MAT 307: Combinatorics

Lecture 8: Extremal combinatorics

Instructor: Jacob Fox

1 The Erdős-Stone theorem

We can ask more generally, what is the maximum number of edges in a graph G on n vertices, which does not contain a given subgraph H? We denote this number by ex(n, H). For graphs Gon n vertices, this question is resolved up to an additive error of $o(n^2)$ by the Erdős-Stone theorem. In order to state the theorem, we first need the notion of a *chromatic number*.

Definition 1. For a graph H, the chromatic number $\chi(H)$ is the smallest c such that the vertices of H can be colored with c colors with no neighboring vertices receiving the same color.

The chromatic number is an important parameter of a graph. The graphs of chromatic number at most 2 are exactly bipartite graphs. In contrast, graphs of chromatic number 3 are already hard to decribe and hard to recognize algorithmically. Let us also mention the famous *Four Color Theorem* which states that any graph that can be drawn in the plane without crossing edges has chromatic number at most 4.

The chromatic number of H turns out to be closely related to the question of how many edges are necessary for H to appear as a subgraph.

Theorem 1 (Erdős-Stone). For any fixed graph H and fixed $\epsilon > 0$, there is n_0 such that for any $n \ge n_0$,

$$\frac{1}{2}\left(1 - \frac{1}{\chi(H) - 1} - \epsilon\right)n^2 \le ex(n, H) \le \frac{1}{2}\left(1 - \frac{1}{\chi(H) - 1} + \epsilon\right)n^2.$$

In particular, for *bipartite graphs* H, which can be colored with 2 colors, we get that $ex(n, H) \leq \epsilon n^2$ for any $\epsilon > 0$ and sufficiently large n, so the theorem only says that the extremal number is very small compared to n^2 . We denote this by $ex(H, n) = o(n^2)$. For graphs H of chromatic number 3, we get $ex(n, H) = \frac{1}{4}n^2 + o(n^2)$, etc. Note that this also matches the bound we obtained for $H = K_{t+1}$ ($\chi(K_{t+1}) = t + 1$), where we got the exact answer $ex(n, K_{t+1}) = \frac{1}{2}(1 - \frac{1}{t})n^2$.

First, we prove the following technical lemma.

Lemma 1. Fix $k \ge 1$, $0 < \epsilon < 1/k$ and $t \ge 1$. Then there is $n_0(k, \epsilon, t)$ such that any graph G with $n \ge n_0(k, \epsilon, t)$ vertices and $m \ge \frac{1}{2}(1 - 1/k + \epsilon)n^2$ edges contains k + 1 disjoint sets of vertices $A_1, A_2, \ldots, A_{k+1}$ of size t, such that any two vertices in different sets A_i, A_j are joined by an edge.

Proof. First, we will find a subgraph $G' \subset G$ where all degrees are at least $(1 - 1/k + \epsilon/2)|V(G')|$. The procedure to find such a subgraph is very simple: as long as there is a vertex of degree smaller than $(1 - 1/k + \epsilon/2)|V(G)|$, remove the vertex from the graph. We just have to prove that this procedure terminates before the graph becomes too small.

Suppose that the procedure stops when the graph has n_0 vertices (potentially $n_0 = 0$, but we will prove that this is impossible). Let's count the total number of edges that we have removed

from the graph. At the point when G has ℓ vertices, we remove at most $(1 - 1/k + \epsilon/2)\ell$ edges. Therefore, the total number of removed edges is at most

$$\sum_{\ell=n_0+1}^n \left(1 - \frac{1}{k} + \frac{\epsilon}{2}\right)\ell = \left(1 - \frac{1}{k} + \frac{\epsilon}{2}\right)(n - n_0)\frac{n + n_0 + 1}{2} \le \left(1 - \frac{1}{k} + \frac{\epsilon}{2}\right)\frac{n^2 - n_0^2}{2} + \frac{n - n_0}{2}.$$

At the end, G has at most $\frac{1}{2}n_0^2$ edges. Therefore, the number of edges in the original graph must have been

$$|E(G)| \le \left(1 - \frac{1}{k} + \frac{\epsilon}{2}\right) \frac{n^2 - n_0^2}{2} + \frac{n - n_0}{2} + \frac{1}{2}n_0^2 = \left(1 - \frac{1}{k} + \frac{\epsilon}{2}\right) \frac{n^2}{2} + \left(\frac{1}{k} - \frac{\epsilon}{2}\right) \frac{n_0^2}{2} + \frac{n - n_0}{2}.$$

On the other hand, we assumed that $|E(G)| \ge \left(1 - \frac{1}{k} + \epsilon\right) \frac{n^2}{2}$. Combining these two inequalities, we obtain that

$$\left(\frac{1}{k} - \frac{\epsilon}{2}\right)\frac{n_0^2}{2} - \frac{n_0}{2} \ge \frac{\epsilon n^2}{4} - \frac{n}{2}.$$

Thus if we want to get n_0 large enough, it's sufficient to choose n appropriately larger (roughly $n \simeq n_0/\sqrt{\epsilon k}$).

From now on, we can assume that all degrees in G are at least $(1 - 1/k + \epsilon/2)n$. We prove by induction on k that there are k + 1 sets of size t such that we have all edges between vertices in different sets. For k = 0, there is nothing to prove.

Let $k \geq 2$ and $s = \lfloor t/\epsilon \rfloor$. By the induction hypothesis, we can find k disjoint sets of size s, A_1, \ldots, A_k such that any two vertices in two different sets are joined by an edge. Let $U = V \setminus (A_1 \cup \ldots \cup A_k)$ and let W denote the set of vertices in U, adjacent to at least t points in each A_i . Let us count the edges *missing* between U and $A_1 \cup \ldots \cup A_k$. Since every vertex in $U \setminus W$ is adjacent to less than t vertices in some A_i , the number of missing edges is at least

$$\tilde{m} \ge |U \setminus W|(s-t) \ge (n-ks-|W|)(1-\epsilon)s.$$

On the other hand, any vertex in the graph has at most $(1/k - \epsilon/2)n$ missing edges, so counting over $A_1 \cup \ldots \cup A_k$, we get

$$\tilde{m} \le ks(1/k - \epsilon/2)n = (1 - k\epsilon/2)sn.$$

From these inequalities, we deduce

$$|W|(1-\epsilon)s \geq (n-ks)(1-\epsilon)s - (1-k\epsilon/2)sn$$

= $\epsilon(k/2-1)sn - (1-\epsilon)ks^2$.

Everything else being constant, we can make n large enough so that |W| is arbitrarily large. In particular, we make sure that

$$|W| > \binom{s}{t}^k (t-1).$$

We know that each vertex $w \in W$ is adjacent to at least t points in each A_i . Select t specific points from each A_i and denote the union of all these kt points T_w . We have $\binom{s}{t}^k$ possible sets T_w ; by the pigeonhole principle, at least one of them is chosen for at least t vertices $w \in W$. We define these t vertices to constitute our new set A_{k+1} , and the respective t-tuples of vertices connected to it $A'_i \subset A_i$. The collection of sets A_1, \ldots, A_{k+1} satisfies the property that all pairs of vertices from different sets form edges. Now we are ready to prove the Erdős-Stone theorem.

Proof. Let $\chi(H) = k + 1$. The Turán graph $T_{n,k}$ has chromatic number k, hence it cannot contain H. This proves $ex(n, H) \ge \frac{1}{2}(1 - 1/k)n^2$ whenever n is a multiple of k. Therefore,

$$ex(n,H) \ge \frac{1}{2}\left(1-\frac{1}{k}\right)(n-k)^2 \ge \frac{1}{2}\left(1-\frac{1}{k}-\frac{2k}{n}\right)n^2.$$

On the other hand, fix t = |V(H)| and consider a graph G with n vertices and $m \ge (1-1/k+\epsilon)\frac{n^2}{2}$ edges. If n is large enough, then by Lemma 1, G contains sets A_1, \ldots, A_{k+1} of size t such that all edges between different sets are present. H is a graph of chromatic number k + 1 and therefore its vertices can be embedded in A_1, \ldots, A_{k+1} based on their color. We conclude that H is a subgraph of G and hence

$$ex(n,H) \le \frac{1}{2}\left(1 - \frac{1}{k} + \epsilon\right)n^2$$

for any $\epsilon > 0$ and sufficiently large n.