
Davie Rolnick 1 SEPTEMBER 7: INTRO TO RAMSEY NUMBERS

1 September 7: Intro to Ramsey Numbers

Summary: ‘ ‘Complete disorder is impossible.” More explicitly, any very large system contains a subsystem
which is well organized.

Proposition 1.1 (Putnam 1952.). Among any six people, there are three of them any two of whom are
friends, or else no two of whom are friends.

Proof. Let G = (V,E) be a graph with |V | = 6.

Case 1.1.1. There is a vertex of degree ≥ 3.

The adjacent vertices must either include one edge, forming a triangle, or must have no edges, forming an
empty triangle.

Case 1.1.2. There is not.

Symmetry with Case 1.

Definition. A clique is a complete subgraph, an independent set is an empty subgraph.

Definition. R(s, t) is the minimum number s such that any graph on n vertices contains a clique of order
s or an independent set of order t. Ex: R(3, 3) = 6.

Definition. Rk(s1, . . . , sk) - here you color the graph in k colors and want a monochromatic clique of size
si in color ci. The “normal” Ramsey number is the special case k = 2.

That Ramsey numbers exist follows from Ramsey’s Theorem.

Theorem 1.2 (Ramsey, Erdős-Szekeres). R(s, t) exists (and Rk(s1, . . . , sk) in general).

R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Proof.

Case 1.2.1. There is a vertex of degree ≥ R(s− 1, t).

As before, look at neighbors.

Case 1.2.2. There is not.

Symmetry with Case 1.

R(2, t) = t and R(s, 2) = s. Using Pascal’s Identity,

R(s, t) ≤
(
s+ t− 2

s− 1

)
Specifically,

R(s, s) ≤ c4s√
s
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Davie Rolnick 1 SEPTEMBER 7: INTRO TO RAMSEY NUMBERS

Using the probabilistic method,
R(s, s) ≥ 2s/2

R(4, 4) = 18, but already R(5, 5) is not known. It is known that 43 ≤ R(5, 5) ≤ 49 and 102 ≤ R(6, 6) ≤ 165.

Proof of the existence of the more general Ramsey number Rk(s1, . . . , sk).

One way: Assume k even. Then,

Rk(s1, . . . , sk) ≤ Rk/2(R(s1, s2), R(s3, s4), . . . , R(sk−1, sk)).

Use induction.

Another way:

Rk(s1, . . . , sk) ≤ Rk(s1 − 1, s2 . . . , sk) +Rk(s1, s2 − 1, . . . , sk) + . . .+Rk(s1, s2, . . . , sk − 1)

Proof of this along the lines of previous proofs. Now, use induction (on sum of the si for instance).

What is Rk(3, 3, . . . , 3)? We have the bounds:

2k ≤ Rk(3, 3, . . . , 3) ≤ (k + 1)!

Open problem: do these Ramsey numbers grow faster than exponential in k?

To get the lower bound, form a complete bipartite graph on 2k vertices. Color each of the parts the same
way. Use induction. No monochromatic triangles.

Also, can get a better lower bound of (
√

5)k for k even. In general, we have the bound Rk(3, . . . , 3) − 1 ≥
(Rt(3, . . . , 3)− 1)(Rk−t(3, . . . , 3)− 1) for k a multiple of t.

Theorem 1.3 (Schur). For any k there exists n such that for any k-coloring of {1, . . . , n}, there exist x, y, z
of the same color such that x+ y = z.

Proof. Pick n = Rk(3, . . . , 3). Given a coloring c : [n] → [k], define an edge-coloring of Kn. The color of
edge {i, j} is χ({i, j}) = c(|j− i|). Then, there exists a monochromatic triangle with vertices i, j, k. Assume
i < j < k. Then,

c(j − i) = c(k − j) = c(k − i).

Then x = j − i, y = k − j, and z = k − i is the desired monochromatic solution.

Can modify proof slightly to make sure x, y are distinct. Another variation: modify to x2 +y2 = z2. Answer
not known even for two colors.

If we modify to the linear equation c1x1 + c2x2 + · · · + cnxn = 0, the theorem holds iff some non-empty
subset of the coefficients sum to 0. This is a special case of Rado’s theorem.

Theorem 1.4. For all m ≥ 1 there exists p0 such that for all primes p > p0 the congruence

xm + ym ≡ zm (mod p)

has a nontrivial solution.
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Davie Rolnick 2 SEPTEMBER 12: HYPERGRAPH RAMSEY NUMBERS I

Proof. The multiplicative group Z×p is cyclic, i.e. has a generator g. Each element x can be written as gmj+i

for 0 ≤ i ≤ m − 1. Color x with c(x) = i, so that there are m colors. By Schur’s Theorem, there exist
x′, y′, z′ ∈ Z×p of the same color and with x′ + y′ ≡ z′. We have

x′ = gmj1+i

y′ = gmj2+i

z′ = gmj3+i

Divide out by gi. Now set x = gj1 , y = gj2 , and z = gj3 , and we are done.

Remark. Note that we needed the “p sufficiently large” so that we could apply Schur’s Theorem.

2 September 12: Hypergraph Ramsey Numbers I

Definition. A hypergraph is a pair H = (V,E) of a vertex set V and an edge set E, where elements of the
edge set are (distinct) subsets of V . The hypergraph H is r-uniform if all the edges have r vertices.

Definition. The hypergraph Ramsey number Rr(s, t) is the minimum n such that every red-blue coloring
of the edges of the complete r-uniform hypergraph Kr

n contains a red s-set or blue t-set.

Theorem 2.1. Rr(s, t) exists for all r, s, t and

Rr(s, t) ≤ Rr−1(Rr(s− 1, t), Rr(s, t− 1)) + 1 = N

Proof. We have Rr(s, r) = s and Rr(r, t) = t, so proving the inequality proves inductively the existence of
the number Rr(s, t).

Consider then a complete two-colored r-uniform hypergraph H on N vertices. Pick a vertex v. We rearrange
the remaining vertices into a (r− 1)-uniform hypergraph H ′ by coloring every (r− 1)-set T ⊂ V − {v} with
the color of T ∪ {v}. There must be in H ′ either a red Rr(s − 1, t)-set or a blue Rr(s, t − 1)-set. WLOG
assume the former and let this red Rr(s− 1, t)-set be V0.

We now consider V0 as a subset of the vertex set of H. All edges of H are red that include r − 1 vertices
from V0, as well as the vertex v. By the cardinality of V0, there must be either a red (s − 1)-set or a blue
t-set within it. In the former case, adding v creates a red s-set, and in the latter case, we already have a
blue t-set. Therefore, Rr(s, t) ≤ N , as desired.

Remark. This bound is awful!!! It goes up by the Ackermann hierarchy...

Let N(m) be the minimum n such that every n points in general position in R2 contains m of them in
convex position. N(3) = 3, N(4) = 5, N(5) = 9, (computer-aided) N(6) = 17. Erdos: “The Happy Ending
Problem.” Conjecture: 2m−2 + 1. Shown to be a lower bound.

Proposition 2.2. N(m) exists for each m.

Proof 1. We here show that N(m) ≤ R4(5,m). Color a set of 4 points red if not in convex position and blue
otherwise. Now, there can be no red 5-set since N(4) = 5, so there must be a blue m-set of points. Since all
4-subsets are convex, the whole set is (by a triangulation argument).
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Proof 2. (By Tarsy, during an exam.) N(m) ≤ R3(m,m). Number the vertices and let the triangle {i, j, k}
be colored red if i, j, k clockwise. A non-convex polygon cannot have all clockwise (or counterclockwise)
triangle subsets.

Another, better, proof gives the upper bound
(
2m−4
m−2

)
+ 1. This has since been improved by a factor of

roughly 2.

Theorem 2.3 (Erdös-Rado, 1952). Rr(s, u) ≤ 2( t
r−1)+1 = N where t = Rr−1(s− 1, u− 1) + 1.

Proof of case r = 3, general case is a similar stepping-down argument. Suppose we have the coloring c : [N ]3 →
{red,blue}.

Objective: Find t vertices v1, . . . , vt such that for all i < j all triples {vi, vj , vk} (for k > j) have the same
color, denoted χ(i, j). This would solve the problem.

Pick the vertices in rounds. At some point, have v1, . . . , vm and a pool Sm of some of the remaining vertices
such that adding any element of Sm to an existing pair vi, vj creates a triple with the same color.

In round 1, pick some v1. Afterwards, suppose we have finished round m. Pick vm+1 ∈ Sm arbitrarily. For
each v left in the pool, consider the color vector (c1, . . . , cm) where ci = c({vi, vm+1, v}), which are the only
triples we are worried about. Now, partition Sm − {vm+1} into equivalence classes based upon color vector.
Let Sm+1 be the largest of these equivalence classes. Then,

|Sm+1| ≥ 2−m(|Sm| − 1)

Combining these inequalities over all m gives the desired bound.

Remark. This bound is much better than the Ackermann-type bounds - it is, roughly, a tower of 2’s of
height r.

In general, get a tower of 2’s one notch higher in upper bound than in lower bound. Improving the gap for
3-uniformity would improve all higher by “stepping up.”

A weaker, probabilistic-method bound:

Rr(s, s) ≥ 2crs
r−1

= N

Proof. Color the r-tuples of anN -set uniformly at random. Each has probability of 21−(sr) of being monochro-
matic. The number of s-sets is

(
N
s

)
, so the expected number is

21−(sr)
(
N

s

)
We win if this is strictly less than 1, which it is by [calculation stuff].

3 September 14: Hypergraph Ramsey Numbers II

PSET 1 will be handed out Monday Sep 19, and will be due Monday Oct 3.

One source for lectures:
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Davie Rolnick 4 SEPTEMBER 19: VAN DER WAERDEN, ETC.

• “Ramsey Theory,” by Graham, Rothschild, and Spencer. Including Chapters 1, 2 (+new develop-
ments), today section 4.7 - the stepping-up lemma (Erdös-Hajnal).

Last class we worked with upper bounds. Today, lower bounds:

R2(s, s) ≥ 2s/2

R3(s, s) ≥ 2(1+o(1))s
2/6

R4(s, s) ≥ 22
cs2

R5(s, s) ≥ 22
2cs

2

· · ·

Definition. We write N → (s)rk (read “N arrows (s)rk”) if every k-coloring of [N ]r contains a monochro-
matic s-set. Otherwise, we write N 6→ (s)rk.

Lemma 3.1 (Stepping-up Lemma). If n 6→ (s)r then 2n 6→ (2s+ r − 4)r+1, for all r ≥ 3.

It is not known if R3(s, s) ≥ 22
cs

. However, R3
4(s) = R3(s, s, s, s) ≥ 22

cs

is known:

Theorem 3.2. If n 6→ (s)22 then 2n 6→ (s+ 1)34.

4 September 19: Van der Waerden, etc.

PROBLEM SET 1

For a graph H and n ∈ N , let c(H,n) be the minimum fraction, over all 2-edge-colorings of Kn, of the
number of (unlabeled or labeled - it gives the same answer) copies of H which must be monochromatic. So,
if |H| = h, then there are n(n− 1) · · · (n− h+ 1) labeled copies possible.

Problem 4.1. Show that
c(H) = lim

n→∞
c(H,n)

exists and is positive.

Problem 4.2. Show that c(K3) = 1
4 .

Problem 4.3. c(Ks,t) = 21−st.

Jensen’s Inequality and double-counting may be helpful.

Problem 4.4. Prove that for each positive integer r, there exists N = N(r) such that, for every r-coloring
of the edges of the complete graph on the N × N grid, there are i, j, i′, j′ such that edges ((i, j), (i′, j)) and
((i, j′), (i′, j′)) have the same color, as do ((i, j), (i, j′)) and ((i′, j), (i′, j′)).

Conjecture 4.1 (You get an A+ if you prove this!). N(r) = rO(1).

Conjecture 4.2 (Implied by Sidorenko’s conjecture.). If H is bipartite with m edges then c(H) = 21−m.
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Davie Rolnick 4 SEPTEMBER 19: VAN DER WAERDEN, ETC.

Theorem 4.3 (Van der Waerden). For all k, r there exists w = w(k, r) such that every r-coloring of [w]
contains a monochromatic k-term arithmetic progression.

Conjecture 4.4 (Scemerédi). For all k and ε > 0 there exists N = N(k, ε) such that every S ⊂ [N ] with
|S| ≥ εN contains a k-term arithmetic progression.

Roth proved the k = 3 case. Gowers gave a better bound. Green and Tao proved that the primes contain
arbitrarily long arithmetic progressions.

Theorem 4.5 (Hales-Jewett). For all k, r there exists n such that every r-coloring of [k]n contains a
monochromatic combinatorial line. A combinatorial line is a sequence of points, where each coordinate
either increases along them or else is constant. There are thus (k + 1)n − kn possible combinatorial lines.

Why does Hales-Jewett imply van der Waerden? Given a coloring of the integers, color the cube based upon
the color of the sum of the coordinates, for instance. Other linear functions will do too.

Proof of Hales-Jewett. Can also find beautiful proof (with typos, alas) online, search for “coloring Hales-
Jewett.”

Use induction on k. The base case of k = 2 is easy. Assume holds for k − 1 then.

Let t1, . . . , tr be a rapidly increasing (i.e., they get BIG!!!!) sequence of positive integers with n = t1+. . .+tr.

Consider an r-coloring of [k]n Define an induced rk
n−tr

-coloring on [k]tr , coloring each x according to the
function f : [k]n−tr → [r] where f(w) is the color of (w, x).

By induction we find a line Lr in [k]tr such that all points in that line except possibly the point where the

variable coordinates is k. We need tr ≥ HJ(k − 1, rk
n−tr

), which works if tr is REALLY HUGE.

Next step: Pass to [k]n−tr × Lr, apply the same argument with(
[k]n−tr−tr−1 × Lr

)
× [k]tr−1

Find that as long as

tr−1 ≥ HJ(k − 1, rk
n−tr−tr−1+1

)

can find Lr−1 a combinatorial line in [k]tr−1 such that the color of a point in [k]n−tr−tr−1 × Lr−1 × Lr does
not depend on which point in Lr−1 × Lr you choose except if you change a k to a non-k (or vice versa).

Proceed thusly until finish. Namely, need

tr−i ≥ HJ
(
k − 1, rk

n−tr−i+1−···−tr+i
)

and find combinatorial lines Li ∈ [k]ti such that the following property holds, which we call Property P :

• The color of a point in L1 × L2 × · · · × Lr only depends on which coordinates are k.

This now really boils down to HJ(2, r) = r, since only care about k or not-k. Namely, consider the r + 1
points (k − 1, . . . , k − 1), (k, k − 1, . . . , k − 1), (k, k, k − 1, . . . , k − 1), . . ., (k, k, . . . , k). Two of these points
will be of the same color - these are the last two points of a combinatorial line. Now, we know the last two
are the same color and, by Property P, the first k − 1 are as well, since they all share the same coordinates
of value k. Hence, the entire combinatorial line must be monochromatic.
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Davie Rolnick 5 SEPTEMBER 26: HALES-JEWETT, ETC.

5 September 26: Hales-Jewett, etc.

There is a density version of Hales-Jewett, which was originally proven using ergodic theory. Finally, the
Polymath Project (online collaboration group) solved it using a combinatorial proof.

We will now give an alternate proof of Hales-Jewett. The last one (which was essentially the original proof)
gave bad Ackermann-type bounds. This is a much nicer one, improving to Wowzer-type.

Proof by Shelah. We use induction on k. The idea: Where the previous proof used HJ(k − 1) at each step
and finished with HJ(2), this proof uses HJ(2) at each step and finishes with HJ(k−1). (Intermediate-type
proofs are possible too, but they are not as good as this one.)

Let t1, . . . , tm be an increasing sequence of positive integers, where m = HJ(k− 1, r). Let n = t1 + . . .+ tm.
Consider an r-coloring of

[k]n = [k]t1 × [k]t2 × · · · × [k]tm = [k]n−tm × [k]tm .

Define a rk
n−tm

-coloring of [k]tm by coloring a point x ∈ [k]tm by the function f : [k]n−tm → [r] given by
f(w) = the color of (w, x) in the original coloring.

By HJ(2) find a combinatorial line Lm in [k]tm such that the first two points in the line have the same color.
To find this, we need that

tm ≥ HJ
(

2, rk
n−tm

)
= rk

n−tm
.

Now, we can pass to the subspace [k]n−tm × Lm, where changing the last coordinate of a point from a 1 to
a 2 (or vice versa) does not change the color of the point.

Here, we run the same argument again by writing

[k]n−tm × Lm =
(
[k]n−tm−tm−1 × Lm

)
× [k]tm−1

We require

tm−1 ≥ HJ
(

2, rk
n−tm−tm−1+1

)
= rk

n−tm−tm−1+1

and get a combinatorial line Lm−1 in [k]tm−1 such that the color of a point in [k]n−tm−tm−1 ×Lm−1 ×Lm is
not changed by switching either of the last two coordinates from a 1 to a 2 (or vice versa).

We continue in this fashion until we obtain a subspace L1 × · · · × Lm, such that changing any coordinate
from 1 to 2 (or vice versa) does not change the color of a point. Now, we consider the subspace containing
those points having no 1’s in any coordinates. Since m = HJ(k − 1, r), we then get a combinatorial line L0

in L1× · · · ×Lm such that the last k− 1 points in the line have the same color. Because of the 1-2 changing
properties of all the Li, the first point in line L0 must have the same color as the other points, and we are
done.

What are the bounds in this proof? We needed ti+1 double-exponential in ti. So n ≈ tm is roughly a tower
of 2’s of height 2m = 2HJ(k − 1, r), which gives Wowzer bounds.

Now, a new type of problem:

Question: How many edges can a graph G on n vertices have with no cycle?
Answer: n− 1 (forests)
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Davie Rolnick 5 SEPTEMBER 26: HALES-JEWETT, ETC.

What about no odd cycle? Answer: bn
2

4 c. Because...

Proposition 5.1. A graph is bipartite iff it has no odd cycle.

Proof. If it is bipartite, it clearly has no odd cycle (try to 2-color the vertices of the cycle and you get a
problem). The other way: If it has no odd cycle, pick a vertex to start a 2-coloring at and greedily continue,
adding neighbors in the opposite color and so on, with no contradictions since there is no odd cycle.

(The maximal number of edges in an n-vertex bipartite graph is, by AM-GM, achieved when the parts are
equal.)

Theorem 5.2 (Mantel 1907). A triangle-free graph G = (V,E) has at most bn
2

4 c edges.

Proof. Let dx be the degree of vertex x. If (x, y) ∈ E then dx + dy ≤ n, since the graph is triangle-free.
Then, if m = |E|, we have

mn ≥
∑

(x,y)∈E

(dx + dy) =
∑
x∈V

d2x.

Now, by Cauchy-Schwarz,

n
∑
x∈V

d2x ≥

(∑
x∈V

dx

)2

= (2m)2.

Combining the two inequalities, we get mn ≥ (2m)2/n, and so m ≤ n2/4.

The Turán graph Tn,r is the complete r-partite graph on n vertices with parts of “equal” size (i.e., differing
in size by at most 1).

Theorem 5.3 (Turán 1941). Tn,r is the (unique) Kr+1-free graph on n vertices with the maximal number
of edges. Then,

|E| ≤
(

1− 1

r

)
n2

2
.

Definition. Let ex(n,H) be the maximum number of edges possible in an H-free graph on n vertices.

Then, Turán’s Theorem implies that

ex(n,Kr+1) ≈
(

1− 1

r

)
n2

2
.

Theorem 5.4 (Erdös-Stone-Simonovits). If H has chromatic number χ(H) = r + 1 then

ex(n,H) =

(
1− 1

r
+ o(1)

)
n2

2
.

This is not very informative for H bipartite.
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Davie Rolnick 6 SEPTEMBER 28, 2011: TURÁN’S THEOREM, ETC.

Proof of Turán’s Theorem. Use induction.

Let G be an n-vertex Kr+1-free graph with the maximum possible number of edges. Pick a vertex v of
maximum degree d. Let S be the set of neighbors of v and T be the complement of S (so that v ∈ T ). Now,
we add to G all edges across T and S and delete all edges in T .

We get G′, with e(G′) ≥ e(G) and such that G′ is Kr+1-free. Using the inductive hypothesis, we can show
S is a Turán graph. Now, we apply to AM-GM to show that the maximal number of edges in a multipartite
graph is achieved when the sizes of the parts are the same.

6 September 28, 2011: Turán’s Theorem, etc.

MIT Combinatorics Seminar every Wednesday (and Friday, but at Microsoft) 4:15-5:15 in 2-135.

Alternative proof of Turán’s Theorem. Let G be a Kk+1-avoiding graph. Consider a probability distribution
on the vertices p1, . . . , pn, with

∑
pi = 1. We wish to maximize

P =
∑

i,j|(vi,vj)∈E(G)

pipj

If we pick pi = i/n, then P = 2|E|/n2. Claim: if pi, pj > 0 and (i, j) is not an edge, then you can increase
P by changing one of pi, pj to 0 and the other to pi + pj .

Proof of claim: Set si =
∑
k|{i,k}∈E pk and sj =

∑
k|{j,k}∈E pk. If si ≥ sj , set pi to pi + pj and pj to 0.

Otherwise, set pj to pi + pj and set pi to 0. This increases P by pj(si − sj) or pi(sj − si) in the two cases,
respectively.

Repeat the operation until impossible; when you stop, you must have a clique Q formed from the positive-
probability vertices. In this case, P = 1−

∑
i∈Q p

2
i . Then, P is maximized, by Cauchy-Schwarz, when every

pi equals 1/|Q|. Hence,

1− 1

|Q|
= P ≥ 2|E|

n2

Hence, since Q is of size at most k (because we are avoiding Kk+1),

1− 1

k
≤ 2|E|

n2

which gives the Turán bound. If one is careful with the proof, one can show equality exists only in the Turán
graph.

Proof of Erdös-Stone-Simonowitz (statement in previous section). Since H is a subgraph of a Turán graph,
we obtain that ex(n,H) ≥ (1− 1/k)n2/2 by Turán’s Theorem. Now we do the other way

Conceptual idea: There must be at least one Kk+1 clique in the big graph. In fact, there must be lots - turn
the graph into a (k + 1)-uniform hypergraph with an edge if the vertices form a clique. If H has t vertices
and χ(H) = k+ 1, then H is a subgraph of the Turán graph Kt, t, . . . , t︸ ︷︷ ︸

k+1

. Show that this must exist because

of the number of edges in the hypergraph, applying Jensen’s Inequality.
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Davie Rolnick 7 OCTOBER 3, 2011: MORE EXTREMAL GRAPH THEORY

Real proof: Suppose ε > 0, k, and t are fixed, n sufficiently large. Consider G on n vertices and with at least
(1− 1/k + ε)(n2/2) edges. We use induction on k. The base case of k = 1 follows from Jensen’s Inequality.
(See below.) We may assume that every vertex has degree at least (1 − 1/k + ε/2)n. (If not, then delete,
progressively, the vertices for which this fails. Since all these vertices had small degree, you will be left with
some edges and hence will not have deleted all the vertices. One can then consider the resulting smaller
graph.)

By the inductive hypothesis, there exists Ks, . . . , s︸ ︷︷ ︸
k

with s = dt/εe. Let B1, . . . , Bk be the parts of this

multipartite graph, so that |Bi| = s for every i.

Let U = V \(B1 ∪ · · · ∪Bk). Let W ⊂ U be the set of those vertices with at least t neighbors in each Bi. If

|W | >
(
s
t

)k
(t− 1), then we are done, by a Pigeonhole argument. Namely, there must be a set Ak+1 of some

t vertices such that each of them has, for each i, the same set Ai of neighbors in Bi. Then,
⋃k+1
i=1 Ai is a

graph Kt, t, . . . , t︸ ︷︷ ︸
k+1

.

Hence, we now merely need to show that |W | >
(
s
t

)k
(t− 1). Let m̃ be the number of missing edges between

U and B1 ∪ · · ·Bk. We have

m̃ ≤
(

1

k
− ε

2

)
nks

and also that
m̃ ≥ |U\W |(s− t) ≥ (n− ks− |W |)(1− ε)s.

Combining the two inequalities, moving things around, and using k ≥ 1, we obtain the desired inequality.

Now, we must prove the base case. Statement: Assume ε, t fixed and n sufficiently large. If G has n vertices
and at least εn2 edges. Then, G contains Kt,t.

Proof: Count the number of pairs (v, T ), where v is a vertex and T is a vertex subset of order t, with v
adjacent to all vertices in T . The number of such pairs is∑

v∈V

(
deg(v)

t

)
,

which, by Jensen’s Inequality is minimized when all degrees are the same, and hence is at least n
(
2m/n
t

)
.

By Pigeonhole, we are done if there are more than (t− 1)
(
n
t

)
such pairs. The inequality

n

(
2m/n

t

)
> (t− 1)

(
n

t

)
is routine to verify.

7 October 3, 2011: More Extremal Graph Theory

It is true that ex(n,H) = o(n2) ≤ c|H|n
2−1/|H|. (Exact constant given by Erdös-Sós Conjecture.) If H is a

tree, ex(n,H) = O(n).
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Davie Rolnick 7 OCTOBER 3, 2011: MORE EXTREMAL GRAPH THEORY

If one is very careful with the approach in the last section, one can get ex(n,Kr,s) ≤ cs1/rn2−1/r +O(n) for
s ≥ r. It is conjectured that ex(n,Kr,r) ≥ cn2−1/r (true for r = 2, 3, open for 4).

Proof for K2,2 = C4 (Erdös et al). Let the graph G have vertices (x, y) with x, y distinct residues modulo p
a prime. (So there are p(p − 1) vertices.) Let (a, b) and (x, y) form an edge iff ax + by ≡ 1 (mod p). The
number of edges, since the graph is p-regular, is

1

2
p · p(p− 1) ≈ 1

2
n3/2.

Having a copy of C4 would require 2 solutions to 2 independent linear equations - a contradiction.

Proof for K3,3 (Brown). Vertices are triples (x, y, z) which are distinct residues modulo p. There are then
p(p− 1)(p− 2) vertices. Let (a, b, c) and (x, y, z) be adjacent iff

(a− x)2 + (b− y)2 + (c− z)2 = 1 (mod p)

It turns out the graph is regular and has (1 + o(1))n5/3 edges. It turns out also that since three general
spheres intersect in two points, there can be no K3,3.

This method of proof does not, however, generalize, due to a topological change that comes about at
dimension 4.

It is true that ex(n,C2t) ≤ ctn1+1/t. We prove now that ex(n, {C3, C4, . . . , C2t}) ≤ cn1+1/t.

Lemma 7.1. Every graph with average degree d has a subgraph with minimum degree at least d/2.

Proof of Lemma. Delete, one by one, the vertices of degree less than d/2. Calculate the number of deleted
edges and stuff happens...

Proof sketch of ex(n, {C3, C4, . . . , C2t}) ≤ cn1+1/t. Assume WLOG that each vertex has degree at least n1/t+
1. Work out the size of the neighborhood of a vertex, then of the distance 2 neighborhood, distance 3, etc.
No overlap is possible since no cycles. Contradiction.

Unit distance problem: How many unit distances can there be among n points in the plane. Can easily
get n − 1 by putting in a line. Can do better by seeking frequent distances in a grid - which involves how
many times a number can be written as the sum of two squares... Calculation gives you lower bound of
nec
√
logn.

Trivial upper bound:
(
n
2

)
. Erdös: upper bound of ex(n,K2,3) ≤ cn3/2. Proof: make a graph where edges

between points unit distance apart - must be K2,3 by geometric observation (because two unit circles cannot
intersect in more than 2 points). Can also get upper bound of cn4/3 by a different argument.

Similar problem: How many distinct distances are possible? The grid has about n√
logn

. Katz and Guth

recently proved that there must be at least cn
logn distances.

Representing squares: Let A be a set of integers, and set A + A = {a + a′ | a, a′ ∈ A}. Suppose A + A
contains the first n squares. How small can |A| be?

Theorem 7.2 (Erdös-Newman). |A| ≥ n2/3−o(1).

Page 11



Davie Rolnick 8 OCTOBER 5: SZEMERÉDI’S REGULARITY LEMMA

Proof. For every 1 ≤ x ≤ n connect some pair (a, a′) such that a+ a′ = x2. If |A| = m = n2/3 − ε then this
graph has m vertices, n ≥ m3/2+δ edges. This implies that there exists K2,nδ in this graph, so a, a′ exist
with at least nδ common neighbors. Then a−a′ can be written as a difference of squares in at least nδ ways.
Can do some figuring to determine any integer ≤ n must have no(1) common divisors. Thus, we obtain a
contradiction.

Theorem 7.3 (Katona). Let X1, X2 be independently chosen identical distribution random vectors in Rd
Then,

Prob[|X1 +X2| ≥ 1] ≥ 1/2Prob2[|X1| ≥ 1].

Preparatory observation: Let v1, . . . , vn be vectors in Rd with length at least 1. Then, pairs vi, vj with
|vi + vj | < 1 cannot be part of a triangle (simple calculation). Which means, by Mantel’s Theorem that at
least n(n− 2)/2 pairs i, j must have |vi + vj | ≥ 1.

Proof of Katona. Sample some vectors X1, . . . , Xm from the distribution. Let a = Prob[|X1| ≥ 1] and
b = Prob[|X1 + X2| ≥ 1], so roughly am vectors will have length at least 1. The number of i, j with
|Xi + Xj | ≥ 1 is, then, both approximately bm(m − 1) and also at least am(m − 2)/2 by the preparatory
observation. From

bm(m− 1) ≥ am(m− 2)

2

we obtain b ≥ a2/2, as desired.

8 October 5: Szemerédi’s Regularity Lemma

The presentation used here for the Lemma is from Alon and Spencer. Another good one is Komlos and
Simonovits.

Let G = (V,E) be a graph. For A,B ⊂ V , let e(A,B) be the number of pairs in A × B which are edges,
and let d(A,B) be the fraction of pairs which are edges, so that d(A,B) = e(A,B)/(|A| · |B|). We say that
(A,B) is ε-regular if for all X ⊂ A with |X| ≥ ε|A| and Y ⊂ B with |Y | ≥ ε|B|, we have

d(X,Y )− d(A,B)| ≤ ε

If P and P ′ are partitions, we say that P ′ is a refinement of P if every part of P is a union of parts of P ′.
We say that a partition of V into V0, V1, . . . , Vk is an equipartition if |V1| = . . . = |Vk| (with V0 an exceptional
set).

We say that an equipartition P is ε-regular if |V0| ≤ ε|V | and all pairs (Vi, Vj) with 1 ≤ i, j ≤ k are ε-regular,
except possibly εk2 pairs.

Theorem 8.1 (Szemerédi’s Regularity Lemma). For every ε > 0 and t there exists T = T (ε, t) such that
every graph (with at least T vertices) has an ε-regular partition P : V = V0 ∪ V1 ∪ · · · ∪ Vk with t ≤ k ≤ T .

(Alas, T is very big: This proof shows that it is at most a tower of 2’s of height O(ε−5).)

Let the mean square density

q(P ) =
∑
i,j

d2(Vi, Vj)pipj ,
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where pi = |Vi|/|V |. Properties:

1. 0 < q(P ) ≤ 1.

2. If P ′ is a refinement of P , then q(P ′) ≥ q(P ). (This claim will be proved later.)

Proof idea: Start with an arbitrary equipartition P1 into t parts. Step i: we have Pi with k parts. If
Pi is ε-regular, we are done. If not, find a refinement Pi+1 of Pi with at most k · 4k parts and with
q(Pi+1) ≥ q(Pi) + ε5/2. This process must stop at some point, because q(P ) is bounded above by 1.

For U,W ⊂ V , let q(U,W ) = d2(U,W ) |U |·|W ||V |2 . For partitions PU of U and PW of W , let

q(PU , PW ) =
∑

U ′∈PU ,W ′∈PW

q(U ′,W ′).

Lemma 8.2. q(PU , PW ) ≥ q(U,W ).

Proof of Lemma. PIck a random u ∈ U and w ∈W . Let W ′ ∈ PW be such that w ∈W ′ and let U ′ ∈ PU be
such that u ∈ U ′. Let Z = d(U ′,W ′). Now, we relate expected values: By Cauchy-Schwarz

E[Z2] ≥ E[Z]2. (1)

We have that

E[Z] =
∑

U ′∈PU ,W ′∈PW

|U ′| · |W ′|
|U | · |W |

· d(U ′,W ′)

=
1

|U | · |W |
∑

e(U ′,W ′)

= d(U,W ),

from which we conclude

E[Z]2 =
|V |2

|U | · |W |
· q(U,W ) (2)

Now, we know,

E[Z2] =
∑ |U ′|
|W ′|

· |W
′|

|W |
· d2(U ′,W ′) =

|V |2

|U | · |W |
· q(PU , PW ) (3)

Combining (1), (2), and (3) yields the desired result.

This also proves Property 2 above.

Lemma 8.3. Suppose that ε > 0 and U,W ⊂ V with (U,W ) not ε-regular. Then, there exist PU : U = U1∪U2

and PW : W = W1 ∪W2 such that

q(PU , PW ) > q(U,W ) +
ε4|U | · |W |
|V |2
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Proof of lemma. Let U1 ⊂ U with |U1| ≥ ε|U | and W1 ⊂ W with |W1| ≥ ε|W | such that ε-regularity fails -
i.e.,

|d(U1,W1)− d(U,W )| > ε

Let U2 = U\U1 and W2 = W\W1. Define Z as in the previous lemma’s proof, and compute the variance of
Z: it must, by the calculations in that proof, be

|V |2

|U | · |W |
(q(PU , PW )− q(U,W ))

We note that E[Z] = d(U,W ) and there is a probability of at least ε2 that Z deviates from E[Z]. Hence, the
variance of Z is also at least ε2 · ε2 = ε4, from which the result follows.

Proof of the regularity lemma. Take P which is not ε-regular. Let Pi,j be a partition of Vi into one or two
parts, with two parts if (Vi, Vj) is not ε-regular. Let Pi be a common refinement of all Pij . Then, Pi has at
most 2k−1 parts. Let Q be the partition of V which has as parts the parts of the Pi. Then, |Q| ≤ k2k−1.
Refine each part of Q into parts of size |V |/(k4k), to obtain the partition P ′. The number of remaining
vertices (which we put in V0) is no more than

|V |
k4k
· k2k−1 = |V |/2k,

which is small, so we need not worry about having enlarged V0 too much.

We want to show that q(P ′) ≥ q(P ) + ε5/2. Now, we gain, by Lemma 8.3, at least |Vi| · |Vj | · ε4/|V |2 in mean
square density, for each irregular pair (Vi, Vj). Now, we had P : V = V0 ∪ V1 ∪ · · · ∪ Vk, so

|Vi| ≈
|V |
k
≥ (1− ε)|V |

k
,

implying that we gain (in total) at least(
(1− ε)|V |

k

)2

· ε4

|V |2
· εk2 ≥ ε5

2

as desired.
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