MAT 307: Combinatorics

Lecture 9-10: Extremal combinatorics

Instructor: Jacob Fox

1 Bipartite forbidden subgraphs

We have seen the Erdős-Stone theorem which says that given a forbidden subgraph H, the extremal number of edges is $ex(n, H) = \frac{1}{2}(1-1/(\chi(H)-1)+o(1))n^2$. Here, o(1) means a term tending to zero as $n \to \infty$. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn^2 for some constant c > 0. However, for *bipartite forbidden subgraphs*, $\chi(H) = 2$, this answer is not satisfactory, because we get $ex(n, H) = o(n^2)$, which does not determine the order of ex(n, H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs.

2 Graphs without any 4-cycle

Let us start with the first non-trivial case where H is bipartite, $H = C_4$. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly $n^{3/2}$.

Theorem 1. For any graph G on n vertices, not containing a 4-cycle,

$$E(G) \le \frac{1}{4}(1 + \sqrt{4n-3})n.$$

Proof. Let d_v denote the degree of $v \in V$. Let F denote the set of "labeled forks":

$$F = \{(u, v, w) : (u, v) \in E, (u, w) \in E, v \neq w\}.$$

Note that we do not care whether (v, w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes $d_u(d_u - 1)$ forks, since this is the number of choices for v and w among the neighbors of u. Hence,

$$|F| = \sum_{u \in V} d_u (d_u - 1).$$

On the other hand, every ordered pair of vertices (v, w) can contribute at most one fork, because otherwise we get a 4-cycle in G. Hence,

$$|F| \le n(n-1).$$

By combining these two inequalities,

$$n(n-1) \ge \sum_{u \in V} d_u^2 - \sum_{u \in V} d_u$$

and by applying Cauchy-Schwartz, we get

$$n(n-1) \ge \frac{1}{n} \left(\sum_{u \in V} d_u\right)^2 - \sum_{u \in V} d_u = \frac{(2m)^2}{n} - 2m.$$

This yields a quadratic equation $4m^2 - 2mn - n^2(n-1) \leq 0$. A solution yields the theorem. \Box

This bound can be indeed achieved, i.e. there exist graphs with $\Omega(n^{3/2})^{-1}$ edges, not containing any 4-cycle. One example is the incidence graphs between lines and points of a *finite projective plane*. We give a similar example here, which is algebraically defined and easier to analyze.

Example. Let $V = Z_p \times Z_p$, i.e. vertices are pairs of elements of a finite field (x, y). The number of vertices is $n = p^2$. We define a graph G, where (x, y) and (x', y') are joined by an edge, if x + x' = yy'. For each vertex (x, y), there are p solutions of this equation (pick any $y' \in Z_p$ and x' is uniquely determined). One of these solutions could be (x, y) itself, but in any case (x, y) has at least p - 1 neighbors. Hence, the number of edges in the graph is $m \ge \frac{1}{2}p^2(p-1) = \Omega(n^{3/2})$.

Finally, observe that there is no 4-cycle in G. Suppose that (x, y) has neighbors (x_1, y_1) and (x_2, y_2) . This means $x + x_1 = yy_1$ and $x + x_2 = yy_2$, therefore $x_1 - x_2 = y(y_1 - y_2)$. Hence, given $(x_1, y_1) \neq (x_2, y_2)$, y is determined uniquely, and then x can be also computed from one of the equations above. So (x_1, y_1) and (x_2, y_2) can have only one shared neighbor, which means there is no C_4 in the graph.

3 Graphs without a complete bipartite subgraph

Observe that another way to view C_4 is as a complete bipartite subgraph $K_{2,2}$. More generally, we can ask how many edges force a graph to contain a complete bipartite graph $K_{t,t}$.

Theorem 2. Let $t \ge 2$. Then there is a constant c > 0 such that any graph on n vertices without $K_{t,t}$ has at most $cn^{2-1/t}$ edges.

Proof. Let G be a graph without $K_{t,t}$, $V(G) = \{1, 2, ..., n\}$ and let d_i denote the degree of vertex i. The neighborhood of vertex i contains $\binom{d_i}{t}$ t-tuples of vertices. Let's count such t-tuples over the neighborhoods of all vertices i. Note that any particular t-tuple can be counted at most t-1 times in this way, otherwise we would get a copy of $K_{t,t}$. Therefore,

$$\sum_{i=1}^{n} \binom{d_i}{t} \le (t-1)\binom{n}{t}.$$

Observe that the average degree in the graph is much more than t, otherwise we have nothing to prove. Due to the convexity of $\binom{d_i}{t}$ as a function of d_i , the left-hand side is minimized if all the degrees are equal, $d_i = 2m/n$. Therefore,

$$\sum_{i=1}^{n} \binom{d_i}{t} \ge n \binom{2m/n}{t} \ge n \frac{(2m/n-t)^t}{t!}$$

 $^{{}^{1}\}Omega(f(n))$ denotes any function which is lower-bounded by cf(n) for some constant c > 0 for sufficiently large n.

and

$$(t-1)\binom{n}{t} \le (t-1)\frac{n^t}{t!}.$$

We conclude that

$$n(2m/n-t)^t \le (t-1)n^t$$

which means that $m \leq \frac{1}{2}(t-1)^{1/t}n^{2-1/t} + \frac{1}{2}tn \leq n^{2-1/t} + \frac{1}{2}tn$.

As an exercise, the reader can generalize the bound above to the following.

Theorem 3. Let $s \ge t \ge 2$. Then for sufficiently large n, any graph on n vertices without $K_{s,t}$ has $O(s^{1/t}n^{2-1/t})$ edges.

Another extremal bound of this type is for forbidden even cycles. (Recall that for a forbidden odd cycle, the number of edges can be as large as $\frac{1}{4}n^2$.)

Theorem 4. If G has n vertices and no cycle C_{2k} , then the number of edges is $m \leq cn^{1+1/k}$ for some constant c > 0.

We prove a weaker version of this bound, for graphs that do not contain any cycle of length at most 2k.

Theorem 5. If G has n vertices and no cycles of length shorter than 2k + 1, then the number of edges is $m < n(n^{1/k} + 1)$.

Proof. Let $\rho(G) = |E(G)|/|V(G)|$ denote the density of a graph G. First, we show that there is a subgraph G' where every vertex has degree at least $\rho(G)$: Let G' be a graph of maximum density among all subgraphs of G (certainly $\rho(G') \ge \rho(G)$). We claim that all degrees in G' are at least $\rho(G')$. If not, suppose G' has n' vertices and $m' = \rho(G')n'$ edges; then by removing a vertex of degree $d' < \rho(G')$, we obtain a subgraph G'' with n'' = n' - 1 vertices and $m'' = m' - d' > \rho(G')(n' - 1)$ edges, hence $\rho(G'') = m''/n'' > \rho(G')$ which is a contradiction.

Now consider a graph G with $m \ge n(n^{1/k} + 1)$ edges and its subgraph G' of maximum density, where all degrees are at least $\rho(G) \ge n^{1/k} + 1$. We start from any vertex v_0 and grow a tree where on each level L_j we include all the neighbors of vertices in L_{j-1} . As long as we do not encounter any cycle, each vertex has at least $n^{1/k}$ new children and $|L_j| \ge n^{1/k} |L_{j-1}|$. Assuming that there is no cycle of length shorter than 2k + 1, we can grow this tree up to level L_k and we have $|L_k| \ge n$. However, this contradicts the fact that the levels should be disjoint and all contained in a graph on n vertices.

4 Application to additive number theory

The following type of question is studied in additive number theory. Suppose we have a set of integers B and we want to generate B by forming sums of numbers from a smaller set A. How small can A be?

More specifically, suppose we would like to generate a certain sequence of squares, $B = \{1^2, 2^2, 3^2, \ldots, m^2\}$, by taking sums of pairs of numbers, $A + A = \{a + b : a, b \in A\}$. How small can A be so that $B \subseteq A + A$? Obviously, we need $|A| \ge \sqrt{m}$ to generate any set of m numbers.

Theorem 6. For any set A such that $B = \{1^2, 2^2, 3^2, ..., m^2\} \subseteq A + A$, we need $|A| \ge m^{2/3 - o(1)}$.

Proof. Let $B \subseteq A + A$ and suppose |A| = n. We define a graph G whose vertices are A and (a_1, a_2) is an edge if $a_1 + a_2 = x^2$ for some integer x. Since we need to generate m different squares, the number of edges is at least m.

Consider $a_1, a_2 \in A$ and all numbers b such that $a_1 + b = x^2$ and $a_2 + b = y^2$. Note that we get a different pair (x, y) for each b. Then, $a_1 - a_2 = x^2 - y^2 = (x + y)(x - y)$. Now, (x + y, x - y)cannot be the same pair for different numbers b. Denoting the number of divisors of $a_1 - a_2$ by d, we can have at most $\binom{d}{2}$ such possible pairs, and each of them can be used only for one number b. Now we use the following proposition.

Proposition. For any $\epsilon > 0$ and *n* large enough, *n* has less than n^{ϵ} divisors.

This can be proved by considering the prime decomposition of $n = \prod_{i=1}^{t} p_i^{\alpha_i}$, where the number of divisors is $d = \prod_{i=1}^{t} (1 + \alpha_i)$. We assume $\alpha_i \ge 1$ for all *i*. We claim that for any fixed $\epsilon > 0$ and *n* large enough,

$$\phi(n) = \frac{\log d}{\log n} = \frac{\sum_{i=1}^{t} \log(1+\alpha_i)}{\sum_{i=1}^{t} \alpha_i \log p_i} < \epsilon.$$

Observe that $\frac{\log(1+\alpha_i)}{\alpha_i \log p_i}$ can be larger than $\epsilon/2$ only if $p_i^{\alpha_i} \leq (1+\alpha_i)^{2/\epsilon}$, and this can be true only if p_i and α_i are bounded by some constants $P_{\epsilon}, A_{\epsilon}$. All such factors together contribute only a constant C_{ϵ} in the decomposition of n. For n arbitrarily large, a majority of the terms $\log(1+\alpha_i)$ will be smaller than $\frac{\epsilon}{2}\alpha_i \log p_i$ and hence $\phi(n)$ will drop below ϵ for sufficiently large n.

To summarize, for any pair $a_1, a_2 \in A$, we have less than $n^{2\epsilon}$ numbers b which are neighbors of both a_1 and a_2 in the graph G. In other words, G does not contain $K_{2,n^{2\epsilon}}$. By our extremal bound, it has at most $cn^{3/2+\epsilon}$ edges. I.e., $m \leq cn^{3/2+\epsilon}$, for any fixed $\epsilon > 0$.