Lecture 5: Permutation Inversions and q-Binomials

In this lecture, we introduce \(q \)-analogs of \(n! \) and \(\binom{n}{k} \), which are corresponding combinatorial expressions depending on a variable \(q \) that when we evaluate at \(q = 1 \) we recover \(n! \) and \(\binom{n}{k} \), respectively. Most importantly, in the same way \(n! \) and \(\binom{n}{k} \) count linear arrangements and \(k \)-subsets of a given set of size \(n \), their corresponding \(q \)-analogs count chain of subspaces and \(k \)-dimensional subspaces of a given vector space of dimension \(n \) (over a field of \(q \) elements).

Counting Inversions. Let \(S_n \) denote the set consisting of all permutations of \([n]\). The inversion table of a permutation \(w \in S_n \) is an \(n \)-tuple \(I(w) := (a_1, \ldots, a_n) \), where \(a_i \) denotes the number of elements \(j \) in \(w \) to the left of \(i \) with \(j > i \). Observe that \(0 \leq a_i \leq n - i \) for every \(i \in [n] \).

Proposition 1. For each \(n \in \mathbb{N} \), the map \(I: S_n \to \mathbb{N}^n \), where \(I(w) = (a_1, \ldots, a_n) \) is the inversion table of \(w \), is a bijection.

Proof. Set \(T_n := [0, n-1] \times [0, n-2] \times \cdots \times [0, 0] \). Since \(|S_n| = |T_n| = n! \), it suffices to show that the function \(I \) is surjective. Take \((a_1, \ldots, a_n) \in T_n \) and let us construct \(w \in S_n \) as follows. Consider the element \(n \) as an initial linear arrangement of length 1. Then suppose that we have inserted the elements \(n-1, n-2, \ldots, n-i+1 \) (in this order) into the initial length-1 linear arrangement. In the \(i \)-th step, insert \(n-i \) in the current length-\(i \) linear arrangement so that there are exactly \(a_{n-i} \) elements to the left of \(n-i \). After inserting 1, we obtain a length-\(n \) linear arrangement of \([n]\), that is, a permutation \(w \in S_n \). Observe that in our construction of \(w \), right after we inserted \(n-i \) there were precisely \(a_{n-i} \) elements \(j \) in the linear arrangement to the left of \(n-i \) such that \(j > n-i \), and this number was unchanged during the remaining steps as only elements less than \(n-i \) were inserted then. Hence \(I(w) = (a_1, \ldots, a_n) \), and we can conclude that \(I \) is a surjective. \(\square \)

An inversion of \(w := w_1w_2 \cdots w_n \in S_n \) is a pair \((w_i, w_j)\) such that \(i < j \) but \(w_i > w_j \). The number of inversions of a permutation \(w \) is denoted by \(\text{inv}(w) \). Observe that if \(I(w) = (a_1, \ldots, a_n) \) is the inversion table of \(w \), then \(\text{inv}(w) = a_1 + \cdots + a_n \).
Proposition 2. The identity
\[
\sum_{w \in S_n} q^{\text{inv}(w)} = (1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1})
\]
holds for every \(n \in \mathbb{N} \).

Proof. Set \(T_n := [0, n-1] \times [0, n-2] \times \cdots \times [0, 0] \). Since the assignment \(w \mapsto I(w) \) induces a bijection \(S_n \rightarrow T_n \), and \(\text{inv}(w) = a_1 + \cdots + a_n \) for every \(w \in S_n \) with \(I(w) = (a_1, \ldots, a_n) \), it follows that
\[
\sum_{w \in S_n} q^{\text{inv}(w)} = \sum_{(a_1, \ldots, a_n) \in T_n} q^{a_1+\cdots+a_n} = \prod_{k=0}^{n-1} (1 + q + \cdots + q^k),
\]
which is the desired identity. \(\square \)

Motivated by the previous proposition, for every \(n \in \mathbb{N} \) we define the following \(q \)-analogs
\[
(n)_q := 1 + q + \cdots + q^{n-1} \quad \text{and} \quad (n)_q! := (1)_q(2)_q \cdots (n)_q,
\]
of \(n \) and \(n! \), respectively. By convention, we set \((0)_q = 0\), and so \((0)_q! = 1\). We call \((n)_q!\) the \(q \)-factorial of \(n \). In general, and roughly speaking, a \(q \)-analog of a mathematical object, is another mathematical object depending on a variable \(q \) that specializes to the former object when \(q = 1 \). One can see that \((n)_1 = n \) and \((n)_1! = n! \). Observe that we can also write \((n)_q\) and \((n)_q!\) as follows:
\[
(n)_q = \sum_{j=0}^{n-1} q^j = \frac{q^n - 1}{q - 1} \quad \text{and} \quad (n)_q! = \prod_{k=1}^{n} \frac{q^k - 1}{q - 1}.
\]

Counting Subspaces. Using the previous \(q \)-analog of \(n! \), we can naturally define \(q \)-analogs for the binomial coefficients:
\[
\binom{n}{k}_q := \frac{(n)_q!}{(k)_q!(n-k)_q!}
\]
for every \(n \in \mathbb{N}_0 \) and \(k \in [0, n] \). It is clear that \(\binom{n}{k}_q \) is a \(q \)-analog of \(\binom{n}{k} \), and the former is called a \(q \)-binomial coefficient. As the next proposition indicates, \(\binom{n}{k}_q \) counts the set of \(k \)-dimensional subspaces of an \(n \)-dimensional vector space over a finite field of size \(q \). Let \(\mathbb{F}_q \) denote a finite field such that \(|\mathbb{F}_q| = q \). As for vector spaces over \(\mathbb{R} \), a vector space over \(\mathbb{F}_q \) of dimension \(d \) can be treated as (i.e., is isomorphic to) \(\mathbb{F}_q^d \).

\(^1\)There exists a finite field of size \(q \) precisely when \(q \) is a positive power of a prime, in which case there is exactly one field of size \(q \) (up to isomorphism).
Proposition 3. For all \(n \in \mathbb{N}_0 \) and \(k \in [0, n] \), the number of \(k \)-dimensional subspaces of the vector space \(\mathbb{F}_q^n \) is \(\binom{n}{k}_q \).

Proof. Let \(A(n, k) \) denote the number of \(k \)-dimensional subspaces of \(\mathbb{F}_q^n \), and let \(L(n, k) \) denote the number of sequences consisting of \(k \) linearly independent vectors in \(\mathbb{F}_q^n \). We proceed to count the number \(L(n, k) \) of \(k \)-sequences \(v_1, \ldots, v_k \) of linearly independent vectors in \(\mathbb{F}_q^n \) in two different ways. Choose \(v_1 \) to be any nonzero vector of \(\mathbb{F}_q^n \), which can be done in \(q^n - 1 \) different ways. Then choose \(v_2 \) in \(\mathbb{F}_q^n \) so that \(v_2 \) is not a multiple (i.e., a linear combination) of \(v_1 \); this can be done in \(q^n - q \) ways. In the \(i \)-th step, choose \(v_i \) in \(\mathbb{F}_q^n \) so that it is not a linear combination of \(v_1, \ldots, v_{i-1} \), which can be done in \(q^n - q^{i-1} \) different ways. Therefore

\[
L(n, k) = (q^n - 1)(q^n - q) \cdots (q^n - q^{k-1}).
\]

We can also obtain \(L(n, k) \) as follows. First, we choose a \(k \)-dimensional subspace \(W \) of \(\mathbb{F}_q^n \) in \(A(n, k) \) possible ways, and then we choose a linearly independent sequence of \(k \) vectors in \(W \cong \mathbb{F}_q^k \), which can be done in \((q^k - 1)(q^n - q) \cdots (q^k - q^{k-1}) \) by mimicking the way we just described above to choose a sequence of \(k \) linearly independent vectors of \(\mathbb{F}_q^n \). As a result, \(L(n, k) = A(n, k)(q^k - 1)(q^n - q) \cdots (q^k - q^{k-1}) \), and taking into account the equality (0.1) we obtain

\[
A(n, k) = \frac{(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})}{(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})} = \frac{\prod_{j=1}^{n} \frac{q^j - 1}{q^j - 1}}{\prod_{j=1}^{k} \frac{q^j - 1}{q^j - 1} \prod_{j=1}^{n-k} \frac{q^j - 1}{q^j - 1}} = \frac{(n)_q!}{(k)_q! (n-k)_q!} = \binom{n}{k}_q.
\]

\[\square\]

Practice Exercises

Exercise 1. For \(n \in \mathbb{N} \), argue that there are \((n)_q! \) ordered sequences \(V_1, \ldots, V_n \) of subspaces of \(\mathbb{F}_q^n \) with \(\dim V_i = i \) for every \(i \in [n] \) such that \(V_1 \subset V_2 \subset \cdots \subset V_n \).

Exercise 2. For any \(n \in \mathbb{N}_0 \) and \(k \in [0, n] \), prove that

\[
\binom{n}{k}_q = \binom{n-1}{k-1}_q + q^{n-k} \binom{n-1}{k-1}_q.
\]