
MAT 307: Combinatorics

Lecture 11: The probabilistic method

Instructor: Jacob Fox

Very often, we need to construct a combinatorial object satisfying properties, for example to
show a counterexample or a lower bound for a certain statement. In situations where we do not
have much a priori information and it’s not clear how to define a concrete example, it’s often useful
to try a random construction.

1 Probability basics

A probability space is a pair (Ω,Pr) where Pr is a normalized measure on Ω, i.e. Pr(Ω) = 1. In
combinatorics, it’s mostly sufficient to work with finite probability spaces, so we can avoid a lot
of the technicalities of measure theory. We can assume that Ω is a finite set and each elementary
event ω ∈ Ω has a certain probability Pr[ω] ∈ [0, 1];

∑
ω∈Ω Pr[ω] = 1.

Any subset A ⊆ Ω is an event, of probability Pr[A] =
∑

ω∈A Pr[ω]. Observe that a union of
events corresponds to OR and an intersection of events corresponds to AND.

A random variable is any function X : Ω → R. Two important notions here will be expectation
and independence.

Definition 1. The expectation of a random variable X is

E[X] =
∑

ω∈Ω

X(ω) Pr[ω] =
∑

a

aPr[X = a].

Definition 2. Two events A, B ⊆ Ω are independent if

Pr[A ∩B] = Pr[A] Pr[B].

Two random variables X,Y are independent if the events X = a and Y = b are independent for
any choices of a, b.

Lemma 1. For independent random variables X, Y , we have E[XY ] = E[X]E[Y ].

Proof.

E[XY ] =
∑

ω∈Ω

X(ω)Y (ω) Pr[ω] =
∑

a,b

abPr[X = a, Y = b] =
∑

a

aPr[X = a]
∑

b

bPr[Y = b] = E[X]E[Y ].

The two most elementary tools that we will use are the following.
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1.1 The union bound

Lemma 2. For any collection of events A1, . . . , An,

Pr[A1 ∪A2 ∪ . . . ∪An] ≤
n∑

i=1

Pr[Ai].

An equality holds if the events Ai are disjoint.

This is obviously true by the properties of a measure. This bound is very general, since we do
not need to assume anything about the independence of A1, . . . , An.

1.2 Linearity of expectation

Lemma 3. For any collection of random variables X1, . . . , Xn,

E[X1 + X2 + . . . + Xn] =
n∑

i=1

E[Xi].

Again, we do not need to assume anything about the independence of X1, . . . , Xn.

Proof.

E[
n∑

i=1

Xi] =
∑

ω∈Ω

n∑

i=1

Xi(ω) Pr[ω] =
n∑

i=1

∑

ω∈Ω

Xi(ω) Pr[ω] =
n∑

i=1

E[Xi].

2 2-colorability of hypergraphs

Our first application is the question of 2-colorability of hypergraphs. We call a hypergraph 2-
colorable, if its vertices can be assigned 2 colors so that every hyperedge contains both colors. An
example which is not 2-colorable is the complete r-uniform hypergraph on 2r − 1 vertices, K

(r)
2r−1.

This is certainly not 2-colorable, because for any coloring there is a set of r vertices of the same
color. The number of hyperedges here is

(
2r−1

r

) ' 4r/
√

r.
A question is whether a number of edges exponential in r is necessary to make a hypergraph

non-2-colorable. The probabilistic method shows easily that this is true.

Theorem 1. Any r-uniform hypergraph with less than 2r−1 hyperedges is 2-colorable.

Proof. Consider a random coloring, where every vertex is colored independently red/blue with
probability 1/2. For each hyperedge e, the probability that e is monochromatic is 2/2r. By the
union bound,

Pr[∃monochromatic edge] ≤
∑

e∈E

2
2r

=
2|E|
2r

< 1

by our assumption that |E| < 2r−1. If every coloring contained a monochromatic edge, this proba-
bility would be 1; therefore, for at least one coloring this is not the case and therefore the hypergraph
is 2-colorable.
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3 A tournament paradox

A tournament is a directed graph where we have an arrow in exactly one direction for each pair
of vertices. A tournament can represent the outcome of a competition where exactly one game is
played between every pair of teams. A natural notion of k winning teams would be such that there
is no other team, beating all these k teams. Unfortunately, such a notion can be ill-defined, for any
value of k.

Theorem 2. For any k ≥ 1, there exists a tournament T such that for every set of k vertices B,
there exists another vertex x such that x → y for all y ∈ B.

Proof. We can assume k sufficiently large, because the theorem gets only stronger for larger k.
Given k, we set n = k + k22k and consider a uniformly random tournament on n vertices. This
means, we select an arrow x → y or y → x randomly for each pair of vertices x, y.

First let’s fix a set of vertices B, |B| = k, and analyze the event that no other vertex beats all
the vertices in B. For each particular vertex x,

Pr[∀y ∈ B; x → y] =
1
2k

and by taking the complement,

Pr[∃y ∈ B; y → x] = 1− 1
2k

.

Since these events are independent for different vertices x ∈ V \B, we can conclude that

Pr[∀x ∈ V \B;∃y ∈ B; y → x] = (1− 2−k)n−k = (1− 2−k)k22k ≤ e−k2
.

By the union bound over all potential sets B,

Pr[∃B; |B| = k;∀x ∈ V \B; ∃y ∈ B; y → x] ≤
(

n

k

)
e−k2 ≤ (k22k)ke−k2

=
(

k22k

ek

)k

.

For k sufficiently large, this is less than 1, and hence there exists a tournament where the respective
event is false. In other words, ∀B; |B| = k;∃x ∈ V \B; ∀y ∈ B; x → y.

It is known that k22k is quite close to the optimal size of a tournament satisfying this property;
more precisely, ck2k for some c > 0 is known to be insufficient.

4 Sum-free sets

Our third application is a statement about sum-free sets, that is sets of integers B such that if
x, y ∈ B then x + y /∈ B. A question that we investigate here is, how many elements can be pick
from any set A of n integers so that they form a sum-free set? As an example, consider A = [2n].
We can certainly pick B = {n + 1, n + 2, . . . , 2n} and this is a sum-free set of size 1

2 |A|. Perhaps
this is not possible for any A, but we can prove the following.

Theorem 3. For any set of nonzero integers A, there is a sum-free subset B ⊆ A of size |B| ≥ 1
3 |A|.
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Proof. We proceed by reducing the problem to a problem in the finite field Zp. We choose p prime
large enough so that |a| < p for all a ∈ A. We observe that in Zp (counting addition modulo p),
there is a sum-free set S = {dp/3e, . . . , b2p/3c}, which has size |S| ≥ 1

3(p− 1).
We choose a subset of A as follows. Pick a random element x ∈ Z∗p = Zp \ {0}, and let

Ax = {a ∈ A : (ax mod p) ∈ S}.

Note that Ax is sum-free, because for any a, b ∈ Ax, we have (ax mod p), (bx mod p) ∈ S and hence
(ax + bx mod p) /∈ S, a + b /∈ Ax. It remains to show that Ax is large for some x ∈ Z∗p . We have

E[|Ax|] =
∑

a∈A

Pr[a ∈ Ax] =
∑

a∈A

Pr[(ax mod p) ∈ S] ≥ 1
3
|A|

because Pr[(ax mod p) ∈ S] is equal to |S|/(p− 1) ≥ 1
3 for any fixed a 6= 0. This implies that there

is a value of x for which |Ax| ≥ 1
3 |A|.
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