1 The Erdős-Stone theorem

We can ask more generally, what is the maximum number of edges in a graph G on n vertices, which does not contain a given subgraph H ? We denote this number by $e x(n, H)$. For graphs G on n vertices, this question is resolved up to an additive error of $o\left(n^{2}\right)$ by the Erdős-Stone theorem. In order to state the theorem, we first need the notion of a chromatic number.

Definition 1. For a graph H, the chromatic number $\chi(H)$ is the smallest c such that the vertices of H can be colored with c colors with no neighboring vertices receiving the same color.

The chromatic number is an important parameter of a graph. The graphs of chromatic number at most 2 are exactly bipartite graphs. In contrast, graphs of chromatic number 3 are already hard to decribe and hard to recognize algorithmically. Let us also mention the famous Four Color Theorem which states that any graph that can be drawn in the plane without crossing edges has chromatic number at most 4.

The chromatic number of H turns out to be closely related to the question of how many edges are necessary for H to appear as a subgraph.

Theorem 1 (Erdős-Stone). For any fixed graph H and fixed $\epsilon>0$, there is n_{0} such that for any $n \geq n_{0}$,

$$
\frac{1}{2}\left(1-\frac{1}{\chi(H)-1}-\epsilon\right) n^{2} \leq e x(n, H) \leq \frac{1}{2}\left(1-\frac{1}{\chi(H)-1}+\epsilon\right) n^{2} .
$$

In particular, for bipartite graphs H, which can be colored with 2 colors, we get that ex $(n, H) \leq$ ϵn^{2} for any $\epsilon>0$ and sufficiently large n, so the theorem only says that the extremal number is very small compared to n^{2}. We denote this by $e x(H, n)=o\left(n^{2}\right)$. For graphs H of chromatic number 3, we get $e x(n, H)=\frac{1}{4} n^{2}+o\left(n^{2}\right)$, etc. Note that this also matches the bound we obtained for $H=K_{t+1}\left(\chi\left(K_{t+1}\right)=t+1\right)$, where we got the exact answer $e x\left(n, K_{t+1}\right)=\frac{1}{2}\left(1-\frac{1}{t}\right) n^{2}$.

First, we prove the following technical lemma.
Lemma 1. Fix $k \geq 1,0<\epsilon<1 / k$ and $t \geq 1$. Then there is $n_{0}(k, \epsilon, t)$ such that any graph G with $n \geq n_{0}(k, \epsilon, t)$ vertices and $m \geq \frac{1}{2}(1-1 / k+\epsilon) n^{2}$ edges contains $k+1$ disjoint sets of vertices $A_{1}, A_{2}, \ldots, A_{k+1}$ of size t, such that any two vertices in different sets A_{i}, A_{j} are joined by an edge.

Proof. First, we will find a subgraph $G^{\prime} \subset G$ where all degrees are at least $(1-1 / k+\epsilon / 2)\left|V\left(G^{\prime}\right)\right|$. The procedure to find such a subgraph is very simple: as long as there is a vertex of degree smaller than $(1-1 / k+\epsilon / 2)|V(G)|$, remove the vertex from the graph. We just have to prove that this procedure terminates before the graph becomes too small.

Suppose that the procedure stops when the graph has n_{0} vertices (potentially $n_{0}=0$, but we will prove that this is impossible). Let's count the total number of edges that we have removed
from the graph. At the point when G has ℓ vertices, we remove at most $(1-1 / k+\epsilon / 2) \ell$ edges. Therefore, the total number of removed edges is at most

$$
\sum_{\ell=n_{0}+1}^{n}\left(1-\frac{1}{k}+\frac{\epsilon}{2}\right) \ell=\left(1-\frac{1}{k}+\frac{\epsilon}{2}\right)\left(n-n_{0}\right) \frac{n+n_{0}+1}{2} \leq\left(1-\frac{1}{k}+\frac{\epsilon}{2}\right) \frac{n^{2}-n_{0}^{2}}{2}+\frac{n-n_{0}}{2} .
$$

At the end, G has at most $\frac{1}{2} n_{0}^{2}$ edges. Therefore, the number of edges in the original graph must have been

$$
|E(G)| \leq\left(1-\frac{1}{k}+\frac{\epsilon}{2}\right) \frac{n^{2}-n_{0}^{2}}{2}+\frac{n-n_{0}}{2}+\frac{1}{2} n_{0}^{2}=\left(1-\frac{1}{k}+\frac{\epsilon}{2}\right) \frac{n^{2}}{2}+\left(\frac{1}{k}-\frac{\epsilon}{2}\right) \frac{n_{0}^{2}}{2}+\frac{n-n_{0}}{2} .
$$

On the other hand, we assumed that $|E(G)| \geq\left(1-\frac{1}{k}+\epsilon\right) \frac{n^{2}}{2}$. Combining these two inequalities, we obtain that

$$
\left(\frac{1}{k}-\frac{\epsilon}{2}\right) \frac{n_{0}^{2}}{2}-\frac{n_{0}}{2} \geq \frac{\epsilon n^{2}}{4}-\frac{n}{2} .
$$

Thus if we want to get n_{0} large enough, it's sufficient to choose n appropriately larger (roughly $\left.n \simeq n_{0} / \sqrt{\epsilon k}\right)$.

From now on, we can assume that all degrees in G are at least $(1-1 / k+\epsilon / 2) n$. We prove by induction on k that there are $k+1$ sets of size t such that we have all edges between vertices in different sets. For $k=0$, there is nothing to prove.

Let $k \geq 2$ and $s=\lceil t / \epsilon\rceil$. By the induction hypothesis, we can find k disjoint sets of size s, A_{1}, \ldots, A_{k} such that any two vertices in two different sets are joined by an edge. Let $U=$ $V \backslash\left(A_{1} \cup \ldots \cup A_{k}\right)$ and let W denote the set of vertices in U, adjacent to at least t points in each A_{i}. Let us count the edges missing between U and $A_{1} \cup \ldots \cup A_{k}$. Since every vertex in $U \backslash W$ is adjacent to less than t vertices in some A_{i}, the number of missing edges is at least

$$
\tilde{m} \geq|U \backslash W|(s-t) \geq(n-k s-|W|)(1-\epsilon) s .
$$

On the other hand, any vertex in the graph has at most $(1 / k-\epsilon / 2) n$ missing edges, so counting over $A_{1} \cup \ldots \cup A_{k}$, we get

$$
\tilde{m} \leq k s(1 / k-\epsilon / 2) n=(1-k \epsilon / 2) s n .
$$

From these inequalities, we deduce

$$
\begin{aligned}
|W|(1-\epsilon) s & \geq(n-k s)(1-\epsilon) s-(1-k \epsilon / 2) s n \\
& =\epsilon(k / 2-1) s n-(1-\epsilon) k s^{2} .
\end{aligned}
$$

Everything else being constant, we can make n large enough so that $|W|$ is arbitrarily large. In particular, we make sure that

$$
|W|>\binom{s}{t}^{k}(t-1) .
$$

We know that each vertex $w \in W$ is adjacent to at least t points in each A_{i}. Select t specific points from each A_{i} and denote the union of all these $k t$ points T_{w}. We have $\binom{s}{t}^{k}$ possible sets T_{w}; by the pigeonhole principle, at least one of them is chosen for at least t vertices $w \in W$. We define these t vertices to constitute our new set A_{k+1}, and the respective t-tuples of vertices connected to it $A_{i}^{\prime} \subset A_{i}$. The collection of sets A_{1}, \ldots, A_{k+1} satisfies the property that all pairs of vertices from different sets form edges.

Now we are ready to prove the Erdős-Stone theorem.
Proof. Let $\chi(H)=k+1$. The Turán graph $T_{n, k}$ has chromatic number k, hence it cannot contain H. This proves $e x(n, H) \geq \frac{1}{2}(1-1 / k) n^{2}$ whenever n is a multiple of k. Therefore,

$$
e x(n, H) \geq \frac{1}{2}\left(1-\frac{1}{k}\right)(n-k)^{2} \geq \frac{1}{2}\left(1-\frac{1}{k}-\frac{2 k}{n}\right) n^{2} .
$$

On the other hand, fix $t=|V(H)|$ and consider a graph G with n vertices and $m \geq(1-1 / k+\epsilon) \frac{n^{2}}{2}$ edges. If n is large enough, then by Lemma $1, G$ contains sets A_{1}, \ldots, A_{k+1} of size t such that all edges between different sets are present. H is a graph of chromatic number $k+1$ and therefore its vertices can be embedded in A_{1}, \ldots, A_{k+1} based on their color. We conclude that H is a subgraph of G and hence

$$
e x(n, H) \leq \frac{1}{2}\left(1-\frac{1}{k}+\epsilon\right) n^{2}
$$

for any $\epsilon>0$ and sufficiently large n.

