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ABSTRACT
In updating algorthms where orthogonal transformations are accumu-
lated, it is important to preserve the orthogonality of the product in
the presence of rounding error. Moonen, Van Dooren, and Vandewalle
have pointed out that simply normalizing the columns of the product
tends to preserve orthogonality — though not, as DeGroat points out, to
working precision. In this note we give an analysis of the phenomenon.
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In many updating algorithms it is required to accumulate a product of the form

Xi = Q1 Qr_1Qs,

where the matrices ); are orthogonal. Although mathematically speaking X
must be orthogonal, in practice rounding error will cause it to drift from orthog-
onality with increasing k. If we take the deviation of X X} from the identity as
a measure of the loss of orthogonality, then typically

“I - XEXk“F < kaneM’

where || - ||r is the Frobenius norm, ey is the rounding unit for the arithmetic in
question, and 0, is a slowly growing function of the size n of X} (e.g. n'?).

As a cure for this problem DeGroat and Roberts [1] have proposed that each
X} be subjected to a partial reorthogonalization in which the second column is
orthogonalized against the first, the third against the second, and so on with all
the columns being renormalized after orthogonalization. In a subsequent note
on their paper Moonen, Van Dooren, and Vandewalle [2] pointed out that the
normalization alone is sufficient to maintain orthogonality and supported their
claim with a heuristic argument. In a reply DeGroat pointed out that normaliza-
tion “does not yield working precision orthogonality.” However, the error remains
quite small.

The purpose of this note is to give a more complete analysis of the method,
one that explains the phenomena mentioned in the last paragraph. In particular,
we show that this method succeeds when the @; manage to transfer off-diagonal
error in the matrices I — X X; to the diagonal. We also show that normalizing
is the best possible scaling up to to first order. However, it can actually decrease
orthogonality in certain unlikely circumstances.

For notational convenience we will drop subscripts and write

X = XQ,

where X is scaled so that its its column norms are one and @ is orthogonal (for
the moment we ignore rounding error). Since X is normalized, we can write

A=X'X =1+E,
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where the diagonals of FE are zero. Write
A=X"X=1+D+E,
where )
D+E=QTEQ (1)

is a decomposition of QTEQ into its diagonal and off-diagonal parts. In this
notation, the scaling of X amounts to setting

S=(I+D)? (2)
and
X = X85
The deviation from orthogonality of X is the Frobenius norm of

E =883 (3)

The above equations define a recurrence for E, E, etc., which we are going to
analyze. But first we will motivate the scaling by comparing it with the optimal
scaling, which is characterized in the following theorem.

Theorem 1. For any diagonal matrix D let diag(D) denote the vector consisting
of the diagonal element of D. Then for all sufficiently small E, the optimal scaling
matrix S satisfies

A oAdiag(S) = diag(I + D), (4)

where /iAofi is the component-wise product (a.k.a., the Schur or Hadamard prod-
uct) of A with itself.

Proof. Regarded as a function of the elements of S, the function ||S2 ESz||2 is
a quadratic function that is bounded below by zero. Differentiating this function
and setting the results to zero, we obtain (4). It follows that if (4) has a positive
solution, then that solution will provide the optimal scaling. Now limy_,, AocA =
(I + D)?. Consequently,

lim diag(S) = lim (A 0 A)"'diag(I + D) = diag[(I + D)™'] = diag(5) > 0. (5)

E—0 E—0

Hence for all sufficiently small E, the solution of (4) is positive.
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Equation (5) provides a heuristic justification for the method, since it says
that to first order in E our scaling approximates the optimal scaling. However,

the matrix ,
A 1—c¢ €
A= ( € 1 — ¢? )

shows that the method is not guaranteed to increase orthogonality for all small
E. Nevertheless, this situation is quite unlikely, as we will now demonstrate by
an analysis of the recurrence (3).

First note that from (1) and the unitary invariance of the Frobenius norm we
have

IEIIE = 1DIF + 1B (6)
Now the square of the (i, 7) element of E is
& < é;

(1= I1Dllr)*

Here d; is the ith element of D, and we assume that ||D||r < 1. Hence

(1+d;)(1 +d;)

(1= IDllp)*
Setting
¢=|Elr and 6=]|D|r,

we have from (6) and (7)

1Bl} <& = ——. (8)

A little extra notation will help us decide when the scaling results in an increase
of orthogonality. Since from (6) we have § < €, we can write

5=76, 0<~y< 1.

In this notation the equality in (8) becomes

1l

SR [ 9)
=

1 — ve)?

Thus the problem is to ascertain when () is less than one. The following facts
are easily verified.
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1. ¢(y) > 1 in the interval [0,2¢/(1 + €?)]. At v = € it assumes a maximum of
(1—¢€)1.

2. ¢(7y) decreases monotonically from one to zero on the interval [2¢/(1+¢€?),1].

In terms of our iteration, if 6 is too small, roughly less than 2¢?, then the
scaling has the potential to reduce orthogonality —but not by very much if €
is at all small. For larger § the scaling is guaranteed to increase orthogonality.
Otherwise put, multiplication by the matrix ) moves part of E to the diagonal
where it is eliminated by the scaling. The more of F that is moved to the diagonal
the better.

The amount of F that is moved will depend on ), which in turn depends on
the application in question. However, it is interesting to note what happens when
@ is chosen at random uniformly from the group of orthogonal matrices. To do
SO we prove

Theorem 2. Let Q = (¢,...,¢,) be a random orthogonal matrix, uniformly
distributed over the group of orthogonal matrices. Then for any symmetric matrix

E

B (S B0 ) = mglrace(5) + 20 B[R

1=1

where E is the expectation operator.

Proof. Let u denote a random vector of n independent standard normals. Let
r denote ||u|| and v = u/r (n.b., v is a typical column of Q). It is well known
that v is distributed uniformly over the sphere, while r? is independent with 2
distribution. Thus using standard results on the moments of the normal and x?
distributions, we have

Eu! 3
4 _ 1
Ev; = Ert  n(n+2)
and B(u?)
2,2y _ B(uiuj) _ 1 o,
E(v;v;) = Bt nnt2) i # 7.

It is clearly sufficient to prove the lemma for diagonal matrices, say
E = diag()\l, N /\n)

For this case the result follows easily on expanding "% (¢ E¢;)? and using the
above formulas to take expectations (recall that trace(E)? = ||E||% + Ziz; Aidj)-
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In our application, the trace of E is zero and we have on the average

A 2
2 2,
d Tnt2t

e, 72 = 2/(n 4+ 2). Thus, § is of the same order as ¢, and by the second
observations following (9) we can expect to observe an increase of orthogonality.
However, this increase decreases as n grows. For if € is small enough so that the
denominator in ¢(7) can be ignored, an iteration will reduce €? on the average by
a factor of of only n/(n + 2).

Finally, returning to the role of rounding error, its effect is to add errors to E.
The Frobenius norm of this error will be proportional to the rounding unit ey,
say O,em. Thus the recurrence (9) must be rewritten in the form

L 1
€= p(y)2e+ Onem.
If we assume that v is constant, then this recurrence has the fixed point
0n6M ~ 20n5M
€= T = P
1 —(v)? g

b

the last approximation holding for small gamma. For example, with random @
we should not expect to reduce the measure of orthogonality much below (n +
2)0,em. These considerations perhaps explain the lack of orthogonality to working
precision noticed by DeGroat.
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