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1 The Erdős-Stone theorem

We can ask more generally, what is the maximum number of edges in a graph G on n vertices,
which does not contain a given subgraph H? We denote this number by ex(n,H). For graphs G
on n vertices, this question is resolved up to an additive error of o(n2) by the Erdős-Stone theorem.
In order to state the theorem, we first need the notion of a chromatic number.

Definition 1. For a graph H, the chromatic number χ(H) is the smallest c such that the vertices
of H can be colored with c colors with no neighboring vertices receiving the same color.

The chromatic number is an important parameter of a graph. The graphs of chromatic number
at most 2 are exactly bipartite graphs. In contrast, graphs of chromatic number 3 are already
hard to decribe and hard to recognize algorithmically. Let us also mention the famous Four Color
Theorem which states that any graph that can be drawn in the plane without crossing edges has
chromatic number at most 4.

The chromatic number of H turns out to be closely related to the question of how many edges
are necessary for H to appear as a subgraph.

Theorem 1 (Erdős-Stone). For any fixed graph H and fixed ε > 0, there is n0 such that for any
n ≥ n0,

1
2

(
1− 1

χ(H)− 1
− ε

)
n2 ≤ ex(n,H) ≤ 1

2

(
1− 1

χ(H)− 1
+ ε

)
n2.

In particular, for bipartite graphs H, which can be colored with 2 colors, we get that ex(n,H) ≤
εn2 for any ε > 0 and sufficiently large n, so the theorem only says that the extremal number
is very small compared to n2. We denote this by ex(H, n) = o(n2). For graphs H of chromatic
number 3, we get ex(n,H) = 1

4n2 + o(n2), etc. Note that this also matches the bound we obtained
for H = Kt+1 (χ(Kt+1) = t + 1), where we got the exact answer ex(n,Kt+1) = 1

2(1− 1
t )n

2.
First, we prove the following technical lemma.

Lemma 1. Fix k ≥ 1, 0 < ε < 1/k and t ≥ 1. Then there is n0(k, ε, t) such that any graph G
with n ≥ n0(k, ε, t) vertices and m ≥ 1

2(1− 1/k + ε)n2 edges contains k + 1 disjoint sets of vertices
A1, A2, . . . , Ak+1 of size t, such that any two vertices in different sets Ai, Aj are joined by an edge.

Proof. First, we will find a subgraph G′ ⊂ G where all degrees are at least (1− 1/k + ε/2)|V (G′)|.
The procedure to find such a subgraph is very simple: as long as there is a vertex of degree smaller
than (1 − 1/k + ε/2)|V (G)|, remove the vertex from the graph. We just have to prove that this
procedure terminates before the graph becomes too small.

Suppose that the procedure stops when the graph has n0 vertices (potentially n0 = 0, but we
will prove that this is impossible). Let’s count the total number of edges that we have removed
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from the graph. At the point when G has ` vertices, we remove at most (1 − 1/k + ε/2)` edges.
Therefore, the total number of removed edges is at most

n∑

`=n0+1
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k
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0

2
+
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2
.

At the end, G has at most 1
2n2

0 edges. Therefore, the number of edges in the original graph must
have been

|E(G)| ≤
(
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+
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2

)
n2 − n2

0
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2
+

1
2
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(
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On the other hand, we assumed that |E(G)| ≥ (
1− 1

k + ε
)

n2

2 . Combining these two inequalities,
we obtain that (

1
k
− ε

2

)
n2

0

2
− n0

2
≥ εn2

4
− n

2
.

Thus if we want to get n0 large enough, it’s sufficient to choose n appropriately larger (roughly
n ' n0/

√
εk).

From now on, we can assume that all degrees in G are at least (1− 1/k + ε/2)n. We prove by
induction on k that there are k + 1 sets of size t such that we have all edges between vertices in
different sets. For k = 0, there is nothing to prove.

Let k ≥ 2 and s = dt/εe. By the induction hypothesis, we can find k disjoint sets of size
s, A1, . . . , Ak such that any two vertices in two different sets are joined by an edge. Let U =
V \ (A1 ∪ . . . ∪Ak) and let W denote the set of vertices in U , adjacent to at least t points in each
Ai. Let us count the edges missing between U and A1 ∪ . . . ∪ Ak. Since every vertex in U \W is
adjacent to less than t vertices in some Ai, the number of missing edges is at least

m̃ ≥ |U \W |(s− t) ≥ (n− ks− |W |)(1− ε)s.

On the other hand, any vertex in the graph has at most (1/k − ε/2)n missing edges, so counting
over A1 ∪ . . . ∪Ak, we get

m̃ ≤ ks(1/k − ε/2)n = (1− kε/2)sn.

From these inequalities, we deduce

|W |(1− ε)s ≥ (n− ks)(1− ε)s− (1− kε/2)sn
= ε(k/2− 1)sn− (1− ε)ks2.

Everything else being constant, we can make n large enough so that |W | is arbitrarily large. In
particular, we make sure that

|W | >
(

s

t

)k

(t− 1).

We know that each vertex w ∈ W is adjacent to at least t points in each Ai. Select t specific points
from each Ai and denote the union of all these kt points Tw. We have

(
s
t

)k possible sets Tw; by
the pigeonhole principle, at least one of them is chosen for at least t vertices w ∈ W . We define
these t vertices to constitute our new set Ak+1, and the respective t-tuples of vertices connected to
it A′i ⊂ Ai. The collection of sets A1, . . . , Ak+1 satisfies the property that all pairs of vertices from
different sets form edges.
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Now we are ready to prove the Erdős-Stone theorem.

Proof. Let χ(H) = k + 1. The Turán graph Tn,k has chromatic number k, hence it cannot contain
H. This proves ex(n,H) ≥ 1

2(1− 1/k)n2 whenever n is a multiple of k. Therefore,

ex(n,H) ≥ 1
2

(
1− 1

k

)
(n− k)2 ≥ 1

2

(
1− 1

k
− 2k

n

)
n2.

On the other hand, fix t = |V (H)| and consider a graph G with n vertices and m ≥ (1−1/k+ε)n2

2
edges. If n is large enough, then by Lemma 1, G contains sets A1, . . . , Ak+1 of size t such that all
edges between different sets are present. H is a graph of chromatic number k + 1 and therefore its
vertices can be embedded in A1, . . . , Ak+1 based on their color. We conclude that H is a subgraph
of G and hence

ex(n,H) ≤ 1
2

(
1− 1

k
+ ε

)
n2

for any ε > 0 and sufficiently large n.
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