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AbstractThe Support Vector Machine (SVM) idea has attracted recent atten-tion in solving classi�cation and regression problems. As an examplebased method, SVMs distinguish two point classes by �nding a separat-ing boundary layer, which is determined by points that become known asSupport Vectors (SVs). While the computation of the separating bound-ary layer is formulated as a linearly constrained Quadratic Programming(QP) problem, in practice the corresponding dual problem is computed.This paper investigates how the solution to the dual problem dependson the geometry. When examples are separable, we will show that theLagrange multipliers (the unknowns of the dual problem) associated withSVs can be interpreted geometrically as a normalized ratio of simplexvolumes, and at the same time a simplex volume decomposition relationmust be satis�ed. Examples for the two and three dimensional casesare given during the discussion. Besides showing geometric propertiesof SVMs, we also suggest a way to investigate the distribution of theLagrange multipliers based on a random matrix model. We �nish thispaper with a further analysis of how the Lagrange multipliers depend onthree critical angles using the Singular Value and CS decompositions.�This paper is supported by U.S. Army TACOM under the contract DAAHO4-96-C-0086TCN 99024 awarded from the Battelle-Research Triangle Park and NSF under the grandDMS-9971591.
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1 IntroductionHow can we compute the distance that separates two sets of points? Thisproblem which arises in such applications as Support Vector Machine (SVM)classi�ers [3] can be formulated as a Quadratic Programming (QP) problem.This paper investigates how the Lagrange multipliers that arise in the QP for-mulation depend on the geometry of those points. Our guiding principle is thatwe can explain the solutions through the geometry of a linear system ratherthan the complexity of a QP problem.In this paper, we �rst consider the problem of separating n+1 non-degeneratepoints into two sets in Rn, and show that these n + 1 points can always beseparated by the E-separating hyperplanes, which are de�ned to contain thepoints from each set respectively. Then we derive the geometric meaning ofthe Lagrange multipliers associated with the E-separating hyperplanes showingthat they can be interpreted as a normalized ratio of simplex volumes. Forthe E-separating hyperplanes to be optimal, a simplex volume decompositionrelation must be satis�ed. When examples are separable, a binary SVM classi-�er is equivalent to the optimal hyperplanes separating two sets of points. Afterderiving the properties of Support Vectors (SVs), we show that the optimal sep-arating hyperplanes are equivalent to the E-separating hyperplanes computed inthe subspace determined by SVs. It follows that all the results we have obtainedfor the E-separating hyperplanes can be applied to SVM classi�ers. Therefore,the Lagrange multiplier associated with each SV can be interpreted geometri-cally as a normalized ratio of simplex volumes, and at the same time a simplexvolume decomposition relation must be satis�ed. Moreover, based on a randommatrix model we suggest a way to investigate the distribution of the Lagrangemultipliers. This paper is �nished by a further analysis of how the Lagrangemultipliers depend on three critical angles.As indicated by Figure 1, the organization of this paper might be convenientlycharacterized by the number of the points we want to separate . In Sections 2and 3, we �rst consider the problem of separating n+ 1 non-degenerate pointsin Rn, then we formulate the separation of arbitrary N points as a QP problem.In Section 4, the geometric and statistical properties of the n + 1 Lagrangemultipliers associated with the E-separating hyperplanes in Rn are derived.Then we show that in Section 6 the QP problem of size N can be reduced to asmaller linear system of size n such that the results obtained in Section 4 canbe applied. At the end, we continue our analysis by showing how the Lagrangemultipliers associated with the n+ 1 SVs depend on three critical angles.
2 Separating Two Point SetsWe de�ne the distance between two sets of points to be the maximum gap(if it exists) between two parallel hyperplanes that separate them. Finding the

2



Section 7 (n+1 points) Three Critical Angles
Section 6 (N points) Properties of SVs

Section 4 (n+1 points) The Lagrange Multipliers
Section 3 (N points) The Dual Problem

Section 2 (n+1 points) The E-separating Hyperplanes

?
?
?

-

�
Figure 1: The organization of this paper can be characterized by the numberof the points we want to separate. Section 5 provides background material andmay be read independently.
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pair of optimal separating hyperplanes is formulated as a QP problem. Thisproblem arises in such applications as SVM classi�ers (see Section 5).We begin this section with the problem of how to separate n + 1 pointsin Rn with two parallel hyperplanes. We will show that under the conditionof non-degeneracy, n + 1 points can always be separated in Rn by solving alinear system, but this system may or may not give the optimal separatinghyperplanes. At the end of this section we formulate the problem of �nding theoptimal separating hyperplanes as a linearly constrained QP problem.Formally, assume that there are n + 1 points fx1; : : : ; xn+1g in Rn, eachof which belongs to one of two classes. We use �1 to represent each classrespectively, and de�ne I+ = f1; : : : ;mg to be the index set corresponding tothe positive points and I� = fm + 1; : : : ; n + 1g for the negative points. Toindicate whether xi is positive or negative, a sign yi = �1 is assigned to eachpoint xi. It is also assumed that if any point xj is taken as the origin, thenthe resulting n vectors xi � xj (i 6= j) are linearly independent. The problem ishow to �nd the pair of optimal hyperplanes separating the positive and negativepoints.Any pair of parallel hyperplanes can be expressed aswTx+ b = �1; (2.1)where w 2 Rn gives the normal direction of the hyperplanes and b is a scalar.Since only the hyperplanes that can separate the two sets of points are consid-ered, we must satisfy the conditions:
wTxi + b � 1 for i 2 I+ (2.2)and wTxi + b � �1 for i 2 I�; (2.3)that is, yi(wTxi + b) � 1 for i = 1; : : : ; n+ 1: (2.4)An easy consequence from the assumption of linear independence is thatthe n + 1 points are separable, i.e., there must exist one pair of hyperplanessatisfying the separability condition (2.4). We state this result as a proposition.Proposition 2.1 Suppose we are given n + 1 points xi in Rn. Under thecondition of non-degeneracy, that is, if any point xj is taken as the origin thenthe resulting n vectors xi�xj (i 6= j) are linearly independent, these n+1 pointscan always be separated into two sets by a pair of parallel hyperplanes.
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Proof. To demonstrate this, we will �nd w and b such that equality holds:yi(wTxi + b) = 1 for i = 1; : : : ; n+ 1: (2.5)Without loss of generality, we assume that xn+1 is the origin. It follows imme-diately that b = �1. Thus for the remaining n points, the equalities in (2.5)become wTxi = 2 for i 2 I+; (2.6)and wTxi = 0 for i 2 I�: (2.7)Let X = [x1; : : : ; xn] be a square matrix. The equations (2.6) and (2.7) uniquelydetermine the unknown vector w by the following linear system:XTw = � 20 �; (2.8)where the sub-vector 2 corresponds to the positive points. From the assumptionof linear independence, the matrix X is nonsingular so that the above linearsystem must have a unique solution w. Therefore, there always exists such apair of hyperplanes that satis�es the separability condition (2.4). �In the following context, we denote the pair of hyperplanes satisfying Equa-tion (2.5) by E-separating hyperplanes, the letter \E" represents equality. Thetwo hyperplanes containing the positive and negative points are called positivehyperplane and negative hyperplane respectively.Definition 1 Suppose we are given n + 1 points xi in Rn such that if anypoint xj is taken as the origin then the resulting n vectors xi � xj (i 6= j) arelinearly independent. The E-separating hyperplanes are the pair of hyperplanessatisfying Equation (2.5).Figure 2 shows the two dimensional case. It is easy to see how three verticesof a triangle uniquely determine the pair of lines satisfying Equation (2.5), i.e.,the E-separating lines. One might be tempted to believe that the pair of E-separating hyperplanes gives the optimal separator, but a simple example inFigure 2(b) shows that this is not true. Here the pair of solid lines de�nes alarger gap than the pair of dotted E-separating lines.How can we �nd the optimal separating hyperplanes? We know that thedistance between the two parallel hyperplanes in (2.1) is d = 2kwk . Therefore,given any N points belonging to two classes, we can formulate the �nding of
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Figure 2: The horizontal lines labeled by \E-line" are the E-separating lines.In both cases, the solid lines labeled by \opt line" are the optimal separator.Squares and circles are used to indicate the positive and negative points respec-tively.
the optimal separating hyperplanes as the following linearly constrained QPproblem: minimizew;b f(w; b) � 12kwk (2.9)subject to: yi(wTxi + b) � 1; for i = 1; :::; N: (2.10)If the two sets of points are separable, then the above QP problem must havean optimal solution, which is unique as proved in Section 6. In the followingcontext, it is always assumed that the two sets of points are separable.
3 The Dual Problem and Optimal ConditionsIn this section, we derive the dual problem to the linearly constrained QPproblem (2.9), which is the one that is actually computed in practice. We alsogive conditions for judging if a solution is optimal.Let �i be the Lagrange Multipliers corresponding to the inequality con-straints in (2.10). Then the Lagrangian is

L(w; b; �) � 12kwk2 � NXi=1 �iyi(wTxi + b) + NXi=1 �i; (3.1)
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where � = [�1; : : : ; �N ] and �i � 0. By requiring the gradients of L(w; b; �)with respect to w and b vanish, the following relations are obtained:
w = NXi=1 yi�ixi; (3.2)

and NXi=1 yi�i = 0: (3.3)
Substituting the above equations into L(w; b; �), we get

L(�) = NXi=1 �i � 12 NXi;j=1�i�jyiyj(xTi xj): (3.4)
Maximizing L(�) or equivalently minimizing �L(�) subject to �i � 0 andCondition (3.3) gives the dual problem:minimize� F (�) � 12�TH�� �T1 (3.5)subject to: yT� = 0; (3.6)

� � 0; (3.7)where y = [y1; : : : ; yN ]T , 1 = [1; : : : ; 1]T and H is a symmetric semi-positivede�nite matrix with Hij = yi(xTi xj)yj . The objective function F (�) is equal to�L(�). From the fact that f(w; b) and F (�) are equal at optimality, it followsthat kwk2 = NXj=1 �i: (3.8)
Thus the distance between the two sets of points isd = 2qPNi=1 �i : (3.9)

Since the above quadratic programming (QP) problem is convex, the Karush-Kuhn-Tucker (KKT) conditions (page 35, [2]) become both necessary and suf-�cient for � to be optimal. These KKT conditions can be summarized as thefollowing:
7



yT� = 0; (3.10)� � 0; (3.11)yi( NXj=1 �jyjxTj xi + b) � 1 8 i; (3.12)
yi( NXj=1 �jyjxTj xi + b) > 1 only if �i = 0: (3.13)

If �i > 0, then from KKT conditions (3.12) and (3.13) we know thatNXj=1 �jyjxTj xi + b = yi:
Therefore,

b = yi � NXj=1 �jyjxTj xi: (3.14)
4 The Lagrange Multipliers of the E-separatingHyperplanesAs already seen in Figure 2, the pair of optimal separating lines depends onthe shape of the triangle constructed by xi. For an acute triangle such as inFigure 2(a), the E-separating lines are optimal. While for an obtuse trianglesuch as in Figure 2(b), the E-separating lines are not optimal. To investigatehow the optimal separator depends on the geometry, we begin with the pairof E-separating hyperplanes. We �rst derive the geometric meaning of the La-grange multipliers (the unknowns of the dual problem giving the E-separatinghyperplanes), then show that the optimality conditions can be expressed geo-metrically as a simplex volume decomposition relation, which explains clearlyhow the optimal solutions in Figure 2 depend on the shape of the triangles.4.1 The Geometric Meaning of the Lagrange MultipliersIf the inequality constraints in (2.10) are enforced to be active, i.e., (2.10)becomes (2.5), then the QP problem (2.9) will give us the pair of E-separatinghyperplanes. Since only equality constraints are involved, the Lagrange multi-pliers �i become unconstrained. In this section, we derive the formula for theLagrange multipliers associated with the E-separating hyperplanes and showthat they can be interpreted geometrically as a normalized ratio of simplexvolumes.
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Theorem 4.1 The Lagrange multipliers associated with the E-separating hy-perplanes can be expressed as a normalized ratio of simplex volumes.Proof. De�ne h such that it has the same direction as w and its lengthgives the distance between the E-separating hyperplanes. Again without loss ofgenerality, we assume that xn+1 is the origin. It follows that point h must bein the positive hyperplane, i.e., wTh = 2: (4.1)From the de�nition of h, it is true thatw = 2khk2h and h = 2kwk2w: (4.2)De�ne �i = �i if i 2 I+ and �i = ��i if i 2 I� for i = 1; : : : ; n. Then Equation(3.2) becomes w = nXi=1 �ixi = X�; (4.3)where � = [�1; : : : ; �n]T . Combining the two equations above, we obtain thefollowing linear system: X� = 2khk2h: (4.4)The solution to this linear system in terms of determinants tells us that�l = yl�l = 2ylkhk2 detXldetX ; (4.5)where Xl = [x1; : : : ; xl�1; h; xl+1; : : : ; xn] for l = 1; : : : ; n. If �1; : : : ; �n areknown, �n+1 can be determined by Equation (3.6), i.e.,�n+1 = Xi2I+ �i � Xi2(I��fn+1g)�i: (4.6)
Recall that detX = �n!vol X:Therefore, �l can be expressed geometrically as�l = �2khk2 vol Xlvol X (4.7)for l = 1; : : : ; n, and�n+1 = 2khk2Pi2(I+[I��fn+1g)�vol Xivol X : (4.8)� 9



Equation (4.7) and (4.8) indicate clearly how the Lagrange multipliers dependon the geometry of points xi and h. In Figure 2(a), the E-separating lines areoptimal. The three corresponding Lagrange multipliers in terms of the ratio ofsimplex volumes are shown in the following:
�1 = 2khk2 ; �2 = 2khk2 ; �3 = 2khk2 = 2khk2 :

4.2 The Simplex Volume Decomposition at OptimalityIn this section, we show that the necessary and su�cient condition for theE-separating hyperplanes to be optimal can be expressed geometrically as asimplex volume decomposition relation.Using KKT condition (3.10), Equation (3.8) can be written askwk2 = n+1Xi=1 �i = 2Xi2I+ �i= 2Xi2I� �i= 4khk2 :
(4.9)

Choosing a di�erent point as the origin will give di�erent simplices ~X and ~Xlin Formula (4.7), but the ratio of their determinants is unchanged. Therefore,the Lagrange multipliers �i do not depend on the choice of the origin. In thefollowing context, we always assume that a positive point is chosen as the originwhen �i with i 2 I� is considered, and a negative point is chosen as the originwhen �i with i 2 I+ is considered, so that Formula (4.5) can be applied withoutconsidering the case (4.6).Substituting �i with Formula (4.5) into Equation (4.9) gives us the followingrelation: detX = Xi2I+ detXidet ~X = �Xi2I� det ~Xi; (4.10)
where ~X and ~Xi are the simplices obtained by choosing a positive point asthe origin. From KKT conditions (3.10) � (3.13) and the de�nition of the E-separating hyperplanes, we know that if all the Lagrange multipliers �i arenonnegative then the E-separating hyperplanes must be optimal and vice versa.10



If �i is positive, then by Formula (4.5) detX and detXi must have identicalsigns if i 2 I+, or det ~X and det ~Xi must have di�erent signs if i 2 I�. It followsthat when the E-separating hyperplanes are optimal, Relation (4.10) becomesvol X = Xi2I+ vol Xivol ~X = Xi2I� vol ~Xi: (4.11)
On the other hand, if the above relation is true, we want to show thatall the �i are nonnegative. In (4.11), writing the �rst equation in terms ofdeterminants, we have j detXj = Xi2I+ j detXij: (4.12)

Suppose detX = vol X. Subtracting the �rst equation in (4.10) from Equation(4.12) gives us 0 = Xi2I+ j detXij � detXi: (4.13)
Since each term is nonnegative, j detXij � detXi must be zero, i.e.,detXi = vol Xi:Therefore, �i must be nonnegative according to (4.5) for i 2 I+. The same resultcan be derived for the case when detX = � vol X. By the same reasoning, it isalso ture that �i must be nonnegative for i 2 I� if the second equation in (4.11)is satis�ed. Therefore, we can conclude that the E-separating hyperplanes mustbe optimal.We state the above results in the following theorem:Theorem 4.2 The pair of E-separating hyperplanes is optimal if and only ifthe simplex volume decomposition relation (4.11) is satis�ed.

If there is only one negative point as in the two dimensional cases shown byFigure 2, the simplex volume decomposition relation (4.11) can be replaced bya simplex decomposition relation:simplex X = Xi2I+ simplex Xi: (4.14)
From the geometry, it is easy to see that this relation is true if and only if h isinside the symplex constructed by the positive points in the positive hyperplane.11
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Figure 3: The simplex decomposition for an acute triangle
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Figure 4: The simplex decomposition for an obtuse triangle
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Figure 5: A three dimensional simplex decomposition where h is inside the basetriangle
The relation (4.10) for the cases described in Figure 2(a) and Figure 2(b) isillustrated by Figure 3 and Figure 4 respectively. For acute triangles, since h isbetween x1 and x2, the pair of E-separating lines is optimal. While for obtusetriangles, since the above relation is not satis�ed, the pair of E-separating linesis not optimal. Figure 5 shows a three dimensional simplex decomposition wherethe E-planes separating the points fx1; x2; x3g and fx4g are optimal.If the simplex volume decomposition relation is not satis�ed, then the E-separating hyperplanes are not optimal. To achieve the optimal separator suchas the pair of solid lines in Figure 2(b), some conditions in (2.5) must be relaxedto inequalities.Remark 4.1 It is not true that the equality constraint with the most negativeLagrange multiplier must be relaxed. A counter example can be constructed.4.3 A Random Matrix Model: The Lagrange MultiplierDistributionFor the E-separating hyperplanes, �i can be either positive or negative asindicated by Formula (4.7). It is interesting to study the distribution of sign(�i).As a model, we will assume that X is a random matrix whose elementsare N(0; 1) (standard normal distribution) and independent. In statistics, W =XTX is called a Wishart matrix Wn(n; nIn�n) where In�n represents a n � nidendity matrix (page 82, [7]). Multiplying Equation (4.4) by XT , we can seethat �(1 : n) is determined by the inverse Wishart matrix W�1:�(1 : n) = diag(y)W�1� 20 �: (4.15)
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Figure 6: Histograms of �+1 and ��1 . Each column of sub-�gures corresponds toa di�erent m. The size of the experiment is 8000 and n = 12.
Since permuting the columns of X does not a�ect the distribution of W�1, wecan conclude that the Lagrange multipliers associated with the positive pointsmust have identical distributions and so do the Lagrange multipliers associatedwith the negative points (except �n+1). Therefore, in the following context it isgeneral enough to only consider two Lagrange multipliers �1 and �minfm+1;ng,which are denoted by �+1 and ��1 respectively. Again m gives the number ofpositive points.In Figure 6, each column of sub-�gures plots experimental histograms of �+1and ��1 corresponding to a di�erent m. These histograms tell us that the p.d.f.of �+1 tends to spread out (have larger variance) and become more symmetricabout the y-axis as m increases, and at the same time the p.d.f. of ��1 alwayshas a similar shape but also tends to spread out as m increases. From the�rst sub-plot in Figure 6(a), we can see that �+1 is always positive at m = 1.The above observation is consistent with the approximations to Pr(�i � 0)for i = 1; : : : ; n as shown in Figure 7. The plot in Figure 7(a) indicates thatPr(�+1 � 0) monotonically decreases as m increases since increasing m movesthe median of �+1 toward the origin, and Pr(��1 � 0) = 0:5, i.e., the median of��1 is zero for any m. While the plot in Figure 7(b) indicates that Pr(�+1 � 0)
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Figure 7: Each curve plots the ratio of the occurrence of �i � 0 for i = 1; : : : ; nduring 8000 computations at a di�erent m. In sub-�gure (b), two cases withn = 12 and n = 18 are plotted against each other indicating that Pr(�i � 0) isindependent of n.
and Pr(��1 � 0) do not depend on n.Although the density function of W�1 is known (page 113, [7]), we have notat this time chosen to verify the above observations analytically. To shed lighton the distribution of �i, we examine the elements of W�1. Let 1nW = TTT bethe Cholesky factorization of 1nW , where T is an upper-triangular matrix withpositive diagonal elements. We know that the elements tij (1 � i � j � n) ofT are all independent, t2ii is X 2n�i+1 (i = 1; : : : ; n), and tij is N(0; 1) (1 � i <j � n) (Theorem 3.2.14, page 99, [7]). Here X 2n�i+1 represents the chi-squaredistribution with n� i+1 degrees of freedom. Again by symmetry, the diagonalelements of W�1 must have identical distributions and so do the o�-diagonalelements. Therefore, examining one diagonal and one o�-diagonal element isenough to derive the distributions of all elements of W�1. From the followingequation: W�1 = 1nT�1T�T ;
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we have W�1(n; n) = 1n� t2nn ; (4.16)W�1(n; n� 1) = �tn�1nn� t2nn � tn�1n�1 : (4.17)It follows that the following theorem is true:Theorem 4.3 Let X be a n�n random matrix whose elements are N(0; 1) andall independent. De�ne W = XTX. The diagonal elements of W�1 have thesame distribution as 1n� r1 ; (4.18)and the o�-diagonal elements have the same distribution asr3n� r1 �pr2 = r4p2� n� r1 ; (4.19)where ri (i = 1; 2; 3) are all independent, r1 is X 21 , r2 is X 22 , r3 is N(0; 1) andr4 = p2�r3pr2 is the t-distribution with 2 degrees of freedom which is denoted byt2. Note that the elements of W�1 are not independent.Assume that m < n. Since�+1 = 2 mXj=1W�1(1; j) (4.20)
and

��1 = �2 mXj=1W�1(m+ 1; j); (4.21)
the di�erence between them is that �+1 has one diagonal element in it whichhas the same distribution as 1n�X21 while ��1 does not. This di�erence can bevisualized by the histogram plots of �+1 and ��1 in Figure 6. The �rst sub-plotof Figure 6 shows what the distribution function of 1n�X21 looks like. At m = 1,it is obvious that Pr(�+1 � 0) = 1, andPr(��1 � 0) = Pr(r4 � 0) = 0:5;because the p.d.f. of a t-distribution is symmetic. At m = 2,Pr(�+1 � 0) = Pr(1� r4p2 � 0) = Pr(r4 � p2):
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We know that the p.d.f of t2 isf(r) = p24(1 + r22 ) 32 ; (4.22)
where �1 < r <1 (page 600, [6]). Integrating it from �1 to p2 gives usPr(�+1 � 0) = p24 + 12 � 0:8536 < 1: (4.23)From Theorem 4:3 and the de�nitions of �+1 and ��1 , it is easy to see thatPr(�+1 � 0) and Pr(��1 � 0) do not depend on n. The plots in �gures 6 and 7are consistent with these analytic results.By the analytic and experimental results obtained above, we give the follow-ing conjecture:Conjecture 1 Assume that there are n random points x1; : : : ; xn in Rn, wherethe coordinates xij of xj are N(0; 1) and all independent (i; j = 1; : : : ; n). Forthe E-separating hyperplanes separating the positive points fx1; : : : ; xmg and thenegative points fxm+1; : : : ; xn; 0g, Pr(�+1 � 0) decreases monotonically as thenumber of positive points m increases and it does not depend on n; for anym < n, 1 � Pr(�+1 � 0) > Pr(��1 � 0) = 0:5.From the above conjecture, it follows that the Lagrange multipliers associatedwith the positive points have more chance to be positive than the Lagrangemultipliers associated with the negative points under the assumed model.
5 Classi�cation Problems and Support VectorMachinesThis section contains background material that may be familiar to somespecialists. We have chosen to include this material for the bene�t of the manyreaders who are not already familiar with the underlying problem. Before intro-ducing Support Vector Machines and showing how they relate to the distanceproblem, we review classi�cation problems by going through an example.5.1 A Classi�cation Problem and Its Bayesian SolutionImagine that inside a newly invented Las Vegas machine, there areM genera-tors, each of which can randomly generate k-dimensional vectors x (x 2 I� Rk)using its own probabilistic model. A color Hm is assigned to each generator form = 0; : : : ;M � 1. If x is generated by the mth generator, then we color itwith Hm. In the following context we will use color Hm to represent the class ofvectors generated by the mth generator. At each time, the machine randomly
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turns on one generator and outputs a vector x. The game is to guess the colorof x. Since x can be output by any generator, we are not able to tell the rightanswer all the time. The best thing we can do is to minimize the error.Given an observation x, a classi�cation problem is to identify the class thisx belongs to. Denoted by Ĥ(�), a deterministic solution to the above problemcalled decision rule is a function that uniquely maps every k-dimensional vectorin I to one of the M colors, i.e., Ĥ: I ! fH0; H1; :::; HM�1g. If the idealdecision rule is H(�), then the function Ĥ(�) can be considered as an estimationof H(�).Let us de�ne Pm to be the probability that the machine chooses the mthgenerator, i.e., Pm = Pr[x 2 Hm], and characterize the probabilistic modelunderlying each generator by a probability density function pm(x). If all thestatistics Pm and pm(x) are known, then the optimal decision rule can be derivedanalytically to minimize the expectation of some cost. For instance, if we de�nethat the cost of the correct answer (Ĥ(x) = H(x)) is zero, and the cost of thewrong answer (Ĥ(x) 6= H(x)) is one, then the expectation of the cost is justthe probability of error. Of course for casinos, this probablity of error must beset higher than 12 . By Bayesian rule, it can be shown that the optimal solutionminimizing the probability of error is in the form of a Likelihood Ratio Test[12]. For the case where all the Pm are equal, the solution is simplyĤ(x) = Hopt with opt = argmaxm pm(x)for m = 0; : : : ;M � 1.Each decision rule Ĥ(�) decomposes the domain I into M regions:Zm = fxj Ĥ(x) = Hmg:Therefore, geometrically Ĥ(�) corresponds to the boundary separating theseregions Zm. For example, let us consider the binary case wherep0(x) = N(m0; �2I);p1(x) = N(m1; �2I);and P0 = P1 = 12 . The boundary is just the hyperplane orthogonally bisectingthe line m1m0 as shown in Figure 8.5.2 Support Vector Machine Classi�ersIn practice, there are many cases where the statistics Pm and pm(x) are un-known. The only available information is a �nite set of examples f(xi; Hi); xi 2Rq; Hi 2 fH0; : : : ; HM�1g for i = 1; : : : ; Ng. Using these examples a SVMclassi�er estimates the optimal decision rule by �nding a boundary layer that18
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Figure 8: A two dimensional Bayesian separating boundary. The circles repre-sent the instances of color H0, and the squares represent the instances of colorH1.
separates the M subsets of examples. Without loss of generality, we only con-sider the binary case. Again, yi = �1 is assigned to each point xi to representits class. If the positive and negative points are separable by hyperplanes, thena linear SVM classi�er is just the pair of separating hyperplanes that de�nesthe distance between the two sets of points. Therefore, when examples are sep-arable, SVMs can be formulated as the same QP problem as (2.9), and its dualproblem is the same as (3.5). As an example, A two dimensional linear SVMclassi�er is shown in Figure 9. For the inseparable case, [3] could be a goodreference.Nonlinearity is introduced by mapping every point in Rq into a higher di-mensional space RQ where a hyperplane has more degrees of freedom. The map� is implicitly de�ned by a positive de�nite function k(�) which gives the innerproduct of two mapped points in RQ, i.e.,k(x1; x2) = �(x1)T�(x2) where x1; x2 2 Rq:The same problem is computed in RQ to �nd the pair of hyperplanes separatingthe mapped examples (�(xi); yi) with the maximum gap. All the key relationsare kept same except that the inner product xT1 x2 is replaced by k(x1; x2). Thus,the QP problem (2.9) becomesminimizew;b f(w; b) = 12kwk2 (5.1)
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subject to: yi(wT�(xi) + b) � 1; for i = 1; :::; N and w 2 RQ: (5.2)The corresponding dual problem is the same as (3.5) except that the Hessianmatrix is de�ned byHij = yik(xi; xj)yj . The resulting nonlinear SVM separatoris given by NXi=1 �iyik(xi; x) + b = �1:Since only the inner product k(:) is involved in computing the dual problem, wedo not need to know the exact form of �.From the above argument, we see that a nonlinear SVM is equivalent to theoptimal separating hyperplanes in a higher dimensional space. Therefore, it isgeneral enough to only consider the linear case. We point out again that KKTconditions (3.10)� (3.13) are the if and only-if conditions for � and b to be theoptimal solution. Points xi are called support vectors (SVs) if their Lagrangemultipliers �i are positive. From KKT condition (3.13), SVs must be in thetwo optimal hyperplanes. In Figure 2(a) x1, x2 and x3 are SVs, while in Figure2(b) only x1 and x3 are SVs. An important property of SVM classi�ers is thatdiscarding the examples corresponding to non SVs will not change the optimalhyperplanes. We will prove it and other properties of SVs in Section 6. Once �and b are computed, the SVM decision rule is the following:1. if PNj=1 �jyjxTj x+ b � �1 then Ĥ(x) = H0:2. if PNj=1 �jyjxTj x+ b � 1 then Ĥ(x) = H1:20
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Figure 10: The pair of optimal separating hyperplanes is unique.
3. For the case when x fells in between the two hyperplanes, it is inconclusiveso that x can be classi�ed either as H0 or H1.

6 Support Vectors and Simplex Volume Decom-positionsRecall that in this paper examples are assumed to be separable so that theoptimal solution to Problem (2.9) must exist, and that points xi with positiveLagrange multipliers are called SVs. In this section, we �rst derive the propertiesof SVs, then improve the standard de�nition of SVs so as to insist that theybe non-redundant. In order to apply the results obtained in Section 4, weshow that the optimal separating hyperplanes are equivalent to the E-separatinghyperplanes computed in the subspace determined by SVs.Lemma 6.1 The pair of optimal separating hyperplanes is unique.The proof is illustrated geometrically by Figure 10. Suppose that we havetwo di�erent pairs of optimal hyperplanes (1) and (2). If they are parallel toeach other as indicated in Figure 10(a), then it is obvious that the negativehyperplane of (1) and the positive hyperplane of (2) de�nes a larger gap, whichis contradictory to the assumption that (1) and (2) are optimal. Similarly, ifthey intersect as shown in Figure 10(b), then the pair of hyperplanes (3) is wider,which is a contradiction again. Therefore by contradiction, we can conclude thatthe pair of optimal separating hyperplanes is unique.Property 1 The pair of optimal separating hyperplanes is independent of pointsthat are not SVs. 21



Proof. Given a set of SVs fxl1 ; : : : ; xln+1g and their Lagrange multipliers�� = [�l1 ; : : : ; �ln+1 ]T . Discarding the N � (n + 1) points that are not SVsremoves the corresponding constraints in the QP problem (2.9):minimizew;b f(w; b) = 12kwk2 (6.1)subject to: yi(wTxi + b) � 1; for i = l1; :::; ln+1:It follows that the dual problem becomesminimize� F (�) � 12�TH�� �T1 (6.2)subject to: yT� = 0;� � 0;where � = [�1; : : : ; �n+1]T and Hi;j = yli(xTlixlj )ylj .In order to prove that solving Problem (6.1) still gives us the same optimalseparating hyperplanes, we need to show that �� is an optimal solution to theabove dual problem. De�ne Isv = fl1; : : : ; ln+1g. If � is an optimal solution toProblem (6.2), then by inating it with zeroes, the resulting ~� is feasible to theoriginal dual problem (3.5), where
~�i = (�i if i 2 Isv0 otherwise:With another fact that �� is de�ned to be feasible to Problem (6.2), we canconclude that �� must be an optimal solution to Problem (6.2). By Lemma 6:1,Problem (6.1) (with less constraints) determines the same optimal hyperplanesas Problem (2.9) does. �From Property 1 and Lemma 6:1, we know that the optimal separatinghyperplanes can be computed by the following equality constrained QP problemif we know which points are SVs:minimizew f(w) = 12kwk2 (6.3)subject to: yi(wTxi � 1) = 1; for i = l1; :::; ln;
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where xln+1 is assumed to be zero (b = �1). Since only equality constraints areinvolved, the Lagrange multipliers become unconstrained in the correspondingdual problem: minimize� F (�) = 12�TH�� �T� 20 �; (6.4)which can be solved by the following linear system if H is nonsingular:H� = � 20 �: (6.5)Since H� = XTw (xln+1 = 0), we haveXTw = � 20 �: (6.6)We recognize that Equation (6.6) is just the vector form of the equality con-straints in Problem (6.3), which tells us that the optimal w is given by the leastsquare solution to Equation (6.6).Before giving the second property of SVs, we de�ne a set of SVs to benon-redundant if they are not degenerate as de�ned in Proposition 2:1.Property 2 SVs may be redundant.Considering the case shown in Figure 2(a), we know that all the three pointsare SVs. Suppose that another positive point x4 is given as a new examplesuch that it is on the positive separating line and between x1 and x2. By thede�nition of x4, we have x4 = c1x1 + c2x2; (6.7)where c1; c2 > 0 and c1+c2 = 1. From the geometry, it is easy to see that addingx4 will not change the optimal solution. Equation (3.2) and (6.7) together tellus that w = �1x1 + �2x2= (�1 � c1�4)x1 + (�2 � c2�4)x2 + �4x4= ~�1x1 + ~�2x2 + �4x4: (6.8)
Therefore, as long as 0 < �4 < min f�1c1 ; �2c2 g, by KKT conditions (3.10)�(3.13)we know that � = [ ~�1; ~�2; ~�1 + ~�2 + �4; �4]T is an optimal solution to thecorresponding dual problem. Since �4 > 0, x4 is a SV like others. But we knowthat it linearly depends on x1 and x2. Note that � = [�1; �2; �1+�2; 0]T is alsoan optimal solution.Remark 6.1 The optimal solution to the dual problem (3.5) may not be unique,but the primal problem (2.9) must have a unique solution.Property 3 There exists such a set of SVs that are not redundant.

23



Proof. Again, let fxl1 ; : : : ; xln+1g be a set of SVs. Equation (4.4) tells usthat X� = 2khk2h;where h and � are the same as de�ned in Section 4, and X = [xl1 ; : : : ; xln ] is aq � n matrix (we assume that xln+1 = 0). Let us rede�ne the negative pointsby xlj = �xlj so that the above equation can be written asnXi=1 xli�li = 2khk2h: (6.9)
Since every negative point xlj has the following decomposition:xlj = ~xlj � h;where ~xlj is the projection of xlj onto the positive optimal separating hyper-plane, Equation (6.9) becomesXli2I+ xli�li + Xli2(I��fln+1g) ~xli�li = ( 2khk2 + Xli2(I�fln+1g)�li)h= chh; (6.10)
where ch > 0. Since all the points in the left hand side of Equation (6.10) arein the positive optimal hyperplane and �li is positive, h (the projection of xln+1onto the positive optimal hyperplane) must be inside the polytope constructedby these points. Knowing that among these points the ones that construct thesmallest polytope containing h correspond to the smallest basis that can linearlyexpress h, we choose the points xli with the same indices as the candidatesto be linearly independent SVs, and denote them by fxc1 ; : : : ; xc~ng. A threedimensional case is shown in Figure 11. Since h is inside the smallest polytopeconstructed by the projection of xci onto the positive optimal hyperplane, weare guaranteed that the following equation has a positive solution:~nXi=1 xci�ci = 2khk2h:It follows that the points we have chosen (if ci 2 I� replace xci by �xci) arestill SVs and they are linearly independent. �Definition 2 By Property 3, we de�ne SVs to be non-redundant in additionto the requirement that their corresponding Lagrange multipliers be positive.
Lemma 6.2 The optimal separating hyperplanes are equivalent to the E-separatinghyperplanes computed in the subspace determined by SVs.
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Figure 11: On the positive optimal plane, x1; x2 and x3 de�ne the smallesttriangle containing h. It follows that x4 is redundant and fx1; x2; x3; x5g areSVs.
Proof. Given a set of SVs fxl1 ; : : : ; xln+1g, we can determine the optimalseparating hyperplanes by computing the least square solution to (6.6). LetX = Qq�nX̂n�n be the compact QR decomposition of X and ŵ = QTw, whereX̂ is nonsingular by the de�nition of SVs. If P is a matrix that completes Q,i.e., W = [Q;P ] is square orthogonal, then w has the form:w = Qŵ + P r̂;where ŵ 2 Rn and r̂ 2 Rq�n. From Equation (6.6), we haveX̂T ŵ = � 20 �: (6.11)Since X̂ is nonsingular, the above system has a unique solution:ŵ = X̂�T� 20 �:It is easy to see that to minimizekwk2 = kŵk2 + kr̂k2 for r̂ 2 Rq�n;r̂ must be zero, i.e., the least square solution is w = Qŵ. Therefore, once we aregiven a set of SVs, the original QP problem can be reduced to a linear system(6.11). From results in Section 4, we recognize that this is exactly the linearsystem that de�nes the E-separating hyperplanes in Rn that separate the n+1projected SVs fx̂l1 ; : : : ; x̂ln ; 0g. Thus we can conclude that the pair of optimalhyperplanes (in Rq) is equivalent to the pair of E-separating hyperplanes (inRn) in the sense that w = Qŵ and ŵ = QTw. �25



From Lemma 6:2 and the results about the E-separating hyperplanes inSection 4, it immediately follows that the following theorem is true:Theorem 6.1 Given n + 1 SVs fx1; : : : ; xn+1g in Rq. De�ne X = [x1 �xn+1; : : : ; xn � xn+1], I+ = f1; : : : ;mg and I� = fm + 1; : : : ; n + 1g. IfX = Qq�nX̂n�n is the compact QR decomposition of X, then the Lagrangemultiplier associated with each SV is determined by�l = 2khk2 vol X̂lvol X̂ (6.12)for l = 1; : : : ; n, and �n+1 = Xi2I+ �i � Xi2I��fn+1g�i: (6.13)
Where X̂l = [x̂1; : : : ; x̂l�1; h; x̂l+1; : : : ; x̂n], and Qh de�nes the normal directionof the optimal separating hyperplanes and its length gives the distance betweenthem. The pair of optimal separating hyperplanes is given by(QX̂�T� 20 �)Tx+ b = �1; (6.14)where b is determined by (3.14). Moreover, the following simplex volume de-composition relation must be satis�ed at optimality:vol X̂ = Xi2I+ vol X̂i;vol X̂+ = Xi2I� vol X̂+i ; (6.15)
where the superscript \+" indicates that a positive point is chosen as the originin the subspace determined by SVs.Remark 6.2 The above argument shows that the Lagrange multiplier associatedwith each SV can be interpreted geometrically as a normalized ratio of simplexvolumes, and at optimality a simplex volume decomposition relation must besatis�ed.
7 A Trigonometric Interpretation of �lIf we inate (or deate) the geometry, i.e., each point is multiplied by a factorc such that xi = cxi, then from Formula (4.7) and Formula (4.8), we know thateach �i will be changed by a factor 1c2 . Since the volumes of Xi and X inate(or deate) in the same way, their ratio will be a constant. De�ne i to bei = detXidetX (i = 1; : : : ; n);
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where X and Xi are the same as de�ned in Section 4. We �rst show that idepends on two angles. Then by introducing another one, we show that theLagrange multipliers �i associated with the E-separating hyperplanes can beexpressed in terms of three angles.We need the following theorem during our derivation. Since its proof is notdirectly related to the main theme of this paper, we put it in the appendix.Theorem 7.1 Let X1 = [x1; : : : ; xm] and X2 = [xm+1; : : : ; xn] be a partitionof a general square matrix X = [x1; : : : ; xn] with m > n �m. We denote thecompact QR decompositions of X1 and X2 by X1 = Qn�m1 Rm�m1 and X2 =Qn�(n�m)2 R(n�m)�(n�m)2 respectively. After de�ning the determinants of X1and X2 by detX1 = � detR1and detX2 = � detR2;we have the following decomposition of detX:detX = detX1 detX2 n�mYi=1 sin �i; (7.1)where �i are the principal angles between the subspaces spanned by X1 and X2.Let X(1)i = [x1; : : : ; xi�1; xi+1; : : : ; xn; h]and X(1) = [x1; : : : ; xi�1; xi+1; : : : ; xn; xi]be matrices obtained by permuting the columns of Xi and X respectively. SinceX(1)i andX(1) are obtained by the same permutation and permuting the columnsof a matrix may only change the sign of its determinant, i has the same formin terms of X(1)i and X(1): i = detX(1)idetX(1) :Using the decomposition theorem 7:1 and denoting thatX(2)i = [x1; : : : ; xi�1; xi+1; : : : ; xn];we have i = detX(2)i deth sin �idetX(2)i detxi sin i = deth sin �idetxi sin i= � khkkxik sin �isin i ; (7.2)
27



where �i is the principle angle between the subspaces spanned by X(2)i and h,and  i is the principle angle between the subspaces spanned by X(2)i and xi. Ifpi is a vector perpendicular to the n� 1 dimensional subspace spanned by X(2)iand we rede�ne �i to be the angle between pi and h, and  i to be the anglebetween pi and xi, then the formula becomesi = � khkkxik cos �icos i : (7.3)
It is not hard to verify the above formula from Equation (4.4). De�ne pisuch that XT pi = ei: (7.4)Multiplying both sides of Equation (4.4) with pTi gives us:pTi X� = 2khk2 pTi h�i = 2khk2 pTi h= 2khk2 kpikkhk cos �i:

(7.5)
It follows that i = kpikkhk cos �i: (7.6)By the de�nition of pi, we know thatkpik = 1cos ikxik :Substituting kpik into (7.6) with the above result, we havei = khk cos �ikxik cos i : (7.7)Remark 7.1 The de�nition of pi (7.4) removes the � sign in Formula (7.2).From the above results, we can express �i in terms of cos �i and cos i asthe following for i = 1; : : : ; n:�i = 2yikhk2 khkkxik cos �icos i= yi12khkkxik cos �icos i : (7.8)
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Let �i be the angle between pi and xi such thatArea(4xixn+1h) = 12khkkxik sin�i: (7.9)Then we have the following formula for �i:�i = yiArea(4xixn+1h) sin�i cos �icos i : (7.10)It follows that the sign of �i is determined by yi cos �icos i . Therefore, for the corre-sponding E-separating hyperplanes to be optimal yi cos �icos i must be nonnegative.The above argument has proved the following theorem:Theorem 7.2 De�ne pl such that X̂T pl = el. Then the formula (6.12) inTheorem 6:1 can be written in terms of three angles �l, �l and  l:�l = ylArea(4x̂lx̂n+1h) sin�l cos �lcos l : (7.11)where �l is the angle between pl and h,  l is the angle between pl and x̂l, and�l is the angle between x̂l and h.Theorem 7:2 shows that �l can be decomposed into two terms. One termcontaining three angles is independent of the scale of the coordinates, while theother one is reciprocal to the square of the scale.As an example, we consider the acute triangle case shown in Figure 2(a).Since points x1 and x2 are positive, we havecos�i = khkkxik (i = 1; 2):Thus �i can be expressed in terms of the following angles:�1 = sin\x1x3hArea(4x1x3h) � cos\x3x2x1sin\x1x3x2= 2h2 � cos\x1x3h cos\x3x2x1sin\x1x3x2 = 2h2 � cos\x1x3h sin\x2x3hsin\x1x3x2�2 = sin\x2x3hArea(4x2x3h) � cos\x3x1x2sin\x1x3x2= 2h2 � cos\x2x3h cos\x3x1x2sin\x1x3x2 = 2h2 � sin\x3x1x3h cos\x2x3hsin\x1x3x2�3 = �1 + �2 = 2h2 :
(7.12)
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8 Conclusions and Future WorkKnowing which ones are Support Vectors is equivalent to compressing thecorresponding Quadratic Programming problem into a smaller linear system. Inthis paper, we have shown how the optimal solution to the SVM dual problemdepends on the geometry of SVs in terms of both simplex volumes and angles,and that SVs must satisfy a simplex volume decomposition relation. Follow-ing Section 4:3, we are interested in deriving more statistical properties of theLagrange Multipliers as future work.
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A The Proof of Theorem 7:1Let X1 = [x1; : : : ; xm] and X2 = [xm+1; : : : ; xn] be a partition of a gen-eral square matrix X = [x1; : : : ; xn] with m > n � m. We denote the com-pact QR decompositions of X1 and X2 by X1 = Qn�m1 Rm�m1 and X2 =Qn�(n�m)2 R(n�m)�(n�m)2 respectively. If Qn�(n�m)3 and Qn�m4 are rectangu-lar matrices that complete Q1 and Q2, i.e., P = [Q1; Q3] and T = [Q2; Q4] aresquare orthogonal, then we havePTX = � R1 QT1Q2R20 QT3Q2R2 � :It follows that detX = � detPTX = � detR1 detR2 detQT3Q2:

Let us consider the matrix W = � QT1Q2QT3Q2 �. It is easy to show that thecolumns ofW are orthonormal. By the CS decomposition theorem (page 77, [5]),we know that there exist orthogonal matrices U1 2 Rm�m, U2 2 R(n�m)�(n�m)and V1 2 R(n�m)�(n�m) such that� U1 00 U2 �T � QT1Q2QT3Q2 �V1 = � CS � ; (A.1)
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where C = diag(cos �1; : : : ; cos �n�m);S = diag(sin �1; : : : ; sin �n�m);and �i are the principal angles between subspaces spanned by X1 and X2 (page603, [5]). Therefore,
detQT3Q2 = � detU2QT3Q2V1 = � detS = � n�mYi=1 sin �i; (A.2)

and
detX = � detR1 detR2 n�mYi=1 sin �i: (A.3)

De�ne the determinants of X1 and X2 respectively bydetX1 = � detR1and detX2 = � detR2;so that we have the following decomposition of detX:
detX = detX1 detX2 n�mYi=1 sin �i: (A.4)
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