to show that A, is large for some z € Z;. We have

B[4, = 3 Prlae 4,] = 3 Prl(az mod p) € 5] > é|A\
a€A a€A

because Pr[(az mod p) € S] is equal to |S|/(p —1) > % for any fixed a # 0. This implies that there
is a value of x for which |A,| > §|Al. O



