Prüfer Domains I

Throughout this lecture, \(R \) is an integral domain. Recall that \(\text{qf}(R) \) denotes the quotient field of \(R \).

Definition and Examples. Prüfer domains, which are natural generalizations of valuation domains, play a fundamental role in multiplicative ideal theory. In this lecture, we start our discussion of Prüfer domains.

A fractional ideal \(I \) of \(R \) is invertible if there is a fractional ideal \(J \) such that \(IJ = R \), in which case \(J = (R : I) = \{ r \in \text{qf}(R) : rI \subseteq R \} \). It is clear that the set of all invertible fractional ideals of \(R \) is an abelian group with identity \(R \). Observe that such a group contains the set of all nonzero principal fractional ideals as a subgroup.

Definition 1. An integral domain \(R \) is a Prüfer domain if every nonzero finitely generated ideal of \(R \) is invertible.

Fields and PIDs are clearly Prüfer domains. Recall that a Bezout domain is an integral domain where every finitely generated ideal is principal. Since nonzero principal ideals are invertible, every Bezout domain is a Prüfer domain. In particular, every valuation domain is a Prüfer domain. Let us briefly exhibit two further examples of Prüfer domains.

Example 2. The set \(\text{Int}(R) := \{ p(x) \in \mathbb{Q}[x] : p(\mathbb{Z}) \subseteq \mathbb{Z} \} \) is a subring of \(\mathbb{Q}[x] \) called the ring of integer-valued polynomials. We shall prove soon enough that \(\text{Int}(R) \) is a non-Noetherian Prüfer domain of Krull dimension 2.

Example 3. The ring consisting of all the entire function on the complex plane is a Bezout domain of infinite Krull dimension. In particular, it is a Prüfer domain.

Although every PID is Prüfer, this is not the case for UFDs. The following example sheds some light upon this observation.

Example 4. For a field \(F \), consider the ring of polynomials \(R := F[x, y] \) and the ideal \(I = Rx + Ry \) of \(R \). If \(f \in \text{qf}(R) \) belongs to \(J := (R : I) \), then \(Rx f + Ry f \subseteq R \), and so \(xf \in R \) and \(yf \in R \). Therefore \(f \in x^{-1}R \cap y^{-1}R = R \). Then \(J \subseteq R \) (indeed, \(J = R \)), and we see that \(IJ \subseteq I \). Thus, \(I \) is not an invertible ideal even though it is finitely generated, and this allows us to conclude that \(R \) is not a Prüfer domain. Note, however, that \(R \) is a UFD.
Characterizations. We will discuss various of the many characterizations of Prüfer domains. Let us start by the following.

Proposition 5. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) Every two-generated ideal of R is invertible.

Proof. (a) \Rightarrow (b): This is obvious.

(b) \Rightarrow (a): We will show that every nonzero finitely generated ideal of R is invertible by using induction on the minimum number n of generators of such an ideal. It is clear when $n = 1$, and it follows from part (b) when $n = 2$. Suppose, therefore, that I can be generated by n elements, where $n > 2$, and assume that every nonzero ideal of R that can be generated by less than n elements is invertible. Now write $I = Rc_1 + \cdots + Rc_n$ for some nonzero elements $c_1, \ldots, c_n \in R$. Set $I_1 := Rc_1 + \cdots + Rc_{n-1}$, $I_2 := Rc_2 + \cdots + Rc_n$, and $I_3 := Rc_1 + Rc_n$. By induction, I_1, I_2, and I_3 are invertible.

Then $J := c_1I_1^{-1}I_3^{-1} + c_nI_2^{-1}I_3^{-1}$ is a fractional ideal of R. We claim that J is the inverse of I. To show this, first observe that

$$IJ = (I_1 + Rc_n)c_1I_1^{-1}I_3^{-1} + (Rc_1 + I_2)c_nI_2^{-1}I_3^{-1}$$
$$= c_1I_3^{-1} + c_1c_nI_1^{-1}I_3^{-1} + c_1c_nI_2^{-1}I_3^{-1} + c_nI_3^{-1}$$
$$= c_1I_3^{-1}(R + c_nI_2^{-1}) + c_nI_3^{-1}(R + c_1I_1^{-1}).$$

As I_1 and I_2 are invertible ideals and $c_1 \in I_1$ and $c_n \in I_2$, it follows that $c_1I_1^{-1} \subseteq R$ and $c_nI_2^{-1} \subseteq R$. This, along with the previous chain of equalities, guarantees that $IJ = c_1I_3^{-1} + c_nI_3^{-1} = I_3I_3^{-1} = R$. Hence I is an invertible ideal.

We proceed to characterize Prüfer domains in terms of valuation domains.

Proposition 6. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.

(b) R_P is a valuation domain for every prime ideal P.

(c) R_M is a valuation domain for every maximal ideal M.

Proof. (a) \Rightarrow (b): Assume that R is a Prüfer domain, and let P be a prime ideal of R. Since R_P is a local ring, it is enough to prove that it is a Bezout domain. Let $\frac{a_1}{s_1}R_P + \cdots + \frac{a_k}{s_k}R_P$ be a nonzero finitely generated ideal of R_P, where $a_1, \ldots, a_k \in I$ and $s_1, \ldots, s_k \in R \setminus P$. Then $I := Ra_1 + \cdots + Ra_k$ satisfies that $I_P = \frac{a_1}{s_1}R_P + \cdots + \frac{a_k}{s_k}R_P$.

Since R is a Prüfer domain, I is invertible. Let J be a fractional ideal such that $JI = R$, then $(J|_R)I_P = R_P$, and so I_P is invertible in R_P. Since R_P is local, I_P is a principal ideal. Hence R_P is a valuation domain.

(b) \Rightarrow (c): This is clear.
(c) \(\Rightarrow\) (a): Assume, by way of contradiction, that there is a nonzero finitely generated ideal \(I\) of \(R\) that is not invertible. Write \(I = Ra_1 + \cdots + Ra_n\) for \(a_1, \ldots, a_n \in R\). Since \(I\) is not invertible, \(IJ \subseteq R\), where \(J := (R : I)\). So there is a maximal ideal \(M\) of \(R\) such that \(IJ \subseteq M\). Because the extension \(I_M\) of \(I\) is a finitely generated ideal of the Bezout domain \(R_M\), there is an \(a \in I\) satisfying \(I_M = aR_M\). For each \(i \in [1, n]\), we can now take \(s_i \in R \setminus M\) with \(s_ia_i \in aR\). After setting \(s = s_1 \cdots s_n\), we see that \(sa^{-1}a_i \in R\) for every \(i \in [1, n]\), and so \(sa^{-1}I \subseteq R\). This implies that \(sa^{-1} \in J\) and, therefore, \(s = a(sa^{-1}) \in IJ \subseteq M\), which is a contradiction. \(\square\)

Corollary 7. Let \(R\) be a Prüfer domain, and let \(P\) be a prime ideal of \(R\). Then the set of all \(P\)-primary ideals of \(R\) is totally ordered, and the intersection \(P'\) of all such primary ideals is a prime ideal satisfying that there is no prime ideal strictly between \(P'\) and \(P\).

Proof. It follows from Proposition 6 that \(R_P\) is a valuation domain. Now the corollary follows from the correspondence between the \(P\)-primary ideals of \(R\) and the \(P_P\)-primary ideals of \(R_P\), as we have seen before that the statement of the corollary holds for valuation domains. \(\square\)

Prüfer domains can also be characterized using cancellation of finitely generated ideals.

Proposition 8. For an integral domain \(R\), the following statements are equivalent.

(a) \(R\) is a Prüfer domain.

(b) For every nonzero finitely generated ideal \(I\) of \(R\), whenever \(IB = IC\) for ideals \(B\) and \(C\) the equality \(B = C\) must hold.

(c) For every finitely generated ideal \(I\) of \(R\), whenever an ideal \(J\) is contained in \(I\), there is an ideal \(K\) such that \(J = IK\).

Proof. (a) \(\Rightarrow\) (b): Let \(I\) be a finitely generated nonzero ideal of \(R\), and let \(J\) and \(K\) be ideals of \(R\) such that \(IJ = IK\). Since \(R\) is a Prüfer domain, \(I\) is invertible and so \(J = I^{-1}IJ = I^{-1}IK = K\).

(b) \(\Rightarrow\) (a): Suppose, on the other hand, that every finitely generated nonzero ideal of \(R\) is cancellative. We start by observing that if \(I\) is a nonzero finitely generated ideal of \(R\) and \(IJ \subseteq IK\) for ideals \(J\) and \(K\) of \(R\), then \(J \subseteq K\). Indeed, \(IK = IJ + IK = I(J + K)\) implies that \(K = J + K\), which means that \(J \subseteq K\).

To prove that \(R\) is Prüfer it suffices to argue that the localization of \(R\) at any prime ideal is a valuation domain. Let \(P\) be a prime ideal of \(R\). Take \(a, b \in R\), and let us show that either \(aR_P \subseteq bR_P\) or \(bR_P \subseteq aR_P\). The assertion clearly holds when \(a = 0\) or \(b = 0\). So we assume that \(ab \neq 0\). Note that \(Rab(Ra + Rb) \subseteq (Ra^2 + Rh^2)(Ra + Rb)\), and so \(Rab \subseteq Ra^2 + Rh^2\). Take \(x, y \in R\) such that \(ab = xa^2 + yh^2\), and observe that \(Rhb(Ra + Rh) \subseteq Ra(Ra + Rh)\). Therefore \(yb = ra\) for some \(r \in R\), and we can write
ab = x^2a^2 + rab, that is, xa = b(1 - r). If r \notin P, then a = b(y/r) \in bR_P and so aR_P \subseteq bR_P. On the other hand, if r \in P, then 1 - r \notin P and so b = ax/(1-r) \in aR_P, which implies that bR_P \subseteq aR_P. Hence R_P is a valuation domain for every prime ideal P.

(a) \Rightarrow (c): Let I be a finitely generated ideal of R, and let J be an ideal of R contained in I. If I is the zero ideal so is J, and we can take K = R (or any ideal of R). If I is nonzero, then it is invertible and so we can take K to be I^{-1}J.

(c) \Rightarrow (a): Finally, suppose that the statement (c) holds. We will show that every localization of R at a prime ideal is a valuation. To do so, take a prime ideal P of R. Take a, b \in R and let us verify that the principal ideals aR_P and bR_P are comparable. Since Ra \subseteq Ra + Rb, there is an ideal I such that Ra = (Ra + Rb)I. After writing a = xa + yb for some x, y \in I, we see that yb = a(1-x) \in aR. If x \in P, then 1-x \notin P, and from a = by/(1-x) \in bR_P we obtain that aR_P \subseteq bR_P. On the other hand, if x \notin P, then bx \in bI \subseteq (Ra + Rb)I = Ra ensures that b \in aR_P, that is, bR_P \subseteq aR_P. Hence R_P is a valuation domain for every prime ideal P.

Finally, we characterize Prüfer domains by using certain distributivity laws.

Proposition 9. For an integral domain R, the following statements are equivalent.

(a) R is a Prüfer domain.
(b) A(B \cap C) = AB \cap AC for all ideals A, B, and C of R.
(c) A \cap (B + C) = A \cap B + A \cap C for all ideals A, B, and C of R.

Proof. (a) \Rightarrow (b): Suppose that R is a Prüfer domain, and let A, B, and C be ideals of R. Let P be a maximal ideal of R. Since R_P is a valuation domain by Proposition 6, the ideals BR_P and CR_P of R_P are comparable and, therefore,

\[A(B \cap C)R_P = AR_P(BR_P \cap CR_P) = (AR_P)(BR_P) \cap (AR_P)(CR_P) = (AB \cap AC)R_P. \]

Since the maximal ideal P was arbitrarily taken, the equality A(B \cap C) = AB \cap AC must hold.

(b) \Rightarrow (a): Take C = Rc_1 + Rc_2 for some c_1, c_2 \in R, and let us check that C is an invertible ideal. This is clear if C is principal. Therefore suppose that c_1 \neq 0 and c_2 \neq 0. Set A = Rc_1 and B := Rc_2, and observe that AB \subseteq CA \cap CB = C(A \cap B), and so AB = (A \cap B)C. As both A and B are invertible ideals,

\[C(A \cap B)B^{-1}A^{-1} = ABB^{-1}A^{-1} = R, \]

which implies that C is also an invertible ideal. Since every two-generated ideal of R is invertible, it follows from Proposition 5 that R is a Prüfer domain.

(a) \Rightarrow (c): This follows the same argument used to establish (a) \Rightarrow (b).

(c) \Rightarrow (a): Fix a prime ideal P, and let us verify that R_P is a valuation domain. To do so, take a, b \in R and observe that, in light of the distributive law in (c),

\[Ra = Ra \cap (Rb + R(a - b)) = (Ra \cap Rb) + (Ra \cap R(a - b)). \]
As a consequence, one can pick \(t \in Ra \cap Rb \) and \(r \in R \) with \(r(a - b) \in Ra \) such that \(a = t + r(a - b) \). Then we see that \(rb \in Ra \) and \((1 - r)a \in Rb \). Thus, if \(r \in P \), then \(1 - r \notin P \), which implies that \(a \in bR_P \). On the other hand, if \(r \notin P \), then \(a - b \in aR_P \) and so \(b \in aR_P \). Therefore the ideals \(aR_P \) and \(bR_P \) are comparable. Because any two principal ideals of \(R_P \) are comparable, \(R_P \) is a valuation domain, and it follows from Proposition 6 that \(R \) is a Prüfer domain.

\[
\square
\]

Exercises

Exercise 1. Let \(R \) be a Prüfer domain, and let \(P \) be a prime ideal of \(R \). Prove that \(R/P \) is also a Prüfer domain.

Exercise 2. Let \(R \) be an integral domain. Prove that the following statements are equivalent.

1. \(R \) is a Prüfer domain.
2. \((J + K) : I = (J : I) + (K : I)\) for all ideals \(I, J, \) and \(K \) of \(R \) with \(I \) finitely generated.
3. \(I : (J \cap K) = (I : J) + (I : K)\) for all ideals \(I, J, \) and \(K \) of \(R \) with \(J \) and \(K \) finitely generated.

Department of Mathematics, MIT, Cambridge, MA 02139

Email address: fgotti@mit.edu