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1 Bipartite forbidden subgraphs

We have seen the Erdős-Stone theorem which says that given a forbidden subgraph H, the extremal
number of edges is ex(n,H) = 1

2(1−1/(χ(H)−1)+o(1))n2. Here, o(1) means a term tending to zero
as n → ∞. This basically resolves the question for forbidden subgraphs H of chromatic number
at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite
forbidden subgraphs, χ(H) = 2, this answer is not satisfactory, because we get ex(n,H) = o(n2),
which does not determine the order of ex(n,H). Hence, bipartite graphs form the most interesting
class of forbidden subgraphs.

2 Graphs without any 4-cycle

Let us start with the first non-trivial case where H is bipartite, H = C4. I.e., the question is how
many edges G can have before a 4-cycle appears. The answer is roughly n3/2.

Theorem 1. For any graph G on n vertices, not containing a 4-cycle,

E(G) ≤ 1
4
(1 +

√
4n− 3)n.

Proof. Let dv denote the degree of v ∈ V . Let F denote the set of “labeled forks”:

F = {(u, v, w) : (u, v) ∈ E, (u,w) ∈ E, v 6= w}.

Note that we do not care whether (v, w) is an edge or not. We count the size of F in two possible
ways: First, each vertex u contributes du(du − 1) forks, since this is the number of choices for v
and w among the neighbors of u. Hence,

|F | =
∑

u∈V

du(du − 1).

On the other hand, every ordered pair of vertices (v, w) can contribute at most one fork, because
otherwise we get a 4-cycle in G. Hence,

|F | ≤ n(n− 1).

By combining these two inequalities,

n(n− 1) ≥
∑

u∈V

d2
u −

∑

u∈V

du
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and by applying Cauchy-Schwartz, we get

n(n− 1) ≥ 1
n

(∑

u∈V

du

)2

−
∑

u∈V

du =
(2m)2

n
− 2m.

This yields a quadratic equation 4m2 − 2mn− n2(n− 1) ≤ 0. A solution yields the theorem.

This bound can be indeed achieved, i.e. there exist graphs with Ω(n3/2) 1 edges, not containing
any 4-cycle. One example is the incidence graphs between lines and points of a finite projective
plane. We give a similar example here, which is algebraically defined and easier to analyze.

Example. Let V = Zp×Zp, i.e. vertices are pairs of elements of a finite field (x, y). The number
of vertices is n = p2. We define a graph G, where (x, y) and (x′, y′) are joined by an edge, if
x + x′ = yy′. For each vertex (x, y), there are p solutions of this equation (pick any y′ ∈ Zp and x′

is uniquely determined). One of these solutions could be (x, y) itself, but in any case (x, y) has at
least p− 1 neighbors. Hence, the number of edges in the graph is m ≥ 1

2p2(p− 1) = Ω(n3/2).
Finally, observe that there is no 4-cycle in G. Suppose that (x, y) has neighbors (x1, y1) and

(x2, y2). This means x + x1 = yy1 and x + x2 = yy2, therefore x1 − x2 = y(y1 − y2). Hence, given
(x1, y1) 6= (x2, y2), y is determined uniquely, and then x can be also computed from one of the
equations above. So (x1, y1) and (x2, y2) can have only one shared neighbor, which means there is
no C4 in the graph.

3 Graphs without a complete bipartite subgraph

Observe that another way to view C4 is as a complete bipartite subgraph K2,2. More generally, we
can ask how many edges force a graph to contain a complete bipartite graph Kt,t.

Theorem 2. Let t ≥ 2. Then there is a constant c > 0 such that any graph on n vertices without
Kt,t has at most cn2−1/t edges.

Proof. Let G be a graph without Kt,t, V (G) = {1, 2, . . . , n} and let di denote the degree of vertex
i. The neighborhood of vertex i contains

(
di
t

)
t-tuples of vertices. Let’s count such t-tuples over

the neighborhoods of all vertices i. Note that any particular t-tuple can be counted at most t− 1
times in this way, otherwise we would get a copy of Kt,t. Therefore,

n∑

i=1

(
di

t

)
≤ (t− 1)

(
n

t

)
.

Observe that the average degree in the graph is much more than t, otherwise we have nothing to
prove. Due to the convexity of

(
di
t

)
as a function of di, the left-hand side is minimized if all the

degrees are equal, di = 2m/n. Therefore,

n∑

i=1

(
di

t

)
≥ n

(
2m/n

t

)
≥ n

(2m/n− t)t

t!

1Ω(f(n)) denotes any function which is lower-bounded by cf(n) for some constant c > 0 for sufficiently large n.
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and

(t− 1)
(

n

t

)
≤ (t− 1)

nt

t!
.

We conclude that
n(2m/n− t)t ≤ (t− 1)nt

which means that m ≤ 1
2(t− 1)1/tn2−1/t + 1

2 tn ≤ n2−1/t + 1
2 tn.

As an exercise, the reader can generalize the bound above to the following.

Theorem 3. Let s ≥ t ≥ 2. Then for sufficiently large n, any graph on n vertices without Ks,t has
O(s1/tn2−1/t) edges.

Another extremal bound of this type is for forbidden even cycles. (Recall that for a forbidden
odd cycle, the number of edges can be as large as 1

4n2.)

Theorem 4. If G has n vertices and no cycle C2k, then the number of edges is m ≤ cn1+1/k for
some constant c > 0.

We prove a weaker version of this bound, for graphs that do not contain any cycle of length at
most 2k.

Theorem 5. If G has n vertices and no cycles of length shorter than 2k + 1, then the number of
edges is m < n(n1/k + 1).

Proof. Let ρ(G) = |E(G)|/|V (G)| denote the density of a graph G. First, we show that there is a
subgraph G′ where every vertex has degree at least ρ(G): Let G′ be a graph of maximum density
among all subgraphs of G (certainly ρ(G′) ≥ ρ(G)). We claim that all degrees in G′ are at least
ρ(G′). If not, suppose G′ has n′ vertices and m′ = ρ(G′)n′ edges; then by removing a vertex of degree
d′ < ρ(G′), we obtain a subgraph G′′ with n′′ = n′ − 1 vertices and m′′ = m′ − d′ > ρ(G′)(n′ − 1)
edges, hence ρ(G′′) = m′′/n′′ > ρ(G′) which is a contradiction.

Now consider a graph G with m ≥ n(n1/k + 1) edges and its subgraph G′ of maximum density,
where all degrees are at least ρ(G) ≥ n1/k + 1. We start from any vertex v0 and grow a tree where
on each level Lj we include all the neighbors of vertices in Lj−1. As long as we do not encounter
any cycle, each vertex has at least n1/k new children and |Lj | ≥ n1/k|Lj−1|. Assuming that there is
no cycle of length shorter than 2k + 1, we can grow this tree up to level Lk and we have |Lk| ≥ n.
However, this contradicts the fact that the levels should be disjoint and all contained in a graph
on n vertices.

4 Application to additive number theory

The following type of question is studied in additive number theory. Suppose we have a set of
integers B and we want to generate B by forming sums of numbers from a smaller set A. How
small can A be?

More specifically, suppose we would like to generate a certain sequence of squares, B =
{12, 22, 32, . . . , m2}, by taking sums of pairs of numbers, A+A = {a+ b : a, b ∈ A}. How small can
A be so that B ⊆ A + A? Obviously, we need |A| ≥ √

m to generate any set of m numbers.

Theorem 6. For any set A such that B = {12, 22, 32, . . . , m2} ⊆ A + A, we need |A| ≥ m2/3−o(1).
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Proof. Let B ⊆ A+A and suppose |A| = n. We define a graph G whose vertices are A and (a1, a2)
is an edge if a1 + a2 = x2 for some integer x. Since we need to generate m different squares, the
number of edges is at least m.

Consider a1, a2 ∈ A and all numbers b such that a1 + b = x2 and a2 + b = y2. Note that we get
a different pair (x, y) for each b. Then, a1 − a2 = x2 − y2 = (x + y)(x − y). Now, (x + y, x − y)
cannot be the same pair for different numbers b. Denoting the number of divisors of a1 − a2 by d,
we can have at most

(
d
2

)
such possible pairs, and each of them can be used only for one number b.

Now we use the following proposition.

Proposition. For any ε > 0 and n large enough, n has less than nε divisors.
This can be proved by considering the prime decomposition of n =

∏t
i=1 pαi

i , where the number
of divisors is d =

∏t
i=1(1 + αi). We assume αi ≥ 1 for all i. We claim that for any fixed ε > 0 and

n large enough,

φ(n) =
log d

log n
=

∑t
i=1 log(1 + αi)∑t

i=1 αi log pi

< ε.

Observe that log(1+αi)
αi log pi

can be larger than ε/2 only if pαi
i ≤ (1+αi)2/ε, and this can be true only if pi

and αi are bounded by some constants Pε, Aε. All such factors together contribute only a constant
Cε in the decomposition of n. For n arbitrarily large, a majority of the terms log(1 + αi) will be
smaller than ε

2αi log pi and hence φ(n) will drop below ε for sufficiently large n.

To summarize, for any pair a1, a2 ∈ A, we have less than n2ε numbers b which are neighbors of
both a1 and a2 in the graph G. In other words, G does not contain K2,n2ε . By our extremal bound,
it has at most cn3/2+ε edges. I.e., m ≤ cn3/2+ε, for any fixed ε > 0.
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