Busy-Time Scheduling: Offline and Online Algorithms

FREDERIC KOEHLER (MIT) AND SAMIR KHULLER (UMD)
WADS 2017
How are cloud services priced?

A: It’s complicated
Amazon EC2 Pricing

Amazon EC2 is free to try. There are four ways to pay for Amazon EC2 instances: On-Demand, Reserved Instances, and Spot Instances. You can also pay for Dedicated Hosts which provide you with EC2 instance capacity on physical servers dedicated for your use.

On-Demand
With On-Demand Instances, you pay for compute capacity for the hour with no up-front commitments or upfront payments. You can increase or decrease your compute capacity depending on the demand of your application and only pay for the specified hourly rate for the instance you use.

On-Demand instances are recommended for:
- Applications that utilize the low cost and scalability of Amazon EC2 without any up-front payment or long-term commitments
- Applications with strict SLAs or applications that cannot be interrupted
- Applications being developed or tested on Amazon EC2 for the first time

See On-Demand Pricing

Spot Instances
Amazon EC2 Spot Instances allow you to bid on spare Amazon EC2 computing capacity for up to 90% off the on-demand price.

Spot instances are recommended for:
- Applications that have flexible start and end times
- Applications that are only feasible at very low compute prices
- Users with urgent computing needs for large amounts of compute capacity

See Spot Pricing

Reserved Instances
Reserved Instances provide you with a significant discount up to 75% compared to On-Demand Instance pricing. In addition, when Reserved Instances are assigned to a specific Availability Zone, they provide a capacity reservation giving you additional confidence in your ability to launch instances when you need them.

For applications that have steady state or predictable usage, Reserved Instances can provide significant savings compared to using On-Demand Instances. See How to Purchase Reserved Instances for more information.

Reserved Instances are recommended for:
- Applications with steady state usage
- Applications that require reserved capacity
- Customers that can commit to using EC2 over a 1 or 3 year term to reduce their total computing costs

See Reserved Pricing

Dedicated Hosts
A Dedicated Host is a physical EC2 server dedicated for your use. Dedicated Hosts can help you reduce costs by allowing you to use your existing server-based software licenses, reducing Windows Server core charges, and meeting your enterprise bypass your instance term limits, and can also help you meet compliance requirements. Learn more.

- Can be purchased On-Demand (hourly)
- Can be purchased as a Reservation for up to 75% off the On-Demand price

See Dedicated Pricing
A Dedicated Host is configured to support one instance type at a time. For example, if you allocate a c3.xlarge Dedicated Host, you can use a Dedicated Host with two sockets and 20 physical cores configured to support up to 8 c3.xlarge instances. Refer to the table below for Dedicated Host instance configurations. For more information on instances, visit EC2 Instance Types.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Sockets</th>
<th>Physical Cores</th>
<th>medium</th>
<th>large</th>
<th>xlarge</th>
<th>2xlarge</th>
<th>4xlarge</th>
<th>8xlarge</th>
<th>10xlarge</th>
<th>16xlarge</th>
<th>32xlarge</th>
</tr>
</thead>
<tbody>
<tr>
<td>c3</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c4</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>2</td>
<td>36</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g3</td>
<td>2</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>m3</td>
<td>2</td>
<td>20</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pricing

On-Demand Pricing

When you pay On-Demand for Dedicated Hosts, you pay for each hour that the Dedicated Host is active in your account (or allocated). You can terminate billing for any particular On-Demand Dedicated Host by releasing it. On-Demand gives you the flexibility to scale up or down without long-term commitments. To learn more about how to allocate or release a Dedicated Host, visit Dedicated Hosts Getting Started.

<table>
<thead>
<tr>
<th>Region</th>
<th>Price Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East (Ohio)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Purpose - Current Generation</th>
<th>Price Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>m4</td>
<td>$2.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compute Optimized - Current Generation</th>
<th>Price Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>c4</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU Instances - Current Generation</th>
<th>Price Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2</td>
<td>$15.34</td>
</tr>
<tr>
<td>g3</td>
<td>$5.016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Optimized - Current Generation</th>
<th>Price Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>$14.672</td>
</tr>
</tbody>
</table>
Summary

Pay for every hour a machine is on!
 ◦ Scheduling idle time = Saving money
 ◦ I.e. want to minimize busy time = total time m/c’s are on

Each machine has multiple processors
 ◦ Want to make use of all of them!
Busy-Time Scheduling Problem

We suppose we have access to infinitely many identical machines, each with g processors (cores).

- We will cover finite #machines case later

Input: Jobs with Availability Constraints \((r_j, d_j, p_j)\)

Output: Start times \(s_j\), machine assignments \(m_j\)
Example (g = 2, 2 machines are used)
Busy time Objective

Busy-time = \text{len} () + \text{len}()
= 5 + 13 = 18

In general: Busy-time = \sum_{j=1}^{\infty} (\text{total time machine } j \text{ is on})
Algorithms?

Trivially NP-Hard: Use Knapsack

Interval Job Case: \(r_j + p_j = d_j \), i.e. start times are fixed
- Studied in context of fiber optic network design (OADM’s)
- Still NP-Hard (Winkler and Zhang ’03)
- 2-Approximation (Alicherry and Bhatia ‘03, Kumar and Rudra ‘05)
- 4-Approximation (Flammini et al ’09)
 - Authors were unaware of previous work
 - Worse approximation but has simple analysis!
Algorithm of Flammini et al

Simple greedy algorithm:
- Sort jobs longest to shortest
- Start with one machine open
- For each job:
 - Place this job onto the first available processor
 - If no processors available => open a new machine

NOTE: Job 4 can “blame” jobs 2 & 3, 5 blames 1 & 3
For being forced on a new machine
ALSO: Jobs blaming 3 lie in a window of size 3 p_3
Analysis of Flammini et al

Trivial load bound: \((\text{sum of } p_j)/g \leq (\text{opt busytime})\)

Every job on machine \(k\) has at least \(g\) longer jobs to “blame” for it not fitting onto machine \(k - 1\).

So \(\text{busy-time(machine } k) \leq 3 \left(\text{sum of } p_j \text{ on machine } (k - 1)/g\right)\)

Summing,

\((\text{total busy-time}) \leq (\text{machine 1 busy-time}) + 3\left(\text{sum of } p_j)/g\right)\)

\[\leq 4 \left(\text{opt. busy-time}\right)\]
General Case (non-Interval jobs)

4-apx by Khandekar et al, ’10. (3-apx by Chang et al ‘14)

If $g = \infty$, can solve optimally by dynamic programming

If $g < \infty$:
- Choose start times as if $g = \infty$, as above
- With start times fixed (!), use algorithm of Flammini et al

$(\text{total busy-time}) \leq (\text{machine 1 busy-time}) + 3(\text{sum of } p_j)/g \\ \leq 4 \ (\text{opt. busy-time})$
Our Contributions: Online Algorithms

Online Algorithms
- $g = \infty$: 5-competitive online algorithm, 1.618 lower bound
- Ren and Tang (SPAA ’17) independently gave 6.828-competitive online algorithm
- $g < \infty$: Pick m/c’s via bucketing gives $9 \log \frac{p_{\text{max}}}{p_{\text{min}}} \text{ alg}$
- Much faster than dynamic programming
Our Contributions: Bounded No. of M/C

If allowed to by availability-constraints, previous algorithms schedule all jobs at once!

- This is an issue with “reducing” to $g = \infty$ problem
- Even Amazon does not allow this --- max 20 instances w/out prior approval
- We give $O(1)$ busy time algorithms with $O(M \log (\max p_j/p_k))$ many M/C’s, where $M = \min$ # M/C’s needed. Equal p_j => can actually use optimal # of M/C’s!
5-Competitive Online Algorithm (g = ∞)

Wait until a job j hits its latest start time $d_j - p_j$

Turn the machine on in the interval $[d_j - p_j, d_j + p_j]$

Run every job that fits while the machine is on
5-Competitive Online Algorithm ($g = \infty$)

Wait until a job j hits its latest start time $d_j - p_j$.

Turn the machine on in the interval $[d_j - p_j, d_j + p_j]$.

Run every job that fits while the machine is on.

NOTE: We can “charge” the busy-time for the interval to the “primary job” j which forced us to run jobs.
Fix an arbitrary busy-time optimal schedule \(\text{OPT} \).

The time the machine is turned on (under \(\text{OPT} \)) decomposes into a disjoint union of intervals:

- Fix a single interval \(L \). How much time does our schedule use for the jobs in \(L \)?
 - More precisely, how much time do the *primary jobs* in our schedule from this interval cost us?

\[
A: \text{At most } \text{len}(L) + 2 \times (1 + \frac{1}{2} + \frac{1}{4} + \ldots) \times \text{len}(\text{longest job in } L) \leq 5 \times \text{len}(L)
\]

Summing gives 5-approximation.
Recall: Bounded No. of M/C

If allowed to by availability-constraints, previous algorithms schedule all jobs at once!
- This is an issue with “reducing” to $g = \infty$ problem
- Even Amazon does not allow this --- max 20 instances w/out prior approval
- We give $O(1)$ busy time algorithms with $O(M \log (\max \frac{p_j}{p_k}))$ many M/C’s, where $M = \min$ # M/C’s needed. Equal $p_j =>$ can actually use optimal # of M/C’s!
Observation: Batch similar size jobs together => good busytime

Algorithm:
- Bucket jobs according to processing time p_j; round r_j and d_j
- *i.e.* bucket [1-2], [2-4], [4-8] etc. and round to multiples of 2
- In each bucket:
 - Solve the equal-length scheduling problem to find min # of m/c’s
 - Every time a multiple of g many jobs are available, run them together
- Some jobs remain unscheduled!
 - Run them with 3-apx of Chang et al
 - Need to bound # of M/C used in this step. (Nontrivial part!)
Proof Sketch: Busy-time is bounded

In one bucket, jobs length lie in \([p/\alpha, p]\) for some \(p\)

- CLAIM: Busytime is bounded by \(2 \alpha \ast \) (load bound)
- Sum over buckets, and with bound of Chang et al => (2 \(\alpha + 1\))-approximation

Rounded Time Real Time (unrounded)
Proof Sketch: Number of M/C Bounded

Number of machines used by each bucket?
- We solve m/c minimization optimally in each bucket with \(\text{rounded } r_j, p_j, d_j\)
- If we are careful in unrounding, get O(\(\alpha\))-approximation

Number of machines used by calling Chang et al?
- Idea: Jobs dropped from a bucket have essentially disjoint availability intervals
- Show that even taking arbitrary valid assignment of start times, number of m/c we need is bounded by true optimum
Summary

5-approximation for \(g = \infty \) busy-time scheduling

- Best known; lower bound of \(\phi \approx 1.618 \)
- What is the true competitive ratio?

\((3 + \varepsilon)\)-approximation with only \(O(M \max \log p_j/p_k) \) M/C’s

- \(M \) = minimum number of machines required to run all jobs

In paper: 6-approximation for busy-time on optimal # of M/C’s

- Only when all processing times are equal.
- Trade-off lower bounds: similar result cannot hold in general!

Also in paper: online with lookahead by “fusing” algorithms