MAT 307: Combinatorics
Lecture 9-10: Extremal combinatorics

Instructor: Jacob Fox

1 Bipartite forbidden subgraphs

We have seen the Erd6s-Stone theorem which says that given a forbidden subgraph H, the extremal
number of edges is ez(n, H) = £(1—1/(x(H)—1)+0(1))n?. Here, o(1) means a term tending to zero
as n — oo. This basically resolves the question for forbidden subgraphs H of chromatic number
at least 3, since then the answer is roughly cn? for some constant ¢ > 0. However, for bipartite
forbidden subgraphs, x(H) = 2, this answer is not satisfactory, because we get ex(n, H) = o(n?),
which does not determine the order of ex(n, H). Hence, bipartite graphs form the most interesting
class of forbidden subgraphs.

2 Graphs without any 4-cycle

Let us start with the first non-trivial case where H is bipartite, H = C4. l.e., the question is how
many edges G can have before a 4-cycle appears. The answer is roughly n®/2.

Theorem 1. For any graph G on n vertices, not containing a 4-cycle,
B(G) < {1+ Vin—3)n
Proof. Let d, denote the degree of v € V. Let F denote the set of “labeled forks”:
F ={(u,v,w): (u,v) € E, (u,w) € E,v # w}.

Note that we do not care whether (v, w) is an edge or not. We count the size of F' in two possible
ways: First, each vertex u contributes d,(d, — 1) forks, since this is the number of choices for v
and w among the neighbors of u. Hence,

|F’ = Z du(du - 1)'

ueV

On the other hand, every ordered pair of vertices (v, w) can contribute at most one fork, because
otherwise we get a 4-cycle in G. Hence,

|F| <n(n-—1).

By combining these two inequalities,

n(n—l)EZdi—Zdu

ueV ueV



and by applying Cauchy-Schwartz, we get

2
n(nl)Z;(Zdu> —Zdu: (277:)22771
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This yields a quadratic equation 4m? — 2mn — n?(n — 1) < 0. A solution yields the theorem. [

This bound can be indeed achieved, i.e. there exist graphs with Q(n3/ 2) 1 edges, not containing
any 4-cycle. One example is the incidence graphs between lines and points of a finite projective
plane. We give a similar example here, which is algebraically defined and easier to analyze.

Example. Let V = Z, x Z,, i.e. vertices are pairs of elements of a finite field (x,y). The number
of vertices is n = p?. We define a graph G, where (x,y) and (2',3) are joined by an edge, if
x+ a2’ = yy'. For each vertex (z,y), there are p solutions of this equation (pick any y' € Z, and 2’
is uniquely determined). One of these solutions could be (z,y) itself, but in any case (x,y) has at
least p — 1 neighbors. Hence, the number of edges in the graph is m > %pQ(p —1) = Q(n3?).

Finally, observe that there is no 4-cycle in G. Suppose that (z,y) has neighbors (z1,y;) and
(z2,y2). This means = + z1 = yy; and x + x2 = yyo, therefore x1 — x9 = y(y1 — y2). Hence, given
(x1,y1) # (z2,Yy2), y is determined uniquely, and then z can be also computed from one of the
equations above. So (z1,y1) and (z2,y2) can have only one shared neighbor, which means there is
no Cy in the graph.

3 Graphs without a complete bipartite subgraph

Observe that another way to view C} is as a complete bipartite subgraph K> 2. More generally, we
can ask how many edges force a graph to contain a complete bipartite graph K ;.

Theorem 2. Let t > 2. Then there is a constant ¢ > 0 such that any graph on n vertices without
K has at most en?2~ 1/t edges.

Proof. Let G be a graph without K¢, V(G) = {1,2,...,n} and let d; denote the degree of vertex
i. The neighborhood of vertex i contains (Cil) t-tuples of vertices. Let’s count such ¢-tuples over
the neighborhoods of all vertices ¢. Note that any particular ¢-tuple can be counted at most t — 1
times in this way, otherwise we would get a copy of K;;. Therefore,

2 (1) =e-(i)
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Observe that the average degree in the graph is much more than ¢, otherwise we have nothing to
prove. Due to the convexity of (Cil) as a function of d;, the left-hand side is minimized if all the
degrees are equal, d; = 2m/n. Therefore,

En: (?) > n(%;/n> > n(Qm/Z —t)’

=1

YQ(f(n)) denotes any function which is lower-bounded by cf(n) for some constant ¢ > 0 for sufficiently large n.



and
t

e-v(}) = e-v

We conclude that
n(2m/n —t)! < (t —1)n'

which means that m < 3(t — 1)Vtn2=Vt 4 Lin < n27Vt 4+ Lin, O
As an exercise, the reader can generalize the bound above to the following.

Theorem 3. Let s >t > 2. Then for sufficiently large n, any graph on n vertices without K, has
O(s"/tn?>=1") edges.

Another extremal bound of this type is for forbidden even cycles. (Recall that for a forbidden
1

odd cycle, the number of edges can be as large as ZnZ.)
Theorem 4. If G has n vertices and no cycle Cay,, then the number of edges is m < en'TV* for
some constant ¢ > 0.

We prove a weaker version of this bound, for graphs that do not contain any cycle of length at
most 2k.

Theorem 5. If G has n vertices and no cycles of length shorter than 2k + 1, then the number of
edges is m < n(n'/* 4+ 1).

Proof. Let p(G) = |E(GQ)|/|V(G)| denote the density of a graph G. First, we show that there is a
subgraph G’ where every vertex has degree at least p(G): Let G’ be a graph of maximum density
among all subgraphs of G (certainly p(G’) > p(G)). We claim that all degrees in G’ are at least
p(G"). If not, suppose G’ has n’ vertices and m’ = p(G’)n’ edges; then by removing a vertex of degree
d < p(G'), we obtain a subgraph G” with n” =n' — 1 vertices and m”" =m/ —d' > p(G")(n’ — 1)
edges, hence p(G") = m”/n" > p(G") which is a contradiction.

Now consider a graph G with m > n(n'/F + 1) edges and its subgraph G’ of maximum density,
where all degrees are at least p(G) > n'/k 4+ 1. We start from any vertex vy and grow a tree where
on each level L; we include all the neighbors of vertices in L;_;. As long as we do not encounter
any cycle, each vertex has at least n'/* new children and |L;| > n'/*|L;_1|. Assuming that there is
no cycle of length shorter than 2k + 1, we can grow this tree up to level Lj and we have |Li| > n.
However, this contradicts the fact that the levels should be disjoint and all contained in a graph
on n vertices. O

4 Application to additive number theory

The following type of question is studied in additive number theory. Suppose we have a set of
integers B and we want to generate B by forming sums of numbers from a smaller set A. How
small can A be?

More specifically, suppose we would like to generate a certain sequence of squares, B =
{12,22 32 ..., m?}, by taking sums of pairs of numbers, A+ A = {a+b:a,b € A}. How small can
A be so that B C A+ A? Obviously, we need |A| > /m to generate any set of m numbers.

Theorem 6. For any set A such that B = {12,22,32,... . m?} C A+ A, we need |A| > m?/3-°(),



Proof. Let B C A+ A and suppose |A| = n. We define a graph G whose vertices are A and (a1, a2)
is an edge if a; 4+ ay = 22 for some integer z. Since we need to generate m different squares, the
number of edges is at least m.

Consider a1, as € A and all numbers b such that a; + b = 22 and as + b = 2. Note that we get
a different pair (x,y) for each b. Then, a; —az = 22 — y?> = (v + y)(z — y). Now, (z +y,z — )
cannot be the same pair for different numbers b. Denoting the number of divisors of a; — as by d,
we can have at most (g) such possible pairs, and each of them can be used only for one number b.
Now we use the following proposition.

Proposition. For any € > 0 and n large enough, n has less than n® divisors.

This can be proved by considering the prime decomposition of n = Hle p;*, where the number
of divisors is d = [['_;(1 + ;). We assume a; > 1 for all . We claim that for any fixed € > 0 and
n large enough,

logd ! log(l + oy
_Og _Zz:log( +a)<6

- logn St ailogp;

Observe that % can be larger than €/2 only if p* < (1+a;)?/¢, and this can be true only if p;
and «; are bounded by some constants P, A.. All such factors together contribute only a constant
C. in the decomposition of n. For n arbitrarily large, a majority of the terms log(1 + «a;) will be

smaller than §a;log p; and hence ¢(n) will drop below ¢ for sufficiently large n.

¢(n)

To summarize, for any pair aj,as € A, we have less than n2¢ numbers b which are neighbors of
both a; and ag in the graph G. In other words, G' does not contain Kj ,2c. By our extremal bound,

it has at most cn3/2t€ edges. Le., m < en®/2%¢, for any fixed € > 0. O



